1
0
Fork 1
mirror of https://github.com/TES3MP/openmw-tes3mp.git synced 2025-01-22 00:53:50 +00:00
openmw-tes3mp/components/terrain/quadtreeworld.cpp
bzzt a730365ea1 Creanup Distant Terrain code
- Cull terrain in the stock osg::CullVisitor
- Do not compile composite maps for shadow camera
- Do not abuse userdata for composite maps
2019-06-05 19:09:57 +04:00

496 lines
15 KiB
C++

#include "quadtreeworld.hpp"
#include <osgUtil/CullVisitor>
#include <sstream>
#include <components/misc/constants.hpp>
#include <components/sceneutil/mwshadowtechnique.hpp>
#include "quadtreenode.hpp"
#include "storage.hpp"
#include "viewdata.hpp"
#include "chunkmanager.hpp"
#include "compositemaprenderer.hpp"
namespace
{
bool isPowerOfTwo(int x)
{
return ( (x > 0) && ((x & (x - 1)) == 0) );
}
int nextPowerOfTwo (int v)
{
if (isPowerOfTwo(v)) return v;
int depth=0;
while(v)
{
v >>= 1;
depth++;
}
return 1 << depth;
}
int Log2( unsigned int n )
{
int targetlevel = 0;
while (n >>= 1) ++targetlevel;
return targetlevel;
}
}
namespace Terrain
{
class DefaultLodCallback : public LodCallback
{
public:
DefaultLodCallback(float factor, float minSize)
: mFactor(factor)
, mMinSize(minSize)
{
}
virtual bool isSufficientDetail(QuadTreeNode* node, float dist)
{
int nativeLodLevel = Log2(static_cast<unsigned int>(node->getSize()/mMinSize));
int lodLevel = Log2(static_cast<unsigned int>(dist/(Constants::CellSizeInUnits*mMinSize*mFactor)));
return nativeLodLevel <= lodLevel;
}
private:
float mFactor;
float mMinSize;
};
class RootNode : public QuadTreeNode
{
public:
RootNode(float size, const osg::Vec2f& center)
: QuadTreeNode(nullptr, Root, size, center)
, mWorld(nullptr)
{
}
void setWorld(QuadTreeWorld* world)
{
mWorld = world;
}
virtual void accept(osg::NodeVisitor &nv)
{
if (!nv.validNodeMask(*this))
return;
nv.pushOntoNodePath(this);
mWorld->accept(nv);
nv.popFromNodePath();
}
private:
QuadTreeWorld* mWorld;
};
class QuadTreeBuilder
{
public:
QuadTreeBuilder(Terrain::Storage* storage, float minSize)
: mStorage(storage)
, mMinX(0.f), mMaxX(0.f), mMinY(0.f), mMaxY(0.f)
, mMinSize(minSize)
{
}
void build()
{
mStorage->getBounds(mMinX, mMaxX, mMinY, mMaxY);
int origSizeX = static_cast<int>(mMaxX - mMinX);
int origSizeY = static_cast<int>(mMaxY - mMinY);
// Dividing a quad tree only works well for powers of two, so round up to the nearest one
int size = nextPowerOfTwo(std::max(origSizeX, origSizeY));
float centerX = (mMinX+mMaxX)/2.f + (size-origSizeX)/2.f;
float centerY = (mMinY+mMaxY)/2.f + (size-origSizeY)/2.f;
mRootNode = new RootNode(size, osg::Vec2f(centerX, centerY));
addChildren(mRootNode);
mRootNode->initNeighbours();
}
void addChildren(QuadTreeNode* parent)
{
float halfSize = parent->getSize()/2.f;
osg::BoundingBox boundingBox;
for (unsigned int i=0; i<4; ++i)
{
osg::ref_ptr<QuadTreeNode> child = addChild(parent, static_cast<ChildDirection>(i), halfSize);
if (child)
{
boundingBox.expandBy(child->getBoundingBox());
parent->addChildNode(child);
}
}
if (!boundingBox.valid())
parent->removeChildren(0, 4);
else
parent->setBoundingBox(boundingBox);
}
osg::ref_ptr<QuadTreeNode> addChild(QuadTreeNode* parent, ChildDirection direction, float size)
{
float halfSize = size/2.f;
osg::Vec2f center;
switch (direction)
{
case SW:
center = parent->getCenter() + osg::Vec2f(-halfSize,-halfSize);
break;
case SE:
center = parent->getCenter() + osg::Vec2f(halfSize, -halfSize);
break;
case NW:
center = parent->getCenter() + osg::Vec2f(-halfSize, halfSize);
break;
case NE:
center = parent->getCenter() + osg::Vec2f(halfSize, halfSize);
break;
default:
break;
}
osg::ref_ptr<QuadTreeNode> node = new QuadTreeNode(parent, direction, size, center);
if (center.x() - halfSize > mMaxX
|| center.x() + halfSize < mMinX
|| center.y() - halfSize > mMaxY
|| center.y() + halfSize < mMinY )
// Out of bounds of the actual terrain - this will happen because
// we rounded the size up to the next power of two
{
// Still create and return an empty node so as to not break the assumption that each QuadTreeNode has either 4 or 0 children.
return node;
}
// Do not add child nodes for default cells without data.
// size = 1 means that the single shape covers the whole cell.
if (node->getSize() == 1 && !mStorage->hasData(center.x()-0.5, center.y()-0.5))
return node;
if (node->getSize() <= mMinSize)
{
// We arrived at a leaf.
// Since the tree is used for LOD level selection instead of culling, we do not need to load the actual height data here.
float minZ = -std::numeric_limits<float>::max();
float maxZ = std::numeric_limits<float>::max();
float cellWorldSize = mStorage->getCellWorldSize();
osg::BoundingBox boundingBox(osg::Vec3f((center.x()-halfSize)*cellWorldSize, (center.y()-halfSize)*cellWorldSize, minZ),
osg::Vec3f((center.x()+halfSize)*cellWorldSize, (center.y()+halfSize)*cellWorldSize, maxZ));
node->setBoundingBox(boundingBox);
return node;
}
else
{
addChildren(node);
return node;
}
}
osg::ref_ptr<RootNode> getRootNode()
{
return mRootNode;
}
private:
Terrain::Storage* mStorage;
float mLodFactor;
float mMinX, mMaxX, mMinY, mMaxY;
float mMinSize;
osg::ref_ptr<RootNode> mRootNode;
osg::ref_ptr<LodCallback> mLodCallback;
};
QuadTreeWorld::QuadTreeWorld(osg::Group *parent, osg::Group *compileRoot, Resource::ResourceSystem *resourceSystem, Storage *storage, int nodeMask, int preCompileMask, int borderMask, int compMapResolution, float compMapLevel, float lodFactor, int vertexLodMod, float maxCompGeometrySize)
: TerrainGrid(parent, compileRoot, resourceSystem, storage, nodeMask, preCompileMask, borderMask)
, mViewDataMap(new ViewDataMap)
, mQuadTreeBuilt(false)
, mLodFactor(lodFactor)
, mVertexLodMod(vertexLodMod)
, mViewDistance(std::numeric_limits<float>::max())
{
mChunkManager->setCompositeMapSize(compMapResolution);
mChunkManager->setCompositeMapLevel(compMapLevel);
mChunkManager->setMaxCompositeGeometrySize(maxCompGeometrySize);
}
QuadTreeWorld::~QuadTreeWorld()
{
mViewDataMap->clear();
}
/// get the level of vertex detail to render this node at, expressed relative to the native resolution of the data set.
unsigned int getVertexLod(QuadTreeNode* node, int vertexLodMod)
{
int lod = Log2(int(node->getSize()));
if (vertexLodMod > 0)
{
lod = std::max(0, lod-vertexLodMod);
}
else if (vertexLodMod < 0)
{
float size = node->getSize();
// Stop to simplify at this level since with size = 1 the node already covers the whole cell and has getCellVertices() vertices.
while (size < 1)
{
size *= 2;
vertexLodMod = std::min(0, vertexLodMod+1);
}
lod += std::abs(vertexLodMod);
}
return lod;
}
/// get the flags to use for stitching in the index buffer so that chunks of different LOD connect seamlessly
unsigned int getLodFlags(QuadTreeNode* node, int ourLod, int vertexLodMod, ViewData* vd)
{
unsigned int lodFlags = 0;
for (unsigned int i=0; i<4; ++i)
{
QuadTreeNode* neighbour = node->getNeighbour(static_cast<Direction>(i));
// If the neighbour isn't currently rendering itself,
// go up until we find one. NOTE: We don't need to go down,
// because in that case neighbour's detail would be higher than
// our detail and the neighbour would handle stitching by itself.
while (neighbour && !vd->contains(neighbour))
neighbour = neighbour->getParent();
int lod = 0;
if (neighbour)
lod = getVertexLod(neighbour, vertexLodMod);
if (lod <= ourLod) // We only need to worry about neighbours less detailed than we are -
lod = 0; // neighbours with more detail will do the stitching themselves
// Use 4 bits for each LOD delta
if (lod > 0)
{
lodFlags |= static_cast<unsigned int>(lod - ourLod) << (4*i);
}
}
return lodFlags;
}
void loadRenderingNode(ViewData::Entry& entry, ViewData* vd, int vertexLodMod, ChunkManager* chunkManager)
{
if (!vd->hasChanged() && entry.mRenderingNode)
return;
int ourLod = getVertexLod(entry.mNode, vertexLodMod);
if (vd->hasChanged())
{
// have to recompute the lodFlags in case a neighbour has changed LOD.
unsigned int lodFlags = getLodFlags(entry.mNode, ourLod, vertexLodMod, vd);
if (lodFlags != entry.mLodFlags)
{
entry.mRenderingNode = nullptr;
entry.mLodFlags = lodFlags;
}
}
if (!entry.mRenderingNode)
entry.mRenderingNode = chunkManager->getChunk(entry.mNode->getSize(), entry.mNode->getCenter(), ourLod, entry.mLodFlags);
}
void QuadTreeWorld::accept(osg::NodeVisitor &nv)
{
bool isCullVisitor = nv.getVisitorType() == osg::NodeVisitor::CULL_VISITOR;
if (!isCullVisitor && nv.getVisitorType() != osg::NodeVisitor::INTERSECTION_VISITOR)
{
if (nv.getName().find("AcceptedByComponentsTerrainQuadTreeWorld") != std::string::npos)
{
if (nv.getName().find("SceneUtil::MWShadowTechnique::ComputeLightSpaceBounds") != std::string::npos)
{
SceneUtil::MWShadowTechnique::ComputeLightSpaceBounds* clsb = static_cast<SceneUtil::MWShadowTechnique::ComputeLightSpaceBounds*>(&nv);
clsb->apply(*this);
}
else
nv.apply(*mRootNode);
}
return;
}
bool needsUpdate = true;
ViewData* vd = nullptr;
if (isCullVisitor)
vd = mViewDataMap->getViewData(static_cast<osgUtil::CullVisitor*>(&nv)->getCurrentCamera(), nv.getViewPoint(), needsUpdate);
else
{
static ViewData sIntersectionViewData;
vd = &sIntersectionViewData;
}
if (needsUpdate)
{
vd->reset();
if (isCullVisitor)
{
osgUtil::CullVisitor* cv = static_cast<osgUtil::CullVisitor*>(&nv);
osg::UserDataContainer* udc = cv->getCurrentCamera()->getUserDataContainer();
if (udc && udc->getNumDescriptions() >= 2 && udc->getDescriptions()[0] == "NoTerrainLod")
{
std::istringstream stream(udc->getDescriptions()[1]);
int x,y;
stream >> x;
stream >> y;
mRootNode->traverseTo(vd, 1, osg::Vec2f(x+0.5,y+0.5));
}
else
mRootNode->traverse(vd, cv->getViewPoint(), mLodCallback, mViewDistance);
}
else
{
osgUtil::IntersectionVisitor* iv = static_cast<osgUtil::IntersectionVisitor*>(&nv);
osgUtil::LineSegmentIntersector* lineIntersector = dynamic_cast<osgUtil::LineSegmentIntersector*>(iv->getIntersector());
if (!lineIntersector)
throw std::runtime_error("Cannot update QuadTreeWorld: node visitor is not LineSegmentIntersector");
osg::Matrix matrix = osg::Matrix::identity();
if (lineIntersector->getCoordinateFrame() == osgUtil::Intersector::CoordinateFrame::MODEL && iv->getModelMatrix() == 0)
matrix = lineIntersector->getTransformation(*iv, osgUtil::Intersector::CoordinateFrame::MODEL);
osg::ref_ptr<TerrainLineIntersector> terrainIntersector (new TerrainLineIntersector(lineIntersector, matrix));
mRootNode->intersect(vd, terrainIntersector);
}
}
for (unsigned int i=0; i<vd->getNumEntries(); ++i)
{
ViewData::Entry& entry = vd->getEntry(i);
loadRenderingNode(entry, vd, mVertexLodMod, mChunkManager.get());
entry.mRenderingNode->accept(nv);
}
if (!isCullVisitor)
vd->clear(); // we can't reuse intersection views in the next frame because they only contain what is touched by the intersection ray.
vd->markUnchanged();
double referenceTime = nv.getFrameStamp() ? nv.getFrameStamp()->getReferenceTime() : 0.0;
if (referenceTime != 0.0)
{
vd->setLastUsageTimeStamp(referenceTime);
mViewDataMap->clearUnusedViews(referenceTime);
}
}
void QuadTreeWorld::ensureQuadTreeBuilt()
{
OpenThreads::ScopedLock<OpenThreads::Mutex> lock(mQuadTreeMutex);
if (mQuadTreeBuilt)
return;
const float minSize = 1/8.f;
mLodCallback = new DefaultLodCallback(mLodFactor, minSize);
QuadTreeBuilder builder(mStorage, minSize);
builder.build();
mRootNode = builder.getRootNode();
mRootNode->setWorld(this);
mQuadTreeBuilt = true;
}
void QuadTreeWorld::enable(bool enabled)
{
if (enabled)
{
ensureQuadTreeBuilt();
if (!mRootNode->getNumParents())
mTerrainRoot->addChild(mRootNode);
}
if (mRootNode)
mRootNode->setNodeMask(enabled ? ~0 : 0);
}
void QuadTreeWorld::cacheCell(View *view, int x, int y)
{
ensureQuadTreeBuilt();
ViewData* vd = static_cast<ViewData*>(view);
mRootNode->traverseTo(vd, 1, osg::Vec2f(x+0.5f,y+0.5f));
for (unsigned int i=0; i<vd->getNumEntries(); ++i)
{
ViewData::Entry& entry = vd->getEntry(i);
loadRenderingNode(entry, vd, mVertexLodMod, mChunkManager.get());
}
}
View* QuadTreeWorld::createView()
{
return new ViewData;
}
void QuadTreeWorld::preload(View *view, const osg::Vec3f &viewPoint, std::atomic<bool> &abort)
{
ensureQuadTreeBuilt();
ViewData* vd = static_cast<ViewData*>(view);
vd->setViewPoint(viewPoint);
mRootNode->traverse(vd, viewPoint, mLodCallback, mViewDistance);
for (unsigned int i=0; i<vd->getNumEntries() && !abort; ++i)
{
ViewData::Entry& entry = vd->getEntry(i);
loadRenderingNode(entry, vd, mVertexLodMod, mChunkManager.get());
}
vd->markUnchanged();
}
void QuadTreeWorld::storeView(const View* view, double referenceTime)
{
osg::ref_ptr<osg::Object> dummy = new osg::DummyObject;
const ViewData* vd = static_cast<const ViewData*>(view);
bool needsUpdate = false;
ViewData* stored = mViewDataMap->getViewData(dummy, vd->getViewPoint(), needsUpdate);
stored->copyFrom(*vd);
stored->setLastUsageTimeStamp(referenceTime);
}
void QuadTreeWorld::reportStats(unsigned int frameNumber, osg::Stats *stats)
{
stats->setAttribute(frameNumber, "Composite", mCompositeMapRenderer->getCompileSetSize());
}
void QuadTreeWorld::loadCell(int x, int y)
{
// fallback behavior only for undefined cells (every other is already handled in quadtree)
float dummy;
if (!mStorage->getMinMaxHeights(1, osg::Vec2f(x+0.5, y+0.5), dummy, dummy))
TerrainGrid::loadCell(x,y);
else
World::loadCell(x,y);
}
void QuadTreeWorld::unloadCell(int x, int y)
{
// fallback behavior only for undefined cells (every other is already handled in quadtree)
float dummy;
if (!mStorage->getMinMaxHeights(1, osg::Vec2f(x+0.5, y+0.5), dummy, dummy))
TerrainGrid::unloadCell(x,y);
else
World::unloadCell(x,y);
}
}