mirror of
https://github.com/TES3MP/openmw-tes3mp.git
synced 2025-01-15 13:19:56 +00:00
7f1e5b368e
* Reorder unlock and notify_all calls to avoid notifying when not all worker threads are waiting. * Make sure main thread does not attempt to exclusively lock mSimulationMutex while not all workers are done with previous frame. * Replace mNewFrame flag by counter to avoid modification from multiple threads.
654 lines
26 KiB
C++
654 lines
26 KiB
C++
#include <BulletCollision/BroadphaseCollision/btDbvtBroadphase.h>
|
|
#include <BulletCollision/CollisionShapes/btCollisionShape.h>
|
|
|
|
#include <osg/Stats>
|
|
|
|
#include "components/debug/debuglog.hpp"
|
|
#include <components/misc/barrier.hpp>
|
|
#include "components/misc/convert.hpp"
|
|
#include "components/settings/settings.hpp"
|
|
#include "../mwmechanics/actorutil.hpp"
|
|
#include "../mwmechanics/movement.hpp"
|
|
#include "../mwrender/bulletdebugdraw.hpp"
|
|
#include "../mwworld/class.hpp"
|
|
#include "../mwworld/player.hpp"
|
|
|
|
#include "actor.hpp"
|
|
#include "contacttestwrapper.h"
|
|
#include "movementsolver.hpp"
|
|
#include "mtphysics.hpp"
|
|
#include "object.hpp"
|
|
#include "physicssystem.hpp"
|
|
#include "projectile.hpp"
|
|
|
|
namespace
|
|
{
|
|
/// @brief A scoped lock that is either shared or exclusive depending on configuration
|
|
template<class Mutex>
|
|
class MaybeSharedLock
|
|
{
|
|
public:
|
|
/// @param mutex a shared mutex
|
|
/// @param canBeSharedLock decide wether the lock will be shared or exclusive
|
|
MaybeSharedLock(Mutex& mutex, bool canBeSharedLock) : mMutex(mutex), mCanBeSharedLock(canBeSharedLock)
|
|
{
|
|
if (mCanBeSharedLock)
|
|
mMutex.lock_shared();
|
|
else
|
|
mMutex.lock();
|
|
}
|
|
|
|
~MaybeSharedLock()
|
|
{
|
|
if (mCanBeSharedLock)
|
|
mMutex.unlock_shared();
|
|
else
|
|
mMutex.unlock();
|
|
}
|
|
private:
|
|
Mutex& mMutex;
|
|
bool mCanBeSharedLock;
|
|
};
|
|
|
|
void handleFall(MWPhysics::ActorFrameData& actorData, bool simulationPerformed)
|
|
{
|
|
const float heightDiff = actorData.mPosition.z() - actorData.mOldHeight;
|
|
|
|
const bool isStillOnGround = (simulationPerformed && actorData.mWasOnGround && actorData.mActorRaw->getOnGround());
|
|
|
|
if (isStillOnGround || actorData.mFlying || actorData.mSwimming || actorData.mSlowFall < 1)
|
|
actorData.mNeedLand = true;
|
|
else if (heightDiff < 0)
|
|
actorData.mFallHeight += heightDiff;
|
|
}
|
|
|
|
void handleJump(const MWWorld::Ptr &ptr)
|
|
{
|
|
const bool isPlayer = (ptr == MWMechanics::getPlayer());
|
|
// Advance acrobatics and set flag for GetPCJumping
|
|
if (isPlayer)
|
|
{
|
|
ptr.getClass().skillUsageSucceeded(ptr, ESM::Skill::Acrobatics, 0);
|
|
MWBase::Environment::get().getWorld()->getPlayer().setJumping(true);
|
|
}
|
|
|
|
// Decrease fatigue
|
|
if (!isPlayer || !MWBase::Environment::get().getWorld()->getGodModeState())
|
|
{
|
|
const MWWorld::Store<ESM::GameSetting> &gmst = MWBase::Environment::get().getWorld()->getStore().get<ESM::GameSetting>();
|
|
const float fFatigueJumpBase = gmst.find("fFatigueJumpBase")->mValue.getFloat();
|
|
const float fFatigueJumpMult = gmst.find("fFatigueJumpMult")->mValue.getFloat();
|
|
const float normalizedEncumbrance = std::min(1.f, ptr.getClass().getNormalizedEncumbrance(ptr));
|
|
const float fatigueDecrease = fFatigueJumpBase + normalizedEncumbrance * fFatigueJumpMult;
|
|
MWMechanics::DynamicStat<float> fatigue = ptr.getClass().getCreatureStats(ptr).getFatigue();
|
|
fatigue.setCurrent(fatigue.getCurrent() - fatigueDecrease);
|
|
ptr.getClass().getCreatureStats(ptr).setFatigue(fatigue);
|
|
}
|
|
ptr.getClass().getMovementSettings(ptr).mPosition[2] = 0;
|
|
}
|
|
|
|
void updateMechanics(MWPhysics::ActorFrameData& actorData)
|
|
{
|
|
auto ptr = actorData.mActorRaw->getPtr();
|
|
if (actorData.mDidJump)
|
|
handleJump(ptr);
|
|
|
|
MWMechanics::CreatureStats& stats = ptr.getClass().getCreatureStats(ptr);
|
|
if (actorData.mNeedLand)
|
|
stats.land(ptr == MWMechanics::getPlayer() && (actorData.mFlying || actorData.mSwimming));
|
|
else if (actorData.mFallHeight < 0)
|
|
stats.addToFallHeight(-actorData.mFallHeight);
|
|
}
|
|
|
|
osg::Vec3f interpolateMovements(MWPhysics::ActorFrameData& actorData, float timeAccum, float physicsDt)
|
|
{
|
|
const float interpolationFactor = std::clamp(timeAccum / physicsDt, 0.0f, 1.0f);
|
|
return actorData.mPosition * interpolationFactor + actorData.mActorRaw->getPreviousPosition() * (1.f - interpolationFactor);
|
|
}
|
|
|
|
namespace Config
|
|
{
|
|
/// @return either the number of thread as configured by the user, or 1 if Bullet doesn't support multithreading
|
|
int computeNumThreads(bool& threadSafeBullet)
|
|
{
|
|
int wantedThread = Settings::Manager::getInt("async num threads", "Physics");
|
|
|
|
auto broad = std::make_unique<btDbvtBroadphase>();
|
|
auto maxSupportedThreads = broad->m_rayTestStacks.size();
|
|
threadSafeBullet = (maxSupportedThreads > 1);
|
|
if (!threadSafeBullet && wantedThread > 1)
|
|
{
|
|
Log(Debug::Warning) << "Bullet was not compiled with multithreading support, 1 async thread will be used";
|
|
return 1;
|
|
}
|
|
return std::max(0, wantedThread);
|
|
}
|
|
}
|
|
}
|
|
|
|
namespace MWPhysics
|
|
{
|
|
PhysicsTaskScheduler::PhysicsTaskScheduler(float physicsDt, btCollisionWorld *collisionWorld, MWRender::DebugDrawer* debugDrawer)
|
|
: mDefaultPhysicsDt(physicsDt)
|
|
, mPhysicsDt(physicsDt)
|
|
, mTimeAccum(0.f)
|
|
, mCollisionWorld(collisionWorld)
|
|
, mDebugDrawer(debugDrawer)
|
|
, mNumJobs(0)
|
|
, mRemainingSteps(0)
|
|
, mLOSCacheExpiry(Settings::Manager::getInt("lineofsight keep inactive cache", "Physics"))
|
|
, mDeferAabbUpdate(Settings::Manager::getBool("defer aabb update", "Physics"))
|
|
, mFrameCounter(0)
|
|
, mAdvanceSimulation(false)
|
|
, mQuit(false)
|
|
, mNextJob(0)
|
|
, mNextLOS(0)
|
|
, mFrameNumber(0)
|
|
, mTimer(osg::Timer::instance())
|
|
, mPrevStepCount(1)
|
|
, mBudget(physicsDt)
|
|
, mAsyncBudget(0.0f)
|
|
, mBudgetCursor(0)
|
|
, mAsyncStartTime(0)
|
|
, mTimeBegin(0)
|
|
, mTimeEnd(0)
|
|
, mFrameStart(0)
|
|
{
|
|
mNumThreads = Config::computeNumThreads(mThreadSafeBullet);
|
|
|
|
if (mNumThreads >= 1)
|
|
{
|
|
for (int i = 0; i < mNumThreads; ++i)
|
|
mThreads.emplace_back([&] { worker(); } );
|
|
}
|
|
else
|
|
{
|
|
mLOSCacheExpiry = -1;
|
|
mDeferAabbUpdate = false;
|
|
}
|
|
|
|
mPreStepBarrier = std::make_unique<Misc::Barrier>(mNumThreads);
|
|
|
|
mPostStepBarrier = std::make_unique<Misc::Barrier>(mNumThreads);
|
|
|
|
mPostSimBarrier = std::make_unique<Misc::Barrier>(mNumThreads);
|
|
}
|
|
|
|
PhysicsTaskScheduler::~PhysicsTaskScheduler()
|
|
{
|
|
waitForWorkers();
|
|
std::unique_lock lock(mSimulationMutex);
|
|
mQuit = true;
|
|
mNumJobs = 0;
|
|
mRemainingSteps = 0;
|
|
mHasJob.notify_all();
|
|
lock.unlock();
|
|
for (auto& thread : mThreads)
|
|
thread.join();
|
|
}
|
|
|
|
std::tuple<int, float> PhysicsTaskScheduler::calculateStepConfig(float timeAccum) const
|
|
{
|
|
int maxAllowedSteps = 2;
|
|
int numSteps = timeAccum / mDefaultPhysicsDt;
|
|
|
|
// adjust maximum step count based on whether we're likely physics bottlenecked or not
|
|
// if maxAllowedSteps ends up higher than numSteps, we will not invoke delta time
|
|
// if it ends up lower than numSteps, but greater than 1, we will run a number of true delta time physics steps that we expect to be within budget
|
|
// if it ends up lower than numSteps and also 1, we will run a single delta time physics step
|
|
// if we did not do this, and had a fixed step count limit,
|
|
// we would have an unnecessarily low render framerate if we were only physics bottlenecked,
|
|
// and we would be unnecessarily invoking true delta time if we were only render bottlenecked
|
|
|
|
// get physics timing stats
|
|
float budgetMeasurement = std::max(mBudget.get(), mAsyncBudget.get());
|
|
// time spent per step in terms of the intended physics framerate
|
|
budgetMeasurement /= mDefaultPhysicsDt;
|
|
// ensure sane minimum value
|
|
budgetMeasurement = std::max(0.00001f, budgetMeasurement);
|
|
// we're spending almost or more than realtime per physics frame; limit to a single step
|
|
if (budgetMeasurement > 0.95)
|
|
maxAllowedSteps = 1;
|
|
// physics is fairly cheap; limit based on expense
|
|
if (budgetMeasurement < 0.5)
|
|
maxAllowedSteps = std::ceil(1.0/budgetMeasurement);
|
|
// limit to a reasonable amount
|
|
maxAllowedSteps = std::min(10, maxAllowedSteps);
|
|
|
|
// fall back to delta time for this frame if fixed timestep physics would fall behind
|
|
float actualDelta = mDefaultPhysicsDt;
|
|
if (numSteps > maxAllowedSteps)
|
|
{
|
|
numSteps = maxAllowedSteps;
|
|
// ensure that we do not simulate a frame ahead when doing delta time; this reduces stutter and latency
|
|
// this causes interpolation to 100% use the most recent physics result when true delta time is happening
|
|
// and we deliberately simulate up to exactly the timestamp that we want to render
|
|
actualDelta = timeAccum/float(numSteps+1);
|
|
// actually: if this results in a per-step delta less than the target physics steptime, clamp it
|
|
// this might reintroduce some stutter, but only comes into play in obscure cases
|
|
// (because numSteps is originally based on mDefaultPhysicsDt, this won't cause us to overrun)
|
|
actualDelta = std::max(actualDelta, mDefaultPhysicsDt);
|
|
}
|
|
|
|
return std::make_tuple(numSteps, actualDelta);
|
|
}
|
|
|
|
const std::vector<MWWorld::Ptr>& PhysicsTaskScheduler::moveActors(float & timeAccum, std::vector<ActorFrameData>&& actorsData, osg::Timer_t frameStart, unsigned int frameNumber, osg::Stats& stats)
|
|
{
|
|
waitForWorkers();
|
|
|
|
// This function run in the main thread.
|
|
// While the mSimulationMutex is held, background physics threads can't run.
|
|
std::unique_lock lock(mSimulationMutex);
|
|
|
|
double timeStart = mTimer->tick();
|
|
|
|
mMovedActors.clear();
|
|
|
|
// start by finishing previous background computation
|
|
if (mNumThreads != 0)
|
|
{
|
|
for (auto& data : mActorsFrameData)
|
|
{
|
|
const auto actorActive = [&data](const auto& newFrameData) -> bool
|
|
{
|
|
const auto actor = data.mActor.lock();
|
|
return actor && actor->getPtr() == newFrameData.mActorRaw->getPtr();
|
|
};
|
|
// Only return actors that are still part of the scene
|
|
if (std::any_of(actorsData.begin(), actorsData.end(), actorActive))
|
|
{
|
|
updateMechanics(data);
|
|
|
|
// these variables are accessed directly from the main thread, update them here to prevent accessing "too new" values
|
|
if (mAdvanceSimulation)
|
|
data.mActorRaw->setStandingOnPtr(data.mStandingOn);
|
|
data.mActorRaw->setSimulationPosition(interpolateMovements(data, mTimeAccum, mPhysicsDt));
|
|
mMovedActors.emplace_back(data.mActorRaw->getPtr());
|
|
}
|
|
}
|
|
if(mAdvanceSimulation)
|
|
mAsyncBudget.update(mTimer->delta_s(mAsyncStartTime, mTimeEnd), mPrevStepCount, mBudgetCursor);
|
|
updateStats(frameStart, frameNumber, stats);
|
|
}
|
|
|
|
auto [numSteps, newDelta] = calculateStepConfig(timeAccum);
|
|
timeAccum -= numSteps*newDelta;
|
|
|
|
// init
|
|
for (auto& data : actorsData)
|
|
data.updatePosition(mCollisionWorld);
|
|
mPrevStepCount = numSteps;
|
|
mRemainingSteps = numSteps;
|
|
mTimeAccum = timeAccum;
|
|
mPhysicsDt = newDelta;
|
|
mActorsFrameData = std::move(actorsData);
|
|
mAdvanceSimulation = (mRemainingSteps != 0);
|
|
++mFrameCounter;
|
|
mNumJobs = mActorsFrameData.size();
|
|
mNextLOS.store(0, std::memory_order_relaxed);
|
|
mNextJob.store(0, std::memory_order_release);
|
|
|
|
if (mAdvanceSimulation)
|
|
mWorldFrameData = std::make_unique<WorldFrameData>();
|
|
|
|
if (mAdvanceSimulation)
|
|
mBudgetCursor += 1;
|
|
|
|
if (mNumThreads == 0)
|
|
{
|
|
syncComputation();
|
|
if(mAdvanceSimulation)
|
|
mBudget.update(mTimer->delta_s(timeStart, mTimer->tick()), numSteps, mBudgetCursor);
|
|
return mMovedActors;
|
|
}
|
|
|
|
mAsyncStartTime = mTimer->tick();
|
|
mHasJob.notify_all();
|
|
lock.unlock();
|
|
if (mAdvanceSimulation)
|
|
mBudget.update(mTimer->delta_s(timeStart, mTimer->tick()), 1, mBudgetCursor);
|
|
return mMovedActors;
|
|
}
|
|
|
|
const std::vector<MWWorld::Ptr>& PhysicsTaskScheduler::resetSimulation(const ActorMap& actors)
|
|
{
|
|
waitForWorkers();
|
|
std::unique_lock lock(mSimulationMutex);
|
|
mBudget.reset(mDefaultPhysicsDt);
|
|
mAsyncBudget.reset(0.0f);
|
|
mMovedActors.clear();
|
|
mActorsFrameData.clear();
|
|
for (const auto& [_, actor] : actors)
|
|
{
|
|
actor->updatePosition();
|
|
actor->updateCollisionObjectPosition();
|
|
mMovedActors.emplace_back(actor->getPtr());
|
|
}
|
|
return mMovedActors;
|
|
}
|
|
|
|
void PhysicsTaskScheduler::rayTest(const btVector3& rayFromWorld, const btVector3& rayToWorld, btCollisionWorld::RayResultCallback& resultCallback) const
|
|
{
|
|
MaybeSharedLock lock(mCollisionWorldMutex, mThreadSafeBullet);
|
|
mCollisionWorld->rayTest(rayFromWorld, rayToWorld, resultCallback);
|
|
}
|
|
|
|
void PhysicsTaskScheduler::convexSweepTest(const btConvexShape* castShape, const btTransform& from, const btTransform& to, btCollisionWorld::ConvexResultCallback& resultCallback) const
|
|
{
|
|
MaybeSharedLock lock(mCollisionWorldMutex, mThreadSafeBullet);
|
|
mCollisionWorld->convexSweepTest(castShape, from, to, resultCallback);
|
|
}
|
|
|
|
void PhysicsTaskScheduler::contactTest(btCollisionObject* colObj, btCollisionWorld::ContactResultCallback& resultCallback)
|
|
{
|
|
std::shared_lock lock(mCollisionWorldMutex);
|
|
ContactTestWrapper::contactTest(mCollisionWorld, colObj, resultCallback);
|
|
}
|
|
|
|
std::optional<btVector3> PhysicsTaskScheduler::getHitPoint(const btTransform& from, btCollisionObject* target)
|
|
{
|
|
MaybeSharedLock lock(mCollisionWorldMutex, mThreadSafeBullet);
|
|
// target the collision object's world origin, this should be the center of the collision object
|
|
btTransform rayTo;
|
|
rayTo.setIdentity();
|
|
rayTo.setOrigin(target->getWorldTransform().getOrigin());
|
|
|
|
btCollisionWorld::ClosestRayResultCallback cb(from.getOrigin(), rayTo.getOrigin());
|
|
|
|
mCollisionWorld->rayTestSingle(from, rayTo, target, target->getCollisionShape(), target->getWorldTransform(), cb);
|
|
if (!cb.hasHit())
|
|
// didn't hit the target. this could happen if point is already inside the collision box
|
|
return std::nullopt;
|
|
return {cb.m_hitPointWorld};
|
|
}
|
|
|
|
void PhysicsTaskScheduler::aabbTest(const btVector3& aabbMin, const btVector3& aabbMax, btBroadphaseAabbCallback& callback)
|
|
{
|
|
std::shared_lock lock(mCollisionWorldMutex);
|
|
mCollisionWorld->getBroadphase()->aabbTest(aabbMin, aabbMax, callback);
|
|
}
|
|
|
|
void PhysicsTaskScheduler::getAabb(const btCollisionObject* obj, btVector3& min, btVector3& max)
|
|
{
|
|
std::shared_lock lock(mCollisionWorldMutex);
|
|
obj->getCollisionShape()->getAabb(obj->getWorldTransform(), min, max);
|
|
}
|
|
|
|
void PhysicsTaskScheduler::setCollisionFilterMask(btCollisionObject* collisionObject, int collisionFilterMask)
|
|
{
|
|
std::unique_lock lock(mCollisionWorldMutex);
|
|
collisionObject->getBroadphaseHandle()->m_collisionFilterMask = collisionFilterMask;
|
|
}
|
|
|
|
void PhysicsTaskScheduler::addCollisionObject(btCollisionObject* collisionObject, int collisionFilterGroup, int collisionFilterMask)
|
|
{
|
|
std::unique_lock lock(mCollisionWorldMutex);
|
|
mCollisionWorld->addCollisionObject(collisionObject, collisionFilterGroup, collisionFilterMask);
|
|
}
|
|
|
|
void PhysicsTaskScheduler::removeCollisionObject(btCollisionObject* collisionObject)
|
|
{
|
|
std::unique_lock lock(mCollisionWorldMutex);
|
|
mCollisionWorld->removeCollisionObject(collisionObject);
|
|
}
|
|
|
|
void PhysicsTaskScheduler::updateSingleAabb(std::weak_ptr<PtrHolder> ptr, bool immediate)
|
|
{
|
|
if (!mDeferAabbUpdate || immediate)
|
|
{
|
|
updatePtrAabb(ptr);
|
|
}
|
|
else
|
|
{
|
|
std::unique_lock lock(mUpdateAabbMutex);
|
|
mUpdateAabb.insert(std::move(ptr));
|
|
}
|
|
}
|
|
|
|
bool PhysicsTaskScheduler::getLineOfSight(const std::weak_ptr<Actor>& actor1, const std::weak_ptr<Actor>& actor2)
|
|
{
|
|
std::unique_lock lock(mLOSCacheMutex);
|
|
|
|
auto actorPtr1 = actor1.lock();
|
|
auto actorPtr2 = actor2.lock();
|
|
if (!actorPtr1 || !actorPtr2)
|
|
return false;
|
|
|
|
auto req = LOSRequest(actor1, actor2);
|
|
auto result = std::find(mLOSCache.begin(), mLOSCache.end(), req);
|
|
if (result == mLOSCache.end())
|
|
{
|
|
req.mResult = hasLineOfSight(actorPtr1.get(), actorPtr2.get());
|
|
if (mLOSCacheExpiry >= 0)
|
|
mLOSCache.push_back(req);
|
|
return req.mResult;
|
|
}
|
|
result->mAge = 0;
|
|
return result->mResult;
|
|
}
|
|
|
|
void PhysicsTaskScheduler::refreshLOSCache()
|
|
{
|
|
std::shared_lock lock(mLOSCacheMutex);
|
|
int job = 0;
|
|
int numLOS = mLOSCache.size();
|
|
while ((job = mNextLOS.fetch_add(1, std::memory_order_relaxed)) < numLOS)
|
|
{
|
|
auto& req = mLOSCache[job];
|
|
auto actorPtr1 = req.mActors[0].lock();
|
|
auto actorPtr2 = req.mActors[1].lock();
|
|
|
|
if (req.mAge++ > mLOSCacheExpiry || !actorPtr1 || !actorPtr2)
|
|
req.mStale = true;
|
|
else
|
|
req.mResult = hasLineOfSight(actorPtr1.get(), actorPtr2.get());
|
|
}
|
|
|
|
}
|
|
|
|
void PhysicsTaskScheduler::updateAabbs()
|
|
{
|
|
std::scoped_lock lock(mUpdateAabbMutex);
|
|
std::for_each(mUpdateAabb.begin(), mUpdateAabb.end(),
|
|
[this](const std::weak_ptr<PtrHolder>& ptr) { updatePtrAabb(ptr); });
|
|
mUpdateAabb.clear();
|
|
}
|
|
|
|
void PhysicsTaskScheduler::updatePtrAabb(const std::weak_ptr<PtrHolder>& ptr)
|
|
{
|
|
if (const auto p = ptr.lock())
|
|
{
|
|
std::scoped_lock lock(mCollisionWorldMutex);
|
|
if (const auto actor = std::dynamic_pointer_cast<Actor>(p))
|
|
{
|
|
actor->updateCollisionObjectPosition();
|
|
mCollisionWorld->updateSingleAabb(actor->getCollisionObject());
|
|
}
|
|
else if (const auto object = std::dynamic_pointer_cast<Object>(p))
|
|
{
|
|
object->commitPositionChange();
|
|
mCollisionWorld->updateSingleAabb(object->getCollisionObject());
|
|
}
|
|
else if (const auto projectile = std::dynamic_pointer_cast<Projectile>(p))
|
|
{
|
|
projectile->commitPositionChange();
|
|
mCollisionWorld->updateSingleAabb(projectile->getCollisionObject());
|
|
}
|
|
};
|
|
}
|
|
|
|
void PhysicsTaskScheduler::worker()
|
|
{
|
|
std::size_t lastFrame = 0;
|
|
std::shared_lock lock(mSimulationMutex);
|
|
while (!mQuit)
|
|
{
|
|
if (mRemainingSteps == 0 && lastFrame == mFrameCounter)
|
|
mHasJob.wait(lock, [&] { return mQuit || lastFrame != mFrameCounter; });
|
|
lastFrame = mFrameCounter;
|
|
|
|
mPreStepBarrier->wait([this] { afterPreStep(); });
|
|
|
|
int job = 0;
|
|
while (mRemainingSteps && (job = mNextJob.fetch_add(1, std::memory_order_relaxed)) < mNumJobs)
|
|
{
|
|
if(const auto actor = mActorsFrameData[job].mActor.lock())
|
|
{
|
|
MaybeSharedLock lockColWorld(mCollisionWorldMutex, mThreadSafeBullet);
|
|
MovementSolver::move(mActorsFrameData[job], mPhysicsDt, mCollisionWorld, *mWorldFrameData);
|
|
}
|
|
}
|
|
|
|
mPostStepBarrier->wait([this] { afterPostStep(); });
|
|
|
|
if (!mRemainingSteps)
|
|
{
|
|
while ((job = mNextJob.fetch_add(1, std::memory_order_relaxed)) < mNumJobs)
|
|
{
|
|
if(const auto actor = mActorsFrameData[job].mActor.lock())
|
|
{
|
|
auto& actorData = mActorsFrameData[job];
|
|
handleFall(actorData, mAdvanceSimulation);
|
|
}
|
|
}
|
|
|
|
if (mLOSCacheExpiry >= 0)
|
|
refreshLOSCache();
|
|
mPostSimBarrier->wait([this] { afterPostSim(); });
|
|
}
|
|
}
|
|
}
|
|
|
|
void PhysicsTaskScheduler::updateActorsPositions()
|
|
{
|
|
for (auto& actorData : mActorsFrameData)
|
|
{
|
|
if(const auto actor = actorData.mActor.lock())
|
|
{
|
|
if (actor->setPosition(actorData.mPosition))
|
|
{
|
|
std::scoped_lock lock(mCollisionWorldMutex);
|
|
actorData.mPosition = actor->getPosition(); // account for potential position change made by script
|
|
actor->updateCollisionObjectPosition();
|
|
mCollisionWorld->updateSingleAabb(actor->getCollisionObject());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool PhysicsTaskScheduler::hasLineOfSight(const Actor* actor1, const Actor* actor2)
|
|
{
|
|
btVector3 pos1 = Misc::Convert::toBullet(actor1->getCollisionObjectPosition() + osg::Vec3f(0,0,actor1->getHalfExtents().z() * 0.9)); // eye level
|
|
btVector3 pos2 = Misc::Convert::toBullet(actor2->getCollisionObjectPosition() + osg::Vec3f(0,0,actor2->getHalfExtents().z() * 0.9));
|
|
|
|
btCollisionWorld::ClosestRayResultCallback resultCallback(pos1, pos2);
|
|
resultCallback.m_collisionFilterGroup = 0xFF;
|
|
resultCallback.m_collisionFilterMask = CollisionType_World|CollisionType_HeightMap|CollisionType_Door;
|
|
|
|
MaybeSharedLock lockColWorld(mCollisionWorldMutex, mThreadSafeBullet);
|
|
mCollisionWorld->rayTest(pos1, pos2, resultCallback);
|
|
|
|
return !resultCallback.hasHit();
|
|
}
|
|
|
|
void PhysicsTaskScheduler::syncComputation()
|
|
{
|
|
while (mRemainingSteps--)
|
|
{
|
|
for (auto& actorData : mActorsFrameData)
|
|
{
|
|
MovementSolver::unstuck(actorData, mCollisionWorld);
|
|
MovementSolver::move(actorData, mPhysicsDt, mCollisionWorld, *mWorldFrameData);
|
|
}
|
|
|
|
updateActorsPositions();
|
|
}
|
|
|
|
for (auto& actorData : mActorsFrameData)
|
|
{
|
|
handleFall(actorData, mAdvanceSimulation);
|
|
actorData.mActorRaw->setSimulationPosition(interpolateMovements(actorData, mTimeAccum, mPhysicsDt));
|
|
updateMechanics(actorData);
|
|
mMovedActors.emplace_back(actorData.mActorRaw->getPtr());
|
|
if (mAdvanceSimulation)
|
|
actorData.mActorRaw->setStandingOnPtr(actorData.mStandingOn);
|
|
}
|
|
}
|
|
|
|
void PhysicsTaskScheduler::updateStats(osg::Timer_t frameStart, unsigned int frameNumber, osg::Stats& stats)
|
|
{
|
|
if (!stats.collectStats("engine"))
|
|
return;
|
|
if (mFrameNumber == frameNumber - 1)
|
|
{
|
|
stats.setAttribute(mFrameNumber, "physicsworker_time_begin", mTimer->delta_s(mFrameStart, mTimeBegin));
|
|
stats.setAttribute(mFrameNumber, "physicsworker_time_taken", mTimer->delta_s(mTimeBegin, mTimeEnd));
|
|
stats.setAttribute(mFrameNumber, "physicsworker_time_end", mTimer->delta_s(mFrameStart, mTimeEnd));
|
|
}
|
|
mFrameStart = frameStart;
|
|
mTimeBegin = mTimer->tick();
|
|
mFrameNumber = frameNumber;
|
|
}
|
|
|
|
void PhysicsTaskScheduler::debugDraw()
|
|
{
|
|
std::shared_lock lock(mCollisionWorldMutex);
|
|
mDebugDrawer->step();
|
|
}
|
|
|
|
void PhysicsTaskScheduler::afterPreStep()
|
|
{
|
|
if (mDeferAabbUpdate)
|
|
updateAabbs();
|
|
if (!mRemainingSteps)
|
|
return;
|
|
for (auto& data : mActorsFrameData)
|
|
if (const auto actor = data.mActor.lock())
|
|
{
|
|
std::unique_lock lock(mCollisionWorldMutex);
|
|
MovementSolver::unstuck(data, mCollisionWorld);
|
|
}
|
|
}
|
|
|
|
void PhysicsTaskScheduler::afterPostStep()
|
|
{
|
|
if (mRemainingSteps)
|
|
{
|
|
--mRemainingSteps;
|
|
updateActorsPositions();
|
|
}
|
|
mNextJob.store(0, std::memory_order_release);
|
|
}
|
|
|
|
void PhysicsTaskScheduler::afterPostSim()
|
|
{
|
|
if (mLOSCacheExpiry >= 0)
|
|
{
|
|
std::unique_lock lock(mLOSCacheMutex);
|
|
mLOSCache.erase(
|
|
std::remove_if(mLOSCache.begin(), mLOSCache.end(),
|
|
[](const LOSRequest& req) { return req.mStale; }),
|
|
mLOSCache.end());
|
|
}
|
|
mTimeEnd = mTimer->tick();
|
|
std::unique_lock lock(mWorkersDoneMutex);
|
|
++mWorkersFrameCounter;
|
|
mWorkersDone.notify_all();
|
|
}
|
|
|
|
// Attempt to acquire unique lock on mSimulationMutex while not all worker
|
|
// threads are holding shared lock but will have to may lead to a deadlock because
|
|
// C++ standard does not guarantee priority for exclusive and shared locks
|
|
// for std::shared_mutex. For example microsoft STL implementation points out
|
|
// for the absence of such priority:
|
|
// https://docs.microsoft.com/en-us/windows/win32/sync/slim-reader-writer--srw--locks
|
|
void PhysicsTaskScheduler::waitForWorkers()
|
|
{
|
|
if (mNumThreads == 0)
|
|
return;
|
|
std::unique_lock lock(mWorkersDoneMutex);
|
|
if (mFrameCounter != mWorkersFrameCounter)
|
|
mWorkersDone.wait(lock);
|
|
}
|
|
}
|