1
0
Fork 1
mirror of https://github.com/TES3MP/openmw-tes3mp.git synced 2025-01-15 19:49:54 +00:00
openmw-tes3mp/components/terrain/quadtreeworld.cpp
scrawl ac78d01b2b Terrain: use the main camera's viewpoint for intersection tests
Fixes lag spikes caused by intersection tests loading/unloading terrain pages.
2017-07-19 13:11:44 +02:00

465 lines
13 KiB
C++

#include "quadtreeworld.hpp"
#include <osgUtil/CullVisitor>
#include <sstream>
#include "quadtreenode.hpp"
#include "storage.hpp"
#include "viewdata.hpp"
#include "chunkmanager.hpp"
#include "compositemaprenderer.hpp"
namespace
{
bool isPowerOfTwo(int x)
{
return ( (x > 0) && ((x & (x - 1)) == 0) );
}
int nextPowerOfTwo (int v)
{
if (isPowerOfTwo(v)) return v;
int depth=0;
while(v)
{
v >>= 1;
depth++;
}
return 1 << depth;
}
int Log2( unsigned int n )
{
int targetlevel = 0;
while (n >>= 1) ++targetlevel;
return targetlevel;
}
float distanceToBox(const osg::BoundingBox& box, const osg::Vec3f& v)
{
if (box.contains(v))
return 0;
else
{
osg::Vec3f maxDist(0,0,0);
if (v.x() < box.xMin())
maxDist.x() = box.xMin() - v.x();
else if (v.x() > box.xMax())
maxDist.x() = v.x() - box.xMax();
if (v.y() < box.yMin())
maxDist.y() = box.yMin() - v.y();
else if (v.y() > box.yMax())
maxDist.y() = v.y() - box.yMax();
if (v.z() < box.zMin())
maxDist.z() = box.zMin() - v.z();
else if (v.z() > box.zMax())
maxDist.z() = v.z() - box.zMax();
return maxDist.length();
}
}
}
namespace Terrain
{
class DefaultLodCallback : public LodCallback
{
public:
DefaultLodCallback(float minSize)
: mMinSize(minSize)
{
}
virtual bool isSufficientDetail(QuadTreeNode* node, const osg::Vec3f& eyePoint)
{
float dist = distanceToBox(node->getBoundingBox(), eyePoint);
int nativeLodLevel = Log2(static_cast<unsigned int>(node->getSize()/mMinSize));
int lodLevel = Log2(static_cast<unsigned int>(dist/(8192*mMinSize)));
return nativeLodLevel <= lodLevel;
}
private:
float mMinSize;
};
class RootNode : public QuadTreeNode
{
public:
RootNode(float size, const osg::Vec2f& center)
: QuadTreeNode(NULL, Root, size, center)
, mWorld(NULL)
{
}
void setWorld(QuadTreeWorld* world)
{
mWorld = world;
}
virtual void accept(osg::NodeVisitor &nv)
{
if (!nv.validNodeMask(*this))
return;
nv.pushOntoNodePath(this);
mWorld->accept(nv);
nv.popFromNodePath();
}
private:
QuadTreeWorld* mWorld;
};
class QuadTreeBuilder
{
public:
QuadTreeBuilder(Terrain::Storage* storage, ViewDataMap* viewDataMap, float minSize)
: mStorage(storage)
, mMinX(0.f), mMaxX(0.f), mMinY(0.f), mMaxY(0.f)
, mMinSize(minSize)
, mViewDataMap(viewDataMap)
{
}
void build()
{
mStorage->getBounds(mMinX, mMaxX, mMinY, mMaxY);
int origSizeX = static_cast<int>(mMaxX - mMinX);
int origSizeY = static_cast<int>(mMaxY - mMinY);
// Dividing a quad tree only works well for powers of two, so round up to the nearest one
int size = nextPowerOfTwo(std::max(origSizeX, origSizeY));
float centerX = (mMinX+mMaxX)/2.f + (size-origSizeX)/2.f;
float centerY = (mMinY+mMaxY)/2.f + (size-origSizeY)/2.f;
mRootNode = new RootNode(size, osg::Vec2f(centerX, centerY));
mRootNode->setViewDataMap(mViewDataMap);
mRootNode->setLodCallback(new DefaultLodCallback(mMinSize));
addChildren(mRootNode);
mRootNode->initNeighbours();
}
void addChildren(QuadTreeNode* parent)
{
float halfSize = parent->getSize()/2.f;
osg::BoundingBox boundingBox;
for (unsigned int i=0; i<4; ++i)
{
QuadTreeNode* child = addChild(parent, static_cast<ChildDirection>(i), halfSize);
if (child)
boundingBox.expandBy(child->getBoundingBox());
}
parent->setBoundingBox(boundingBox);
}
QuadTreeNode* addChild(QuadTreeNode* parent, ChildDirection direction, float size)
{
osg::Vec2f center;
switch (direction)
{
case SW:
center = parent->getCenter() + osg::Vec2f(-size/2.f,-size/2.f);
break;
case SE:
center = parent->getCenter() + osg::Vec2f(size/2.f, -size/2.f);
break;
case NW:
center = parent->getCenter() + osg::Vec2f(-size/2.f, size/2.f);
break;
case NE:
center = parent->getCenter() + osg::Vec2f(size/2.f, size/2.f);
break;
default:
break;
}
osg::ref_ptr<QuadTreeNode> node = new QuadTreeNode(parent, direction, size, center);
node->setLodCallback(parent->getLodCallback());
node->setViewDataMap(mViewDataMap);
parent->addChild(node);
if (center.x() - size > mMaxX
|| center.x() + size < mMinX
|| center.y() - size > mMaxY
|| center.y() + size < mMinY )
// Out of bounds of the actual terrain - this will happen because
// we rounded the size up to the next power of two
{
// Still create and return an empty node so as to not break the assumption that each QuadTreeNode has either 4 or 0 children.
return node;
}
if (node->getSize() <= mMinSize)
{
// We arrived at a leaf
float minZ,maxZ;
if (mStorage->getMinMaxHeights(size, center, minZ, maxZ))
{
float cellWorldSize = mStorage->getCellWorldSize();
osg::BoundingBox boundingBox(osg::Vec3f((center.x()-size)*cellWorldSize, (center.y()-size)*cellWorldSize, minZ),
osg::Vec3f((center.x()+size)*cellWorldSize, (center.y()+size)*cellWorldSize, maxZ));
node->setBoundingBox(boundingBox);
}
return node;
}
else
{
addChildren(node);
return node;
}
}
osg::ref_ptr<RootNode> getRootNode()
{
return mRootNode;
}
private:
Terrain::Storage* mStorage;
float mMinX, mMaxX, mMinY, mMaxY;
float mMinSize;
ViewDataMap* mViewDataMap;
osg::ref_ptr<RootNode> mRootNode;
};
QuadTreeWorld::QuadTreeWorld(osg::Group *parent, osg::Group *compileRoot, Resource::ResourceSystem *resourceSystem, Storage *storage, int nodeMask, int preCompileMask)
: World(parent, compileRoot, resourceSystem, storage, nodeMask, preCompileMask)
, mViewDataMap(new ViewDataMap)
, mQuadTreeBuilt(false)
{
// No need for culling on the Drawable / Transform level as the quad tree performs the culling already.
mChunkManager->setCullingActive(false);
}
QuadTreeWorld::~QuadTreeWorld()
{
ensureQuadTreeBuilt();
mViewDataMap->clear();
}
void traverse(QuadTreeNode* node, ViewData* vd, osg::NodeVisitor* nv, LodCallback* lodCallback, const osg::Vec3f& eyePoint, bool visible)
{
if (!node->hasValidBounds())
return;
if (nv && nv->getVisitorType() == osg::NodeVisitor::CULL_VISITOR)
visible = visible && !static_cast<osgUtil::CullVisitor*>(nv)->isCulled(node->getBoundingBox());
bool stopTraversal = (lodCallback && lodCallback->isSufficientDetail(node, eyePoint)) || !node->getNumChildren();
if (stopTraversal)
vd->add(node, visible);
else
{
for (unsigned int i=0; i<node->getNumChildren(); ++i)
traverse(node->getChild(i), vd, nv, lodCallback, eyePoint, visible);
}
}
void traverseToCell(QuadTreeNode* node, ViewData* vd, int cellX, int cellY)
{
if (!node->hasValidBounds())
return;
if (node->getCenter().x() + node->getSize()/2.f <= cellX
|| node->getCenter().x() - node->getSize()/2.f >= cellX+1
|| node->getCenter().y() + node->getSize()/2.f <= cellY
|| node->getCenter().y() - node->getSize()/2.f >= cellY+1)
return;
bool stopTraversal = !node->getNumChildren();
if (stopTraversal)
vd->add(node, true);
else
{
for (unsigned int i=0; i<node->getNumChildren(); ++i)
traverseToCell(node->getChild(i), vd, cellX, cellY);
}
}
unsigned int getLodFlags(QuadTreeNode* node, int ourLod, ViewData* vd)
{
unsigned int lodFlags = 0;
for (unsigned int i=0; i<4; ++i)
{
QuadTreeNode* neighbour = node->getNeighbour(static_cast<Direction>(i));
// If the neighbour isn't currently rendering itself,
// go up until we find one. NOTE: We don't need to go down,
// because in that case neighbour's detail would be higher than
// our detail and the neighbour would handle stitching by itself.
while (neighbour && !vd->contains(neighbour))
neighbour = neighbour->getParent();
int lod = 0;
if (neighbour)
lod = Log2(int(neighbour->getSize()));
if (lod <= ourLod) // We only need to worry about neighbours less detailed than we are -
lod = 0; // neighbours with more detail will do the stitching themselves
// Use 4 bits for each LOD delta
if (lod > 0)
{
lodFlags |= static_cast<unsigned int>(lod - ourLod) << (4*i);
}
}
return lodFlags;
}
void loadRenderingNode(ViewData::Entry& entry, ViewData* vd, ChunkManager* chunkManager)
{
if (vd->hasChanged())
{
// have to recompute the lodFlags in case a neighbour has changed LOD.
int ourLod = Log2(int(entry.mNode->getSize()));
unsigned int lodFlags = getLodFlags(entry.mNode, ourLod, vd);
if (lodFlags != entry.mLodFlags)
{
entry.mRenderingNode = NULL;
entry.mLodFlags = lodFlags;
}
}
if (!entry.mRenderingNode)
{
int ourLod = Log2(int(entry.mNode->getSize()));
entry.mRenderingNode = chunkManager->getChunk(entry.mNode->getSize(), entry.mNode->getCenter(), ourLod, entry.mLodFlags);
}
}
void QuadTreeWorld::accept(osg::NodeVisitor &nv)
{
if (nv.getVisitorType() != osg::NodeVisitor::CULL_VISITOR && nv.getVisitorType() != osg::NodeVisitor::INTERSECTION_VISITOR)
return;
ViewData* vd = mRootNode->getView(nv);
if (nv.getVisitorType() == osg::NodeVisitor::CULL_VISITOR)
{
osgUtil::CullVisitor* cv = static_cast<osgUtil::CullVisitor*>(&nv);
osg::UserDataContainer* udc = cv->getCurrentCamera()->getUserDataContainer();
if (udc && udc->getNumDescriptions() >= 2 && udc->getDescriptions()[0] == "NoTerrainLod")
{
std::istringstream stream(udc->getDescriptions()[1]);
int x,y;
stream >> x;
stream >> y;
traverseToCell(mRootNode.get(), vd, x,y);
}
else
traverse(mRootNode.get(), vd, cv, mRootNode->getLodCallback(), cv->getEyePoint(), true);
}
else
mRootNode->traverse(nv);
for (unsigned int i=0; i<vd->getNumEntries(); ++i)
{
ViewData::Entry& entry = vd->getEntry(i);
loadRenderingNode(entry, vd, mChunkManager.get());
if (entry.mVisible)
{
osg::UserDataContainer* udc = entry.mRenderingNode->getUserDataContainer();
if (udc && udc->getUserData())
{
mCompositeMapRenderer->setImmediate(static_cast<CompositeMap*>(udc->getUserData()));
udc->setUserData(NULL);
}
entry.mRenderingNode->accept(nv);
}
}
vd->reset(nv.getTraversalNumber());
mRootNode->getViewDataMap()->clearUnusedViews(nv.getTraversalNumber());
}
void QuadTreeWorld::ensureQuadTreeBuilt()
{
OpenThreads::ScopedLock<OpenThreads::Mutex> lock(mQuadTreeMutex);
if (mQuadTreeBuilt)
return;
const float minSize = 1/8.f;
QuadTreeBuilder builder(mStorage, mViewDataMap.get(), minSize);
builder.build();
mRootNode = builder.getRootNode();
mRootNode->setWorld(this);
mQuadTreeBuilt = true;
}
void QuadTreeWorld::enable(bool enabled)
{
if (enabled)
{
ensureQuadTreeBuilt();
if (!mRootNode->getNumParents())
mTerrainRoot->addChild(mRootNode);
}
if (mRootNode)
mRootNode->setNodeMask(enabled ? ~0 : 0);
}
void QuadTreeWorld::cacheCell(View *view, int x, int y)
{
ensureQuadTreeBuilt();
ViewData* vd = static_cast<ViewData*>(view);
traverseToCell(mRootNode.get(), vd, x, y);
for (unsigned int i=0; i<vd->getNumEntries(); ++i)
{
ViewData::Entry& entry = vd->getEntry(i);
loadRenderingNode(entry, vd, mChunkManager.get());
}
}
View* QuadTreeWorld::createView()
{
return new ViewData;
}
void QuadTreeWorld::preload(View *view, const osg::Vec3f &eyePoint)
{
ensureQuadTreeBuilt();
ViewData* vd = static_cast<ViewData*>(view);
traverse(mRootNode.get(), vd, NULL, mRootNode->getLodCallback(), eyePoint, false);
for (unsigned int i=0; i<vd->getNumEntries(); ++i)
{
ViewData::Entry& entry = vd->getEntry(i);
loadRenderingNode(entry, vd, mChunkManager.get());
}
}
void QuadTreeWorld::reportStats(unsigned int frameNumber, osg::Stats *stats)
{
stats->setAttribute(frameNumber, "Composite", mCompositeMapRenderer->getCompileSetSize());
}
void QuadTreeWorld::setDefaultViewer(osg::Object *obj)
{
mViewDataMap->setDefaultViewer(obj);
}
}