|
|
|
@ -10,8 +10,6 @@
|
|
|
|
|
|
|
|
|
|
#include "lib/core/fragment.h.glsl"
|
|
|
|
|
|
|
|
|
|
#define REFRACTION @refraction_enabled
|
|
|
|
|
|
|
|
|
|
// Inspired by Blender GLSL Water by martinsh ( https://devlog-martinsh.blogspot.de/2012/07/waterundewater-shader-wip.html )
|
|
|
|
|
|
|
|
|
|
// tweakables -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
|
|
|
|
@ -20,18 +18,11 @@ const float VISIBILITY = 2500.0;
|
|
|
|
|
const float VISIBILITY_DEPTH = VISIBILITY * 1.5;
|
|
|
|
|
const float DEPTH_FADE = 0.15;
|
|
|
|
|
|
|
|
|
|
const float BIG_WAVES_X = 0.1; // strength of big waves
|
|
|
|
|
const float BIG_WAVES_Y = 0.1;
|
|
|
|
|
|
|
|
|
|
const float MID_WAVES_X = 0.1; // strength of middle sized waves
|
|
|
|
|
const float MID_WAVES_Y = 0.1;
|
|
|
|
|
const float MID_WAVES_RAIN_X = 0.2;
|
|
|
|
|
const float MID_WAVES_RAIN_Y = 0.2;
|
|
|
|
|
|
|
|
|
|
const float SMALL_WAVES_X = 0.1; // strength of small waves
|
|
|
|
|
const float SMALL_WAVES_Y = 0.1;
|
|
|
|
|
const float SMALL_WAVES_RAIN_X = 0.3;
|
|
|
|
|
const float SMALL_WAVES_RAIN_Y = 0.3;
|
|
|
|
|
const vec2 BIG_WAVES = vec2(0.1, 0.1); // strength of big waves
|
|
|
|
|
const vec2 MID_WAVES = vec2(0.1, 0.1); // strength of middle sized waves
|
|
|
|
|
const vec2 MID_WAVES_RAIN = vec2(0.2, 0.2);
|
|
|
|
|
const vec2 SMALL_WAVES = vec2(0.1, 0.1); // strength of small waves
|
|
|
|
|
const vec2 SMALL_WAVES_RAIN = vec2(0.3, 0.3);
|
|
|
|
|
|
|
|
|
|
const float WAVE_CHOPPYNESS = 0.05; // wave choppyness
|
|
|
|
|
const float WAVE_SCALE = 75.0; // overall wave scale
|
|
|
|
@ -133,70 +124,57 @@ void main(void)
|
|
|
|
|
float distortionLevel = 2.0;
|
|
|
|
|
rippleAdd += distortionLevel * vec3(texture2D(rippleMap, rippleMapUV).ba * blendFar * blendClose, 0.0);
|
|
|
|
|
|
|
|
|
|
vec2 bigWaves = vec2(BIG_WAVES_X,BIG_WAVES_Y);
|
|
|
|
|
vec2 midWaves = mix(vec2(MID_WAVES_X,MID_WAVES_Y),vec2(MID_WAVES_RAIN_X,MID_WAVES_RAIN_Y),rainIntensity);
|
|
|
|
|
vec2 smallWaves = mix(vec2(SMALL_WAVES_X,SMALL_WAVES_Y),vec2(SMALL_WAVES_RAIN_X,SMALL_WAVES_RAIN_Y),rainIntensity);
|
|
|
|
|
vec2 bigWaves = BIG_WAVES;
|
|
|
|
|
vec2 midWaves = mix(MID_WAVES, MID_WAVES_RAIN, rainIntensity);
|
|
|
|
|
vec2 smallWaves = mix(SMALL_WAVES, SMALL_WAVES_RAIN, rainIntensity);
|
|
|
|
|
float bump = mix(BUMP,BUMP_RAIN,rainIntensity);
|
|
|
|
|
|
|
|
|
|
vec3 normal = (normal0 * bigWaves.x + normal1 * bigWaves.y + normal2 * midWaves.x +
|
|
|
|
|
normal3 * midWaves.y + normal4 * smallWaves.x + normal5 * smallWaves.y + rippleAdd);
|
|
|
|
|
normal = normalize(vec3(-normal.x * bump, -normal.y * bump, normal.z));
|
|
|
|
|
|
|
|
|
|
vec3 lVec = normalize((gl_ModelViewMatrixInverse * vec4(lcalcPosition(0).xyz, 0.0)).xyz);
|
|
|
|
|
vec3 sunWorldDir = normalize((gl_ModelViewMatrixInverse * vec4(lcalcPosition(0).xyz, 0.0)).xyz);
|
|
|
|
|
vec3 cameraPos = (gl_ModelViewMatrixInverse * vec4(0,0,0,1)).xyz;
|
|
|
|
|
vec3 vVec = normalize(position.xyz - cameraPos.xyz);
|
|
|
|
|
vec3 viewDir = normalize(position.xyz - cameraPos.xyz);
|
|
|
|
|
|
|
|
|
|
float sunFade = length(gl_LightModel.ambient.xyz);
|
|
|
|
|
|
|
|
|
|
// fresnel
|
|
|
|
|
float ior = (cameraPos.z>0.0)?(1.333/1.0):(1.0/1.333); // air to water; water to air
|
|
|
|
|
float fresnel = clamp(fresnel_dielectric(vVec, normal, ior), 0.0, 1.0);
|
|
|
|
|
|
|
|
|
|
float radialise = 1.0;
|
|
|
|
|
|
|
|
|
|
#if @radialFog
|
|
|
|
|
float radialDepth = distance(position.xyz, cameraPos);
|
|
|
|
|
// TODO: Figure out how to properly radialise refraction depth and thus underwater fog
|
|
|
|
|
// while avoiding oddities when the water plane is close to the clipping plane
|
|
|
|
|
// radialise = radialDepth / linearDepth;
|
|
|
|
|
#else
|
|
|
|
|
float radialDepth = 0.0;
|
|
|
|
|
#endif
|
|
|
|
|
float fresnel = clamp(fresnel_dielectric(viewDir, normal, ior), 0.0, 1.0);
|
|
|
|
|
|
|
|
|
|
vec2 screenCoordsOffset = normal.xy * REFL_BUMP;
|
|
|
|
|
#if REFRACTION
|
|
|
|
|
float depthSample = linearizeDepth(sampleRefractionDepthMap(screenCoords), near, far) * radialise;
|
|
|
|
|
float surfaceDepth = linearizeDepth(gl_FragCoord.z, near, far) * radialise;
|
|
|
|
|
#if @waterRefraction
|
|
|
|
|
float depthSample = linearizeDepth(sampleRefractionDepthMap(screenCoords), near, far);
|
|
|
|
|
float surfaceDepth = linearizeDepth(gl_FragCoord.z, near, far);
|
|
|
|
|
float realWaterDepth = depthSample - surfaceDepth; // undistorted water depth in view direction, independent of frustum
|
|
|
|
|
float depthSampleDistorted = linearizeDepth(sampleRefractionDepthMap(screenCoords - screenCoordsOffset), near, far) * radialise;
|
|
|
|
|
float depthSampleDistorted = linearizeDepth(sampleRefractionDepthMap(screenCoords - screenCoordsOffset), near, far);
|
|
|
|
|
float waterDepthDistorted = max(depthSampleDistorted - surfaceDepth, 0.0);
|
|
|
|
|
screenCoordsOffset *= clamp(realWaterDepth / BUMP_SUPPRESS_DEPTH,0,1);
|
|
|
|
|
screenCoordsOffset *= clamp(realWaterDepth / BUMP_SUPPRESS_DEPTH, 0.0, 1.0);
|
|
|
|
|
#endif
|
|
|
|
|
// reflection
|
|
|
|
|
vec3 reflection = sampleReflectionMap(screenCoords + screenCoordsOffset).rgb;
|
|
|
|
|
|
|
|
|
|
// specular
|
|
|
|
|
float specular = pow(max(dot(reflect(vVec, normal), lVec), 0.0),SPEC_HARDNESS) * shadow;
|
|
|
|
|
|
|
|
|
|
vec3 waterColor = WATER_COLOR * sunFade;
|
|
|
|
|
|
|
|
|
|
vec4 sunSpec = lcalcSpecular(0);
|
|
|
|
|
// alpha component is sun visibility; we want to start fading lighting effects when visibility is low
|
|
|
|
|
sunSpec.a = min(1.0, sunSpec.a / SUN_SPEC_FADING_THRESHOLD);
|
|
|
|
|
|
|
|
|
|
// specular
|
|
|
|
|
float specular = pow(max(dot(reflect(viewDir, normal), sunWorldDir), 0.0), SPEC_HARDNESS) * shadow * sunSpec.a;
|
|
|
|
|
|
|
|
|
|
// artificial specularity to make rain ripples more noticeable
|
|
|
|
|
vec3 skyColorEstimate = vec3(max(0.0, mix(-0.3, 1.0, sunFade)));
|
|
|
|
|
vec3 rainSpecular = abs(rainRipple.w)*mix(skyColorEstimate, vec3(1.0), 0.05)*0.5;
|
|
|
|
|
float waterTransparency = clamp(fresnel * 6.0 + specular, 0.0, 1.0);
|
|
|
|
|
|
|
|
|
|
#if REFRACTION
|
|
|
|
|
// no alpha here, so make sure raindrop ripple specularity gets properly subdued
|
|
|
|
|
rainSpecular *= clamp(fresnel*6.0 + specular * sunSpec.a, 0.0, 1.0);
|
|
|
|
|
|
|
|
|
|
#if @waterRefraction
|
|
|
|
|
// selectively nullify screenCoordsOffset to eliminate remaining shore artifacts, not needed for reflection
|
|
|
|
|
if (cameraPos.z > 0.0 && realWaterDepth <= VISIBILITY_DEPTH && waterDepthDistorted > VISIBILITY_DEPTH)
|
|
|
|
|
screenCoordsOffset = vec2(0.0);
|
|
|
|
|
|
|
|
|
|
depthSampleDistorted = linearizeDepth(sampleRefractionDepthMap(screenCoords - screenCoordsOffset), near, far) * radialise;
|
|
|
|
|
depthSampleDistorted = linearizeDepth(sampleRefractionDepthMap(screenCoords - screenCoordsOffset), near, far);
|
|
|
|
|
waterDepthDistorted = max(depthSampleDistorted - surfaceDepth, 0.0);
|
|
|
|
|
|
|
|
|
|
// fade to realWaterDepth at a distance to compensate for physically inaccurate depth calculation
|
|
|
|
@ -217,35 +195,45 @@ void main(void)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#if @sunlightScattering
|
|
|
|
|
// normal for sunlight scattering
|
|
|
|
|
vec3 lNormal = (normal0 * bigWaves.x * 0.5 + normal1 * bigWaves.y * 0.5 + normal2 * midWaves.x * 0.2 +
|
|
|
|
|
normal3 * midWaves.y * 0.2 + normal4 * smallWaves.x * 0.1 + normal5 * smallWaves.y * 0.1 + rippleAdd);
|
|
|
|
|
lNormal = normalize(vec3(-lNormal.x * bump, -lNormal.y * bump, lNormal.z));
|
|
|
|
|
float sunHeight = lVec.z;
|
|
|
|
|
vec3 scatterColour = mix(SCATTER_COLOUR*vec3(1.0,0.4,0.0), SCATTER_COLOUR, clamp(1.0-exp(-sunHeight*SUN_EXT), 0.0, 1.0));
|
|
|
|
|
vec3 lR = reflect(lVec, lNormal);
|
|
|
|
|
float lightScatter = clamp(dot(lVec,lNormal)*0.7+0.3, 0.0, 1.0) * clamp(dot(lR, vVec)*2.0-1.2, 0.0, 1.0) * SCATTER_AMOUNT * sunFade * sunSpec.a * clamp(1.0-exp(-sunHeight), 0.0, 1.0);
|
|
|
|
|
vec3 scatterNormal = (normal0 * bigWaves.x * 0.5 + normal1 * bigWaves.y * 0.5 + normal2 * midWaves.x * 0.2 +
|
|
|
|
|
normal3 * midWaves.y * 0.2 + normal4 * smallWaves.x * 0.1 + normal5 * smallWaves.y * 0.1 + rippleAdd);
|
|
|
|
|
scatterNormal = normalize(vec3(-scatterNormal.xy * bump, scatterNormal.z));
|
|
|
|
|
float sunHeight = sunWorldDir.z;
|
|
|
|
|
vec3 scatterColour = mix(SCATTER_COLOUR * vec3(1.0, 0.4, 0.0), SCATTER_COLOUR, max(1.0 - exp(-sunHeight * SUN_EXT), 0.0));
|
|
|
|
|
float scatterLambert = max(dot(sunWorldDir, scatterNormal) * 0.7 + 0.3, 0.0);
|
|
|
|
|
float scatterReflectAngle = max(dot(reflect(sunWorldDir, scatterNormal), viewDir) * 2.0 - 1.2, 0.0);
|
|
|
|
|
float lightScatter = scatterLambert * scatterReflectAngle * SCATTER_AMOUNT * sunFade * sunSpec.a * max(1.0 - exp(-sunHeight), 0.0);
|
|
|
|
|
refraction = mix(refraction, scatterColour, lightScatter);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
gl_FragData[0].xyz = mix(refraction, reflection, fresnel) + specular * sunSpec.rgb * sunSpec.a + rainSpecular;
|
|
|
|
|
gl_FragData[0].w = 1.0;
|
|
|
|
|
gl_FragData[0].rgb = mix(refraction, reflection, fresnel);
|
|
|
|
|
gl_FragData[0].a = 1.0;
|
|
|
|
|
// no alpha here, so make sure raindrop ripple specularity gets properly subdued
|
|
|
|
|
rainSpecular *= waterTransparency;
|
|
|
|
|
#else
|
|
|
|
|
gl_FragData[0].rgb = mix(waterColor, reflection, (1.0 + fresnel) * 0.5);
|
|
|
|
|
gl_FragData[0].a = waterTransparency;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
gl_FragData[0].rgb += specular * sunSpec.rgb + rainSpecular;
|
|
|
|
|
|
|
|
|
|
#if @wobblyShores
|
|
|
|
|
#if @waterRefraction && @wobblyShores
|
|
|
|
|
// wobbly water: hard-fade into refraction texture at extremely low depth, with a wobble based on normal mapping
|
|
|
|
|
vec3 normalShoreRippleRain = texture2D(normalMap,normalCoords(UV, 2.0, 2.7, -1.0*waterTimer, 0.05, 0.1, normal3)).rgb - 0.5
|
|
|
|
|
+ texture2D(normalMap,normalCoords(UV, 2.0, 2.7, waterTimer, 0.04, -0.13, normal4)).rgb - 0.5;
|
|
|
|
|
float verticalWaterDepth = realWaterDepth * mix(abs(vVec.z), 1.0, 0.2); // an estimate
|
|
|
|
|
float viewFactor = mix(abs(viewDir.z), 1.0, 0.2);
|
|
|
|
|
float verticalWaterDepth = realWaterDepth * viewFactor; // an estimate
|
|
|
|
|
float shoreOffset = verticalWaterDepth - (normal2.r + mix(0.0, normalShoreRippleRain.r, rainIntensity) + 0.15)*8.0;
|
|
|
|
|
float fuzzFactor = min(1.0, 1000.0/surfaceDepth) * mix(abs(vVec.z), 1.0, 0.2);
|
|
|
|
|
float fuzzFactor = min(1.0, 1000.0 / surfaceDepth) * viewFactor;
|
|
|
|
|
shoreOffset *= fuzzFactor;
|
|
|
|
|
shoreOffset = clamp(mix(shoreOffset, 1.0, clamp(linearDepth / WOBBLY_SHORE_FADE_DISTANCE, 0.0, 1.0)), 0.0, 1.0);
|
|
|
|
|
gl_FragData[0].xyz = mix(rawRefraction, gl_FragData[0].xyz, shoreOffset);
|
|
|
|
|
gl_FragData[0].rgb = mix(rawRefraction, gl_FragData[0].rgb, shoreOffset);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if @radialFog
|
|
|
|
|
float radialDepth = distance(position.xyz, cameraPos);
|
|
|
|
|
#else
|
|
|
|
|
gl_FragData[0].xyz = mix(reflection, waterColor, (1.0-fresnel)*0.5) + specular * sunSpec.rgb * sunSpec.a + rainSpecular;
|
|
|
|
|
gl_FragData[0].w = clamp(fresnel*6.0 + specular * sunSpec.a, 0.0, 1.0); //clamp(fresnel*2.0 + specular * gl_LightSource[0].specular.a, 0.0, 1.0);
|
|
|
|
|
float radialDepth = 0.0;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
gl_FragData[0] = applyFogAtDist(gl_FragData[0], radialDepth, linearDepth, far);
|
|
|
|
|