1
0
Fork 1
mirror of https://github.com/TES3MP/openmw-tes3mp.git synced 2025-01-15 21:19:57 +00:00
openmw-tes3mp/components/nif/data.hpp
2011-11-23 18:18:51 -05:00

823 lines
19 KiB
C++

/*
OpenMW - The completely unofficial reimplementation of Morrowind
Copyright (C) 2008-2010 Nicolay Korslund
Email: < korslund@gmail.com >
WWW: http://openmw.sourceforge.net/
This file (data.h) is part of the OpenMW package.
OpenMW is distributed as free software: you can redistribute it
and/or modify it under the terms of the GNU General Public License
version 3, as published by the Free Software Foundation.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
version 3 along with this program. If not, see
http://www.gnu.org/licenses/ .
*/
#ifndef _NIF_DATA_H_
#define _NIF_DATA_H_
#include "controlled.hpp"
#include <iostream>
#include <Ogre.h>
namespace Nif
{
class NiSourceTexture : public Named
{
public:
// Is this an external (references a separate texture file) or
// internal (data is inside the nif itself) texture?
bool external;
Misc::SString filename; // In case of external textures
NiPixelDataPtr data; // In case of internal textures
/* Pixel layout
0 - Palettised
1 - High color 16
2 - True color 32
3 - Compressed
4 - Bumpmap
5 - Default */
int pixel;
/* Mipmap format
0 - no
1 - yes
2 - default */
int mipmap;
/* Alpha
0 - none
1 - binary
2 - smooth
3 - default (use material alpha, or multiply material with texture if present)
*/
int alpha;
void read(NIFFile *nif)
{
Named::read(nif);
external = !!nif->getByte();
if(external) filename = nif->getString();
else
{
nif->getByte(); // always 1
data.read(nif);
}
pixel = nif->getInt();
mipmap = nif->getInt();
alpha = nif->getInt();
nif->getByte(); // always 1
}
};
// Common ancestor for several data classes
class ShapeData : public Record
{
public:
Misc::FloatArray vertices, normals, colors, uvlist;
const Vector *center;
float radius;
void read(NIFFile *nif)
{
int verts = nif->getShort();
if(nif->getInt())
vertices = nif->getFloatLen(verts*3);
if(nif->getInt())
normals = nif->getFloatLen(verts*3);
center = nif->getVector();
radius = nif->getFloat();
if(nif->getInt())
colors = nif->getFloatLen(verts*4);
int uvs = nif->getShort();
// Only the first 6 bits are used as a count. I think the rest are
// flags of some sort.
uvs &= 0x3f;
if(nif->getInt())
uvlist = nif->getFloatLen(uvs*verts*2);
}
};
class NiTriShapeData : public ShapeData
{
public:
// Triangles, three vertex indices per triangle
Misc::SliceArray<short> triangles;
void read(NIFFile *nif)
{
ShapeData::read(nif);
int tris = nif->getShort();
if(tris)
{
// We have three times as many vertices as triangles, so this
// is always equal to tris*3.
int cnt = nif->getInt();
triangles = nif->getArrayLen<short>(cnt);
}
// Read the match list, which lists the vertices that are equal to
// vertices. We don't actually need need this for anything, so
// just skip it.
int verts = nif->getShort();
if(verts)
{
for(int i=0;i<verts;i++)
{
// Number of vertices matching vertex 'i'
short num = nif->getShort();
nif->skip(num*sizeof(short));
}
}
}
};
class NiAutoNormalParticlesData : public ShapeData
{
public:
int activeCount;
void read(NIFFile *nif)
{
ShapeData::read(nif);
// Should always match the number of vertices
activeCount = nif->getShort();
// Skip all the info, we don't support particles yet
nif->getFloat(); // Active radius ?
nif->getShort(); // Number of valid entries in the following arrays ?
if(nif->getInt())
// Particle sizes
nif->getFloatLen(activeCount);
}
};
class NiRotatingParticlesData : public NiAutoNormalParticlesData
{
public:
void read(NIFFile *nif)
{
NiAutoNormalParticlesData::read(nif);
if(nif->getInt())
// Rotation quaternions. I THINK activeCount is correct here,
// but verts (vertex number) might also be correct, if there is
// any case where the two don't match.
nif->getArrayLen<Vector4>(activeCount);
}
};
class NiPosData : public Record
{
public:
void read(NIFFile *nif)
{
int count = nif->getInt();
int type = nif->getInt();
if(type != 1 && type != 2)
nif->fail("Cannot handle NiPosData type");
// TODO: Could make structs of these. Seems to be identical to
// translation in NiKeyframeData.
for(int i=0; i<count; i++)
{
/*float time =*/ nif->getFloat();
nif->getVector(); // This isn't really shared between type 1
// and type 2, most likely
if(type == 2)
{
nif->getVector();
nif->getVector();
}
}
}
};
class NiUVData : public Record
{
public:
void read(NIFFile *nif)
{
// TODO: This is claimed to be a "float animation key", which is
// also used in FloatData and KeyframeData. We could probably
// reuse and refactor a lot of this if we actually use it at some
// point.
for(int i=0; i<2; i++)
{
int count = nif->getInt();
if(count)
{
nif->getInt(); // always 2
nif->getArrayLen<Vector4>(count); // Really one time float + one vector
}
}
// Always 0
nif->getInt();
nif->getInt();
}
};
class NiFloatData : public Record
{
public:
void read(NIFFile *nif)
{
int count = nif->getInt();
nif->getInt(); // always 2
nif->getArrayLen<Vector4>(count); // Really one time float + one vector
}
};
class NiPixelData : public Record
{
public:
unsigned int rmask, gmask, bmask, amask;
int bpp, mips;
void read(NIFFile *nif)
{
nif->getInt(); // always 0 or 1
rmask = nif->getInt(); // usually 0xff
gmask = nif->getInt(); // usually 0xff00
bmask = nif->getInt(); // usually 0xff0000
amask = nif->getInt(); // usually 0xff000000 or zero
bpp = nif->getInt();
// Unknown
nif->skip(12);
mips = nif->getInt();
// Bytes per pixel, should be bpp * 8
/*int bytes =*/ nif->getInt();
for(int i=0; i<mips; i++)
{
// Image size and offset in the following data field
/*int x =*/ nif->getInt();
/*int y =*/ nif->getInt();
/*int offset =*/ nif->getInt();
}
// Skip the data
unsigned int dataSize = nif->getInt();
nif->skip(dataSize);
}
};
class NiColorData : public Record
{
public:
struct ColorData
{
float time;
Vector4 rgba;
};
void read(NIFFile *nif)
{
int count = nif->getInt();
nif->getInt(); // always 1
// Skip the data
assert(sizeof(ColorData) == 4*5);
nif->skip(sizeof(ColorData) * count);
}
};
class NiVisData : public Record
{
public:
void read(NIFFile *nif)
{
int count = nif->getInt();
/*
Each VisData consists of:
float time;
byte isSet;
If you implement this, make sure you use a packed struct
(sizeof==5), or read each element individually.
*/
nif->skip(count*5);
}
};
class NiSkinInstance : public Record
{
public:
NiSkinDataPtr data;
NodePtr root;
NodeList bones;
void read(NIFFile *nif)
{
data.read(nif);
root.read(nif);
bones.read(nif);
if(data.empty() || root.empty())
nif->fail("NiSkinInstance missing root or data");
}
void post(NIFFile *nif);
};
class NiSkinData : public Record
{
public:
// This is to make sure the structs are packed, ie. that the
// compiler doesn't mess them up with extra alignment bytes.
#pragma pack(push)
#pragma pack(1)
struct BoneTrafo
{
Matrix rotation; // Rotation offset from bone?
Vector trans; // Translation
float scale; // Probably scale (always 1)
};
struct BoneTrafoCopy
{
Ogre::Quaternion rotation;
Ogre::Vector3 trans;
float scale;
};
struct VertWeight
{
short vertex;
float weight;
};
#pragma pack(pop)
struct BoneInfo
{
const BoneTrafo *trafo;
const Vector4 *unknown;
Misc::SliceArray<VertWeight> weights;
};
struct BoneInfoCopy
{
std::string bonename;
BoneTrafoCopy trafo;
Vector4 unknown;
std::vector<VertWeight> weights;
};
const BoneTrafo *trafo;
std::vector<BoneInfo> bones;
void read(NIFFile *nif)
{
assert(sizeof(BoneTrafo) == 4*(9+3+1));
assert(sizeof(VertWeight) == 6);
trafo = nif->getPtr<BoneTrafo>();
int boneNum = nif->getInt();
nif->getInt(); // -1
bones.resize(boneNum);
for(int i=0;i<boneNum;i++)
{
BoneInfo &bi = bones[i];
bi.trafo = nif->getPtr<BoneTrafo>();
bi.unknown = nif->getVector4();
// Number of vertex weights
int count = nif->getShort();
bi.weights = nif->getArrayLen<VertWeight>(count);
}
}
};
class NiMorphData : public Record
{
float startTime;
float stopTime;
std::vector<Ogre::Vector3> initialVertices;
std::vector<std::vector<float>> relevantTimes;
std::vector<std::vector<Ogre::Vector3>> relevantData;
std::vector<std::vector<Ogre::Vector3>> additionalVertices;
public:
float getStartTime(){
return startTime;
}
float getStopTime(){
return stopTime;
}
void setStartTime(float time){
startTime = time;
}
void setStopTime(float time){
stopTime = time;
}
std::vector<Ogre::Vector3> getInitialVertices(){
return initialVertices;
}
std::vector<std::vector<Ogre::Vector3>> getRelevantData(){
return relevantData;
}
std::vector<std::vector<float>> getRelevantTimes(){
return relevantTimes;
}
std::vector<std::vector<Ogre::Vector3>> getAdditionalVertices(){
return additionalVertices;
}
void read(NIFFile *nif)
{
int morphCount = nif->getInt();
int vertCount = nif->getInt();
nif->getByte();
int magic = nif->getInt();
int type = nif->getInt();
for(int i = 0; i < vertCount; i++){
float x = nif->getFloat();
float y = nif->getFloat();
float z = nif->getFloat();
initialVertices.push_back(Ogre::Vector3(x, y, z));
}
for(int i=1; i<morphCount; i++)
{
magic = nif->getInt();
type = nif->getInt();
std::vector<Ogre::Vector3> current;
std::vector<float> currentTime;
for(int i = 0; i < magic; i++){
// Time, data, forward, backward tangents
float time = nif->getFloat();
float x = nif->getFloat();
float y = nif->getFloat();
float z = nif->getFloat();
current.push_back(Ogre::Vector3(x,y,z));
currentTime.push_back(time);
//nif->getFloatLen(4*magic);
}
if(magic){
relevantData.push_back(current);
relevantTimes.push_back(currentTime);
}
std::vector<Ogre::Vector3> verts;
for(int i = 0; i < vertCount; i++){
float x = nif->getFloat();
float y = nif->getFloat();
float z = nif->getFloat();
verts.push_back(Ogre::Vector3(x, y, z));
}
additionalVertices.push_back(verts);
}
}
};
class NiKeyframeData : public Record
{
std::string bonename;
//Rotations
std::vector<Ogre::Quaternion> quats;
std::vector<Ogre::Vector3> tbc;
std::vector<float> rottime;
float startTime;
float stopTime;
int rtype;
//Translations
std::vector<Ogre::Vector3> translist1;
std::vector<Ogre::Vector3> translist2;
std::vector<Ogre::Vector3> translist3;
std::vector<Ogre::Vector3> transtbc;
std::vector<float> transtime;
int ttype;
//Scalings
std::vector<float> scalefactor;
std::vector<float> scaletime;
std::vector<float> forwards;
std::vector<float> backwards;
std::vector<Ogre::Vector3> tbcscale;
int stype;
public:
void clone(NiKeyframeData c)
{
quats = c.getQuat();
tbc = c.getrTbc();
rottime = c.getrTime();
//types
ttype = c.getTtype();
rtype = c.getRtype();
stype = c.getStype();
translist1 = c.getTranslist1();
translist2 = c.getTranslist2();
translist3 = c.getTranslist3();
transtime = c.gettTime();
bonename = c.getBonename();
}
void setBonename(std::string bone)
{
bonename = bone;
}
void setStartTime(float start)
{
startTime = start;
}
void setStopTime(float end)
{
stopTime = end;
}
void read(NIFFile *nif)
{
// Rotations first
int count = nif->getInt();
//std::vector<Ogre::Quaternion> quat(count);
//std::vector<float> rottime(count);
std::cout << "r";
if(count)
{
//TYPE1 LINEAR_KEY
//TYPE2 QUADRATIC_KEY
//TYPE3 TBC_KEY
//TYPE4 XYZ_ROTATION_KEY
//TYPE5 UNKNOWN_KEY
rtype = nif->getInt();
//std::cout << "Count: " << count << "Type: " << type << "\n";
if(rtype == 1)
{
//We need to actually read in these values instead of skipping them
//nif->skip(count*4*5); // time + quaternion
for (int i = 0; i < count; i++) {
float time = nif->getFloat();
float w = nif->getFloat();
float x = nif->getFloat();
float y = nif->getFloat();
float z = nif->getFloat();
Ogre::Quaternion quat = Ogre::Quaternion(Ogre::Real(w), Ogre::Real(x), Ogre::Real(y), Ogre::Real(z));
quats.push_back(quat);
rottime.push_back(time);
//if(time == 0.0 || time > 355.5)
// std::cout <<"Time:" << time << "W:" << w <<"X:" << x << "Y:" << y << "Z:" << z << "\n";
}
}
else if(rtype == 3)
{ //Example - node 116 in base_anim.nif
for (int i = 0; i < count; i++) {
float time = nif->getFloat();
float w = nif->getFloat();
float x = nif->getFloat();
float y = nif->getFloat();
float z = nif->getFloat();
float tbcx = nif->getFloat();
float tbcy = nif->getFloat();
float tbcz = nif->getFloat();
Ogre::Quaternion quat = Ogre::Quaternion(Ogre::Real(w), Ogre::Real(x), Ogre::Real(y), Ogre::Real(z));
Ogre::Vector3 vec = Ogre::Vector3(tbcx, tbcy, tbcz);
quats.push_back(quat);
rottime.push_back(time);
tbc.push_back(vec);
//if(time == 0.0 || time > 355.5)
// std::cout <<"Time:" << time << "W:" << w <<"X:" << x << "Y:" << y << "Z:" << z << "\n";
}
//nif->skip(count*4*8); // rot1 + tension+bias+continuity
}
else if(rtype == 4)
{
for(int j=0;j<count;j++)
{
nif->getFloat(); // time
for(int i=0; i<3; i++)
{
int cnt = nif->getInt();
int type = nif->getInt();
if(type == 1)
nif->skip(cnt*4*2); // time + unknown
else if(type == 2)
nif->skip(cnt*4*4); // time + unknown vector
else nif->fail("Unknown sub-rotation type");
}
}
}
else nif->fail("Unknown rotation type in NiKeyframeData");
}
//first = false;
// Then translation
count = nif->getInt();
if(count)
{
ttype = nif->getInt();
//std::cout << "TransCount:" << count << " Type: " << type << "\n";
if(ttype == 1) {
for (int i = 0; i < count; i++) {
float time = nif->getFloat();
float x = nif->getFloat();
float y = nif->getFloat();
float z = nif->getFloat();
Ogre::Vector3 trans = Ogre::Vector3(x, y, z);
translist1.push_back(trans);
transtime.push_back(time);
}
//nif->getFloatLen(count*4); // time + translation
}
else if(ttype == 2)
{ //Example - node 116 in base_anim.nif
for (int i = 0; i < count; i++) {
float time = nif->getFloat();
float x = nif->getFloat();
float y = nif->getFloat();
float z = nif->getFloat();
float x2 = nif->getFloat();
float y2 = nif->getFloat();
float z2 = nif->getFloat();
float x3 = nif->getFloat();
float y3 = nif->getFloat();
float z3 = nif->getFloat();
Ogre::Vector3 trans = Ogre::Vector3(x, y, z);
Ogre::Vector3 trans2 = Ogre::Vector3(x2, y2, z2);
Ogre::Vector3 trans3 = Ogre::Vector3(x3, y3, z3);
transtime.push_back(time);
translist1.push_back(trans);
translist2.push_back(trans2);
translist3.push_back(trans3);
}
//nif->getFloatLen(count*10); // trans1 + forward + backward
}
else if(ttype == 3){
for (int i = 0; i < count; i++) {
float time = nif->getFloat();
float x = nif->getFloat();
float y = nif->getFloat();
float z = nif->getFloat();
float t = nif->getFloat();
float b = nif->getFloat();
float c = nif->getFloat();
Ogre::Vector3 trans = Ogre::Vector3(x, y, z);
Ogre::Vector3 tbc = Ogre::Vector3(t, b, c);
translist1.push_back(trans);
transtbc.push_back(tbc);
transtime.push_back(time);
}
//nif->getFloatLen(count*7); // trans1 + tension,bias,continuity
}
else nif->fail("Unknown translation type");
}
// Finally, scalings
count = nif->getInt();
if(count)
{
stype = nif->getInt();
for(int i = 0; i < count; i++){
//int size = 0;
if(stype >= 1 && stype < 4)
{
float time = nif->getFloat();
float scale = nif->getFloat();
scaletime.push_back(time);
scalefactor.push_back(scale);
//size = 2; // time+scale
}
else nif->fail("Unknown scaling type");
if(stype == 2){
//size = 4; // 1 + forward + backward (floats)
float forward = nif->getFloat();
float backward = nif->getFloat();
forwards.push_back(forward);
backwards.push_back(backward);
}
else if(stype == 3){
float tbcx = nif->getFloat();
float tbcy = nif->getFloat();
float tbcz = nif->getFloat();
Ogre::Vector3 vec = Ogre::Vector3(tbcx, tbcy, tbcz);
tbcscale.push_back(vec);
//size = 5; // 1 + tbc
}
}
}
else
stype = 0;
}
int getRtype(){
return rtype;
}
int getStype(){
return stype;
}
int getTtype(){
return ttype;
}
float getStartTime(){
return startTime;
}
float getStopTime(){
return stopTime;
}
std::vector<Ogre::Quaternion> getQuat(){
return quats;
}
std::vector<Ogre::Vector3> getrTbc(){
return tbc;
}
std::vector<float> getrTime(){
return rottime;
}
std::vector<Ogre::Vector3> getTranslist1(){
return translist1;
}
std::vector<Ogre::Vector3> getTranslist2(){
return translist2;
}
std::vector<Ogre::Vector3> getTranslist3(){
return translist3;
}
std::vector<float> gettTime(){
return transtime;
}
std::vector<float> getScalefactor(){
return scalefactor;
}
std::vector<float> getForwards(){
return forwards;
}
std::vector<float> getBackwards(){
return backwards;
}
std::vector<Ogre::Vector3> getScaleTbc(){
return tbcscale;
}
std::vector<float> getsTime(){
return scaletime;
}
std::string getBonename(){ return bonename;
}
};
} // Namespace
#endif