mirror of https://github.com/OpenMW/openmw.git
Process movement queue in one or several background threads
Before movement calculation, the main thread prepare a vector of ActorFrameData, which contains all data necessary to perform the simulation, and feed it to the solver. At the same time it fetches the result from the previous background simulation, which in turn is used by the game mechanics. Other functions of the physics system (weapon hit for instance) interrupt the background simulation, with some exceptions described below. The number of threads is controlled by the numeric setting [Physics] async num threads In case 'async num threads' > 1 and Bullet doesn't support multiple threads, 1 async thread will be used. 0 means synchronous solver. Additional settings (will be silently switched off if async num threads = 0) [Physics] defer aabb update Update AABBs of actors and objects in the background thread(s). It is not an especially costly operation, but it needs exclusive access to the collision world, which blocks other operations. Since AABB needs to be updated for collision detection, one can queue them to defer update before start of the movement solver. Extensive tests on as much as one installation (mine) show no drawback having that switched on. [Physics] lineofsight keep inactive cache Control for how long (how many frames) the line of sight (LOS) request will be kept updated. When a request for LOS is made for the first time, the background threads are stopped to service it. From now on, the LOS will be refreshed preemptively as part of the background routine until it is not required for lineofsight keep inactive cache frames. This mean that subsequent request will not interrupt the background computation.pull/3013/head
parent
91b3926a49
commit
3c2504b442
@ -0,0 +1,607 @@
|
||||
#include <BulletCollision/CollisionShapes/btCollisionShape.h>
|
||||
#include <LinearMath/btThreads.h>
|
||||
|
||||
#include "components/debug/debuglog.hpp"
|
||||
#include <components/misc/barrier.hpp>
|
||||
#include "components/misc/convert.hpp"
|
||||
#include "components/settings/settings.hpp"
|
||||
#include "../mwmechanics/actorutil.hpp"
|
||||
#include "../mwmechanics/movement.hpp"
|
||||
#include "../mwworld/class.hpp"
|
||||
#include "../mwworld/player.hpp"
|
||||
|
||||
#include "actor.hpp"
|
||||
#include "movementsolver.hpp"
|
||||
#include "mtphysics.hpp"
|
||||
#include "object.hpp"
|
||||
#include "physicssystem.hpp"
|
||||
|
||||
class btIParallelSumBody; // needed to compile with bullet < 2.88
|
||||
|
||||
namespace
|
||||
{
|
||||
/// @brief A scoped lock that is either shared or exclusive depending on configuration
|
||||
template<class Mutex>
|
||||
class MaybeSharedLock
|
||||
{
|
||||
public:
|
||||
/// @param mutex a shared mutex
|
||||
/// @param canBeSharedLock decide wether the lock will be shared or exclusive
|
||||
MaybeSharedLock(Mutex& mutex, bool canBeSharedLock) : mMutex(mutex), mCanBeSharedLock(canBeSharedLock)
|
||||
{
|
||||
if (mCanBeSharedLock)
|
||||
mMutex.lock_shared();
|
||||
else
|
||||
mMutex.lock();
|
||||
}
|
||||
|
||||
~MaybeSharedLock()
|
||||
{
|
||||
if (mCanBeSharedLock)
|
||||
mMutex.unlock_shared();
|
||||
else
|
||||
mMutex.unlock();
|
||||
}
|
||||
private:
|
||||
Mutex& mMutex;
|
||||
bool mCanBeSharedLock;
|
||||
};
|
||||
|
||||
void handleFall(MWPhysics::ActorFrameData& actorData, bool simulationPerformed)
|
||||
{
|
||||
const float heightDiff = actorData.mPosition.z() - actorData.mOldHeight;
|
||||
|
||||
const bool isStillOnGround = (simulationPerformed && actorData.mWasOnGround && actorData.mActorRaw->getOnGround());
|
||||
|
||||
if (isStillOnGround || actorData.mFlying || actorData.mSwimming || actorData.mSlowFall < 1)
|
||||
actorData.mNeedLand = true;
|
||||
else if (heightDiff < 0)
|
||||
actorData.mFallHeight += heightDiff;
|
||||
}
|
||||
|
||||
void handleJump(const MWWorld::Ptr &ptr)
|
||||
{
|
||||
const bool isPlayer = (ptr == MWMechanics::getPlayer());
|
||||
// Advance acrobatics and set flag for GetPCJumping
|
||||
if (isPlayer)
|
||||
{
|
||||
ptr.getClass().skillUsageSucceeded(ptr, ESM::Skill::Acrobatics, 0);
|
||||
MWBase::Environment::get().getWorld()->getPlayer().setJumping(true);
|
||||
}
|
||||
|
||||
// Decrease fatigue
|
||||
if (!isPlayer || !MWBase::Environment::get().getWorld()->getGodModeState())
|
||||
{
|
||||
const MWWorld::Store<ESM::GameSetting> &gmst = MWBase::Environment::get().getWorld()->getStore().get<ESM::GameSetting>();
|
||||
const float fFatigueJumpBase = gmst.find("fFatigueJumpBase")->mValue.getFloat();
|
||||
const float fFatigueJumpMult = gmst.find("fFatigueJumpMult")->mValue.getFloat();
|
||||
const float normalizedEncumbrance = std::min(1.f, ptr.getClass().getNormalizedEncumbrance(ptr));
|
||||
const float fatigueDecrease = fFatigueJumpBase + normalizedEncumbrance * fFatigueJumpMult;
|
||||
MWMechanics::DynamicStat<float> fatigue = ptr.getClass().getCreatureStats(ptr).getFatigue();
|
||||
fatigue.setCurrent(fatigue.getCurrent() - fatigueDecrease);
|
||||
ptr.getClass().getCreatureStats(ptr).setFatigue(fatigue);
|
||||
}
|
||||
ptr.getClass().getMovementSettings(ptr).mPosition[2] = 0;
|
||||
}
|
||||
|
||||
void updateStandingCollision(MWPhysics::ActorFrameData& actorData, MWPhysics::CollisionMap& standingCollisions)
|
||||
{
|
||||
if (!actorData.mStandingOn.isEmpty())
|
||||
standingCollisions[actorData.mPtr] = actorData.mStandingOn;
|
||||
else
|
||||
standingCollisions.erase(actorData.mPtr);
|
||||
}
|
||||
|
||||
void updateMechanics(MWPhysics::ActorFrameData& actorData)
|
||||
{
|
||||
if (actorData.mDidJump)
|
||||
handleJump(actorData.mPtr);
|
||||
|
||||
MWMechanics::CreatureStats& stats = actorData.mPtr.getClass().getCreatureStats(actorData.mPtr);
|
||||
if (actorData.mNeedLand)
|
||||
stats.land(actorData.mPtr == MWMechanics::getPlayer() && (actorData.mFlying || actorData.mSwimming));
|
||||
else if (actorData.mFallHeight < 0)
|
||||
stats.addToFallHeight(-actorData.mFallHeight);
|
||||
}
|
||||
|
||||
osg::Vec3f interpolateMovements(const MWPhysics::ActorFrameData& actorData, float timeAccum, float physicsDt)
|
||||
{
|
||||
const float interpolationFactor = timeAccum / physicsDt;
|
||||
return actorData.mPosition * interpolationFactor + actorData.mActorRaw->getPreviousPosition() * (1.f - interpolationFactor);
|
||||
}
|
||||
|
||||
struct WorldFrameData
|
||||
{
|
||||
WorldFrameData() : mIsInStorm(MWBase::Environment::get().getWorld()->isInStorm())
|
||||
, mStormDirection(MWBase::Environment::get().getWorld()->getStormDirection())
|
||||
{}
|
||||
|
||||
bool mIsInStorm;
|
||||
osg::Vec3f mStormDirection;
|
||||
};
|
||||
|
||||
namespace Config
|
||||
{
|
||||
/* The purpose of these 2 classes is to make OpenMW works with Bullet compiled with either single or multithread support.
|
||||
At runtime, Bullet resolve the call to btParallelFor() to:
|
||||
- btITaskScheduler::parallelFor() if bullet is multithreaded
|
||||
- btIParallelForBody::forLoop() if bullet is singlethreaded.
|
||||
|
||||
NOTE: From Bullet 2.88, there is a btDefaultTaskScheduler(), that returns NULL if multithreading is not supported.
|
||||
It might be worth considering to simplify the API once OpenMW stops supporting 2.87.
|
||||
*/
|
||||
|
||||
template<class ...>
|
||||
using void_t = void;
|
||||
|
||||
/// @brief for Bullet <= 2.87
|
||||
template <class T, class = void>
|
||||
class MultiThreadedBulletImpl : public T
|
||||
{
|
||||
public:
|
||||
MultiThreadedBulletImpl(): T("") {};
|
||||
~MultiThreadedBulletImpl() override = default;
|
||||
int getMaxNumThreads() const override { return 1; };
|
||||
int getNumThreads() const override { return 1; };
|
||||
void setNumThreads(int numThreads) override {};
|
||||
|
||||
/// @brief will be called by Bullet if threading is supported
|
||||
void parallelFor(int iBegin, int iEnd, int batchsize, const btIParallelForBody& body) override {};
|
||||
};
|
||||
|
||||
/// @brief for Bullet >= 2.88
|
||||
template <class T>
|
||||
class MultiThreadedBulletImpl<T, void_t<decltype(&T::parallelSum)>> : public T
|
||||
{
|
||||
public:
|
||||
MultiThreadedBulletImpl(): T("") {};
|
||||
~MultiThreadedBulletImpl() override = default;
|
||||
int getMaxNumThreads() const override { return 1; };
|
||||
int getNumThreads() const override { return 1; };
|
||||
void setNumThreads(int numThreads) override {};
|
||||
|
||||
/// @brief will be called by Bullet if threading is supported
|
||||
void parallelFor(int iBegin, int iEnd, int batchsize, const btIParallelForBody& body) override {};
|
||||
|
||||
btScalar parallelSum(int iBegin, int iEnd, int grainSize, const btIParallelSumBody& body) override { return {}; };
|
||||
};
|
||||
|
||||
using MultiThreadedBullet = MultiThreadedBulletImpl<btITaskScheduler>;
|
||||
|
||||
class SingleThreadedBullet : public btIParallelForBody
|
||||
{
|
||||
public:
|
||||
explicit SingleThreadedBullet(bool &threadingSupported): mThreadingSupported(threadingSupported) {};
|
||||
/// @brief will be called by Bullet if threading is NOT supported
|
||||
void forLoop(int iBegin, int iEnd) const override
|
||||
{
|
||||
mThreadingSupported = false;
|
||||
}
|
||||
private:
|
||||
bool &mThreadingSupported;
|
||||
};
|
||||
|
||||
/// @return either the number of thread as configured by the user, or 1 if Bullet doesn't support multithreading
|
||||
int computeNumThreads(bool& threadSafeBullet)
|
||||
{
|
||||
int wantedThread = Settings::Manager::getInt("async num threads", "Physics");
|
||||
|
||||
auto bulletScheduler = std::make_unique<MultiThreadedBullet>();
|
||||
btSetTaskScheduler(bulletScheduler.get());
|
||||
bool threadingSupported = true;
|
||||
btParallelFor(0, 0, 0, SingleThreadedBullet(threadingSupported));
|
||||
|
||||
threadSafeBullet = threadingSupported;
|
||||
if (!threadingSupported && wantedThread > 1)
|
||||
{
|
||||
Log(Debug::Warning) << "Bullet was not compiled with multithreading support, 1 async thread will be used";
|
||||
return 1;
|
||||
}
|
||||
return std::max(0, wantedThread);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
namespace MWPhysics
|
||||
{
|
||||
PhysicsTaskScheduler::PhysicsTaskScheduler(float physicsDt, std::shared_ptr<btCollisionWorld> collisionWorld)
|
||||
: mPhysicsDt(physicsDt)
|
||||
, mCollisionWorld(std::move(collisionWorld))
|
||||
, mNumJobs(0)
|
||||
, mRemainingSteps(0)
|
||||
, mLOSCacheExpiry(Settings::Manager::getInt("lineofsight keep inactive cache", "Physics"))
|
||||
, mDeferAabbUpdate(Settings::Manager::getBool("defer aabb update", "Physics"))
|
||||
, mNewFrame(false)
|
||||
, mAdvanceSimulation(false)
|
||||
, mQuit(false)
|
||||
, mNextJob(0)
|
||||
, mNextLOS(0)
|
||||
{
|
||||
mNumThreads = Config::computeNumThreads(mThreadSafeBullet);
|
||||
|
||||
if (mNumThreads >= 1)
|
||||
{
|
||||
for (int i = 0; i < mNumThreads; ++i)
|
||||
mThreads.emplace_back([&] { worker(); } );
|
||||
}
|
||||
else
|
||||
{
|
||||
mLOSCacheExpiry = -1;
|
||||
mDeferAabbUpdate = false;
|
||||
}
|
||||
|
||||
mPreStepBarrier = std::make_unique<Misc::Barrier>(mNumThreads, [&]()
|
||||
{
|
||||
updateAabbs();
|
||||
});
|
||||
|
||||
mPostStepBarrier = std::make_unique<Misc::Barrier>(mNumThreads, [&]()
|
||||
{
|
||||
if (mRemainingSteps)
|
||||
--mRemainingSteps;
|
||||
mNextJob.store(0, std::memory_order_release);
|
||||
updateActorsPositions();
|
||||
});
|
||||
|
||||
mPostSimBarrier = std::make_unique<Misc::Barrier>(mNumThreads, [&]()
|
||||
{
|
||||
udpateActorsAabbs();
|
||||
mNewFrame = false;
|
||||
if (mLOSCacheExpiry >= 0)
|
||||
{
|
||||
std::unique_lock<std::shared_timed_mutex> lock(mLOSCacheMutex);
|
||||
mLOSCache.erase(
|
||||
std::remove_if(mLOSCache.begin(), mLOSCache.end(),
|
||||
[](const LOSRequest& req) { return req.mStale; }),
|
||||
mLOSCache.end());
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
PhysicsTaskScheduler::~PhysicsTaskScheduler()
|
||||
{
|
||||
std::unique_lock<std::shared_timed_mutex> lock(mSimulationMutex);
|
||||
mQuit = true;
|
||||
mNumJobs = 0;
|
||||
mRemainingSteps = 0;
|
||||
lock.unlock();
|
||||
mHasJob.notify_all();
|
||||
for (auto& thread : mThreads)
|
||||
thread.join();
|
||||
}
|
||||
|
||||
const PtrPositionList& PhysicsTaskScheduler::moveActors(int numSteps, float timeAccum, std::vector<ActorFrameData>&& actorsData, CollisionMap& standingCollisions, bool skipSimulation)
|
||||
{
|
||||
// This function run in the main thread.
|
||||
// While the mSimulationMutex is held, background physics threads can't run.
|
||||
|
||||
std::unique_lock<std::shared_timed_mutex> lock(mSimulationMutex);
|
||||
|
||||
// start by finishing previous background computation
|
||||
if (mNumThreads != 0)
|
||||
{
|
||||
if (mAdvanceSimulation)
|
||||
standingCollisions.clear();
|
||||
|
||||
for (auto& data : mActorsFrameData)
|
||||
{
|
||||
// Ignore actors that were deleted while the background thread was running
|
||||
if (!data.mActor.lock())
|
||||
continue;
|
||||
|
||||
updateMechanics(data);
|
||||
if (mAdvanceSimulation)
|
||||
updateStandingCollision(data, standingCollisions);
|
||||
}
|
||||
}
|
||||
|
||||
// init
|
||||
mRemainingSteps = numSteps;
|
||||
mTimeAccum = timeAccum;
|
||||
mActorsFrameData = std::move(actorsData);
|
||||
mAdvanceSimulation = (mRemainingSteps != 0);
|
||||
mNewFrame = true;
|
||||
mNumJobs = mActorsFrameData.size();
|
||||
mNextLOS.store(0, std::memory_order_relaxed);
|
||||
mNextJob.store(0, std::memory_order_release);
|
||||
|
||||
if (mAdvanceSimulation)
|
||||
mWorldFrameData = std::make_unique<WorldFrameData>();
|
||||
|
||||
// update each actor position based on latest data
|
||||
for (auto& data : mActorsFrameData)
|
||||
data.updatePosition();
|
||||
|
||||
// we are asked to skip the simulation (load a savegame for instance)
|
||||
// just return the actors' reference position without applying the movements
|
||||
if (skipSimulation)
|
||||
{
|
||||
standingCollisions.clear();
|
||||
mMovementResults.clear();
|
||||
for (const auto& m : mActorsFrameData)
|
||||
mMovementResults[m.mPtr] = m.mPosition;
|
||||
return mMovementResults;
|
||||
}
|
||||
|
||||
if (mNumThreads == 0)
|
||||
{
|
||||
mMovementResults.clear();
|
||||
syncComputation();
|
||||
|
||||
if (mAdvanceSimulation)
|
||||
{
|
||||
standingCollisions.clear();
|
||||
for (auto& data : mActorsFrameData)
|
||||
updateStandingCollision(data, standingCollisions);
|
||||
}
|
||||
return mMovementResults;
|
||||
}
|
||||
|
||||
// Remove actors that were deleted while the background thread was running
|
||||
for (auto& data : mActorsFrameData)
|
||||
{
|
||||
if (!data.mActor.lock())
|
||||
mMovementResults.erase(data.mPtr);
|
||||
}
|
||||
std::swap(mMovementResults, mPreviousMovementResults);
|
||||
|
||||
// mMovementResults is shared between all workers instance
|
||||
// pre-allocate all nodes so that we don't need synchronization
|
||||
mMovementResults.clear();
|
||||
for (const auto& m : mActorsFrameData)
|
||||
mMovementResults[m.mPtr] = m.mPosition;
|
||||
|
||||
lock.unlock();
|
||||
mHasJob.notify_all();
|
||||
return mPreviousMovementResults;
|
||||
}
|
||||
|
||||
void PhysicsTaskScheduler::rayTest(const btVector3& rayFromWorld, const btVector3& rayToWorld, btCollisionWorld::RayResultCallback& resultCallback) const
|
||||
{
|
||||
MaybeSharedLock<std::shared_timed_mutex> lock(mCollisionWorldMutex, mThreadSafeBullet);
|
||||
mCollisionWorld->rayTest(rayFromWorld, rayToWorld, resultCallback);
|
||||
}
|
||||
|
||||
void PhysicsTaskScheduler::convexSweepTest(const btConvexShape* castShape, const btTransform& from, const btTransform& to, btCollisionWorld::ConvexResultCallback& resultCallback) const
|
||||
{
|
||||
MaybeSharedLock<std::shared_timed_mutex> lock(mCollisionWorldMutex, mThreadSafeBullet);
|
||||
mCollisionWorld->convexSweepTest(castShape, from, to, resultCallback);
|
||||
}
|
||||
|
||||
void PhysicsTaskScheduler::contactTest(btCollisionObject* colObj, btCollisionWorld::ContactResultCallback& resultCallback)
|
||||
{
|
||||
std::shared_lock<std::shared_timed_mutex> lock(mCollisionWorldMutex);
|
||||
mCollisionWorld->contactTest(colObj, resultCallback);
|
||||
}
|
||||
|
||||
boost::optional<btVector3> PhysicsTaskScheduler::getHitPoint(const btTransform& from, btCollisionObject* target)
|
||||
{
|
||||
MaybeSharedLock<std::shared_timed_mutex> lock(mCollisionWorldMutex, mThreadSafeBullet);
|
||||
// target the collision object's world origin, this should be the center of the collision object
|
||||
btTransform rayTo;
|
||||
rayTo.setIdentity();
|
||||
rayTo.setOrigin(target->getWorldTransform().getOrigin());
|
||||
|
||||
btCollisionWorld::ClosestRayResultCallback cb(from.getOrigin(), rayTo.getOrigin());
|
||||
|
||||
mCollisionWorld->rayTestSingle(from, rayTo, target, target->getCollisionShape(), target->getWorldTransform(), cb);
|
||||
if (!cb.hasHit())
|
||||
// didn't hit the target. this could happen if point is already inside the collision box
|
||||
return boost::none;
|
||||
return {cb.m_hitPointWorld};
|
||||
}
|
||||
|
||||
void PhysicsTaskScheduler::aabbTest(const btVector3& aabbMin, const btVector3& aabbMax, btBroadphaseAabbCallback& callback)
|
||||
{
|
||||
std::shared_lock<std::shared_timed_mutex> lock(mCollisionWorldMutex);
|
||||
mCollisionWorld->getBroadphase()->aabbTest(aabbMin, aabbMax, callback);
|
||||
}
|
||||
|
||||
void PhysicsTaskScheduler::getAabb(const btCollisionObject* obj, btVector3& min, btVector3& max)
|
||||
{
|
||||
std::shared_lock<std::shared_timed_mutex> lock(mCollisionWorldMutex);
|
||||
obj->getCollisionShape()->getAabb(obj->getWorldTransform(), min, max);
|
||||
}
|
||||
|
||||
void PhysicsTaskScheduler::setCollisionFilterMask(btCollisionObject* collisionObject, int collisionFilterMask)
|
||||
{
|
||||
std::unique_lock<std::shared_timed_mutex> lock(mCollisionWorldMutex);
|
||||
collisionObject->getBroadphaseHandle()->m_collisionFilterMask = collisionFilterMask;
|
||||
}
|
||||
|
||||
void PhysicsTaskScheduler::addCollisionObject(btCollisionObject* collisionObject, int collisionFilterGroup, int collisionFilterMask)
|
||||
{
|
||||
std::unique_lock<std::shared_timed_mutex> lock(mCollisionWorldMutex);
|
||||
mCollisionWorld->addCollisionObject(collisionObject, collisionFilterGroup, collisionFilterMask);
|
||||
}
|
||||
|
||||
void PhysicsTaskScheduler::removeCollisionObject(btCollisionObject* collisionObject)
|
||||
{
|
||||
std::unique_lock<std::shared_timed_mutex> lock(mCollisionWorldMutex);
|
||||
mCollisionWorld->removeCollisionObject(collisionObject);
|
||||
}
|
||||
|
||||
void PhysicsTaskScheduler::updateSingleAabb(std::weak_ptr<PtrHolder> ptr)
|
||||
{
|
||||
if (mDeferAabbUpdate)
|
||||
{
|
||||
std::unique_lock<std::mutex> lock(mUpdateAabbMutex);
|
||||
mUpdateAabb.insert(std::move(ptr));
|
||||
}
|
||||
else
|
||||
{
|
||||
std::unique_lock<std::shared_timed_mutex> lock(mCollisionWorldMutex);
|
||||
updatePtrAabb(ptr);
|
||||
}
|
||||
}
|
||||
|
||||
bool PhysicsTaskScheduler::getLineOfSight(const std::weak_ptr<Actor>& actor1, const std::weak_ptr<Actor>& actor2)
|
||||
{
|
||||
std::unique_lock<std::shared_timed_mutex> lock(mLOSCacheMutex);
|
||||
|
||||
auto actorPtr1 = actor1.lock();
|
||||
auto actorPtr2 = actor2.lock();
|
||||
if (!actorPtr1 || !actorPtr2)
|
||||
return false;
|
||||
|
||||
auto req = LOSRequest(actor1, actor2);
|
||||
auto result = std::find(mLOSCache.begin(), mLOSCache.end(), req);
|
||||
if (result == mLOSCache.end())
|
||||
{
|
||||
req.mResult = hasLineOfSight(actorPtr1.get(), actorPtr2.get());
|
||||
if (mLOSCacheExpiry >= 0)
|
||||
mLOSCache.push_back(req);
|
||||
return req.mResult;
|
||||
}
|
||||
result->mAge = 0;
|
||||
return result->mResult;
|
||||
}
|
||||
|
||||
void PhysicsTaskScheduler::refreshLOSCache()
|
||||
{
|
||||
std::shared_lock<std::shared_timed_mutex> lock(mLOSCacheMutex);
|
||||
int job = 0;
|
||||
int numLOS = mLOSCache.size();
|
||||
while ((job = mNextLOS.fetch_add(1, std::memory_order_relaxed)) < numLOS)
|
||||
{
|
||||
auto& req = mLOSCache[job];
|
||||
auto actorPtr1 = req.mActors[0].lock();
|
||||
auto actorPtr2 = req.mActors[1].lock();
|
||||
|
||||
if (req.mAge++ > mLOSCacheExpiry || !actorPtr1 || !actorPtr2)
|
||||
req.mStale = true;
|
||||
else
|
||||
req.mResult = hasLineOfSight(actorPtr1.get(), actorPtr2.get());
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void PhysicsTaskScheduler::updateAabbs()
|
||||
{
|
||||
std::unique_lock<std::shared_timed_mutex> lock1(mCollisionWorldMutex, std::defer_lock);
|
||||
std::unique_lock<std::mutex> lock2(mUpdateAabbMutex, std::defer_lock);
|
||||
std::lock(lock1, lock2);
|
||||
std::for_each(mUpdateAabb.begin(), mUpdateAabb.end(),
|
||||
[this](const std::weak_ptr<PtrHolder>& ptr) { updatePtrAabb(ptr); });
|
||||
mUpdateAabb.clear();
|
||||
}
|
||||
|
||||
void PhysicsTaskScheduler::updatePtrAabb(const std::weak_ptr<PtrHolder>& ptr)
|
||||
{
|
||||
if (const auto p = ptr.lock())
|
||||
{
|
||||
if (const auto actor = std::dynamic_pointer_cast<Actor>(p))
|
||||
{
|
||||
actor->commitPositionChange();
|
||||
mCollisionWorld->updateSingleAabb(actor->getCollisionObject());
|
||||
}
|
||||
else if (const auto object = std::dynamic_pointer_cast<Object>(p))
|
||||
{
|
||||
object->commitPositionChange();
|
||||
mCollisionWorld->updateSingleAabb(object->getCollisionObject());
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
void PhysicsTaskScheduler::worker()
|
||||
{
|
||||
std::shared_lock<std::shared_timed_mutex> lock(mSimulationMutex);
|
||||
while (!mQuit)
|
||||
{
|
||||
if (!mNewFrame)
|
||||
mHasJob.wait(lock, [&]() { return mQuit || mNewFrame; });
|
||||
|
||||
if (mDeferAabbUpdate)
|
||||
mPreStepBarrier->wait();
|
||||
|
||||
int job = 0;
|
||||
while ((job = mNextJob.fetch_add(1, std::memory_order_relaxed)) < mNumJobs)
|
||||
{
|
||||
MaybeSharedLock<std::shared_timed_mutex> lockColWorld(mCollisionWorldMutex, mThreadSafeBullet);
|
||||
if(const auto actor = mActorsFrameData[job].mActor.lock())
|
||||
{
|
||||
if (mRemainingSteps)
|
||||
MovementSolver::move(mActorsFrameData[job], mPhysicsDt, mCollisionWorld.get(), *mWorldFrameData);
|
||||
else
|
||||
{
|
||||
auto& actorData = mActorsFrameData[job];
|
||||
handleFall(actorData, mAdvanceSimulation);
|
||||
mMovementResults[actorData.mPtr] = interpolateMovements(actorData, mTimeAccum, mPhysicsDt);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
mPostStepBarrier->wait();
|
||||
|
||||
if (!mRemainingSteps)
|
||||
{
|
||||
if (mLOSCacheExpiry >= 0)
|
||||
refreshLOSCache();
|
||||
mPostSimBarrier->wait();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void PhysicsTaskScheduler::updateActorsPositions()
|
||||
{
|
||||
std::unique_lock<std::shared_timed_mutex> lock(mCollisionWorldMutex);
|
||||
for (auto& actorData : mActorsFrameData)
|
||||
{
|
||||
if(const auto actor = actorData.mActor.lock())
|
||||
{
|
||||
if (actorData.mPosition == actor->getPosition())
|
||||
actor->setPosition(actorData.mPosition, false); // update previous position to make sure interpolation is correct
|
||||
else
|
||||
{
|
||||
actorData.mPositionChanged = true;
|
||||
actor->setPosition(actorData.mPosition);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void PhysicsTaskScheduler::udpateActorsAabbs()
|
||||
{
|
||||
std::unique_lock<std::shared_timed_mutex> lock(mCollisionWorldMutex);
|
||||
for (const auto& actorData : mActorsFrameData)
|
||||
if (actorData.mPositionChanged)
|
||||
{
|
||||
if(const auto actor = actorData.mActor.lock())
|
||||
mCollisionWorld->updateSingleAabb(actor->getCollisionObject());
|
||||
}
|
||||
}
|
||||
|
||||
bool PhysicsTaskScheduler::hasLineOfSight(const Actor* actor1, const Actor* actor2)
|
||||
{
|
||||
btVector3 pos1 = Misc::Convert::toBullet(actor1->getCollisionObjectPosition() + osg::Vec3f(0,0,actor1->getHalfExtents().z() * 0.9)); // eye level
|
||||
btVector3 pos2 = Misc::Convert::toBullet(actor2->getCollisionObjectPosition() + osg::Vec3f(0,0,actor2->getHalfExtents().z() * 0.9));
|
||||
|
||||
btCollisionWorld::ClosestRayResultCallback resultCallback(pos1, pos2);
|
||||
resultCallback.m_collisionFilterGroup = 0xFF;
|
||||
resultCallback.m_collisionFilterMask = CollisionType_World|CollisionType_HeightMap|CollisionType_Door;
|
||||
|
||||
MaybeSharedLock<std::shared_timed_mutex> lockColWorld(mCollisionWorldMutex, mThreadSafeBullet);
|
||||
mCollisionWorld->rayTest(pos1, pos2, resultCallback);
|
||||
|
||||
return !resultCallback.hasHit();
|
||||
}
|
||||
|
||||
void PhysicsTaskScheduler::syncComputation()
|
||||
{
|
||||
while (mRemainingSteps--)
|
||||
{
|
||||
for (auto& actorData : mActorsFrameData)
|
||||
MovementSolver::move(actorData, mPhysicsDt, mCollisionWorld.get(), *mWorldFrameData);
|
||||
|
||||
updateActorsPositions();
|
||||
}
|
||||
|
||||
for (auto& actorData : mActorsFrameData)
|
||||
{
|
||||
handleFall(actorData, mAdvanceSimulation);
|
||||
mMovementResults[actorData.mPtr] = interpolateMovements(actorData, mTimeAccum, mPhysicsDt);
|
||||
updateMechanics(actorData);
|
||||
}
|
||||
udpateActorsAabbs();
|
||||
}
|
||||
}
|
@ -0,0 +1,94 @@
|
||||
#ifndef OPENMW_MWPHYSICS_MTPHYSICS_H
|
||||
#define OPENMW_MWPHYSICS_MTPHYSICS_H
|
||||
|
||||
#include <atomic>
|
||||
#include <condition_variable>
|
||||
#include <thread>
|
||||
#include <shared_mutex>
|
||||
|
||||
#include <boost/optional/optional.hpp>
|
||||
#include <BulletCollision/CollisionDispatch/btCollisionWorld.h>
|
||||
|
||||
#include "physicssystem.hpp"
|
||||
#include "ptrholder.hpp"
|
||||
|
||||
namespace Misc
|
||||
{
|
||||
class Barrier;
|
||||
}
|
||||
|
||||
namespace MWPhysics
|
||||
{
|
||||
class PhysicsTaskScheduler
|
||||
{
|
||||
public:
|
||||
PhysicsTaskScheduler(float physicsDt, std::shared_ptr<btCollisionWorld> collisionWorld);
|
||||
~PhysicsTaskScheduler();
|
||||
|
||||
/// @brief move actors taking into account desired movements and collisions
|
||||
/// @param numSteps how much simulation step to run
|
||||
/// @param timeAccum accumulated time from previous run to interpolate movements
|
||||
/// @param actorsData per actor data needed to compute new positions
|
||||
/// @return new position of each actor
|
||||
const PtrPositionList& moveActors(int numSteps, float timeAccum, std::vector<ActorFrameData>&& actorsData, CollisionMap& standingCollisions, bool skip);
|
||||
|
||||
// Thread safe wrappers
|
||||
void rayTest(const btVector3& rayFromWorld, const btVector3& rayToWorld, btCollisionWorld::RayResultCallback& resultCallback) const;
|
||||
void convexSweepTest(const btConvexShape* castShape, const btTransform& from, const btTransform& to, btCollisionWorld::ConvexResultCallback& resultCallback) const;
|
||||
void contactTest(btCollisionObject* colObj, btCollisionWorld::ContactResultCallback& resultCallback);
|
||||
boost::optional<btVector3> getHitPoint(const btTransform& from, btCollisionObject* target);
|
||||
void aabbTest(const btVector3& aabbMin, const btVector3& aabbMax, btBroadphaseAabbCallback& callback);
|
||||
void getAabb(const btCollisionObject* obj, btVector3& min, btVector3& max);
|
||||
void setCollisionFilterMask(btCollisionObject* collisionObject, int collisionFilterMask);
|
||||
void addCollisionObject(btCollisionObject* collisionObject, int collisionFilterGroup, int collisionFilterMask);
|
||||
void removeCollisionObject(btCollisionObject* collisionObject);
|
||||
void updateSingleAabb(std::weak_ptr<PtrHolder> ptr);
|
||||
bool getLineOfSight(const std::weak_ptr<Actor>& actor1, const std::weak_ptr<Actor>& actor2);
|
||||
|
||||
private:
|
||||
void syncComputation();
|
||||
void worker();
|
||||
void updateActorsPositions();
|
||||
void udpateActorsAabbs();
|
||||
bool hasLineOfSight(const Actor* actor1, const Actor* actor2);
|
||||
void refreshLOSCache();
|
||||
void updateAabbs();
|
||||
void updatePtrAabb(const std::weak_ptr<PtrHolder>& ptr);
|
||||
|
||||
std::unique_ptr<WorldFrameData> mWorldFrameData;
|
||||
std::vector<ActorFrameData> mActorsFrameData;
|
||||
PtrPositionList mMovementResults;
|
||||
PtrPositionList mPreviousMovementResults;
|
||||
const float mPhysicsDt;
|
||||
float mTimeAccum;
|
||||
std::shared_ptr<btCollisionWorld> mCollisionWorld;
|
||||
std::vector<LOSRequest> mLOSCache;
|
||||
std::set<std::weak_ptr<PtrHolder>, std::owner_less<std::weak_ptr<PtrHolder>>> mUpdateAabb;
|
||||
|
||||
// TODO: use std::experimental::flex_barrier or std::barrier once it becomes a thing
|
||||
std::unique_ptr<Misc::Barrier> mPreStepBarrier;
|
||||
std::unique_ptr<Misc::Barrier> mPostStepBarrier;
|
||||
std::unique_ptr<Misc::Barrier> mPostSimBarrier;
|
||||
|
||||
int mNumThreads;
|
||||
int mNumJobs;
|
||||
int mRemainingSteps;
|
||||
int mLOSCacheExpiry;
|
||||
bool mDeferAabbUpdate;
|
||||
bool mNewFrame;
|
||||
bool mAdvanceSimulation;
|
||||
bool mThreadSafeBullet;
|
||||
bool mQuit;
|
||||
std::atomic<int> mNextJob;
|
||||
std::atomic<int> mNextLOS;
|
||||
std::vector<std::thread> mThreads;
|
||||
|
||||
mutable std::shared_timed_mutex mSimulationMutex;
|
||||
mutable std::shared_timed_mutex mCollisionWorldMutex;
|
||||
mutable std::shared_timed_mutex mLOSCacheMutex;
|
||||
mutable std::mutex mUpdateAabbMutex;
|
||||
std::condition_variable_any mHasJob;
|
||||
};
|
||||
|
||||
}
|
||||
#endif
|
@ -0,0 +1,51 @@
|
||||
#ifndef OPENMW_BARRIER_H
|
||||
#define OPENMW_BARRIER_H
|
||||
|
||||
#include <condition_variable>
|
||||
#include <functional>
|
||||
#include <mutex>
|
||||
|
||||
namespace Misc
|
||||
{
|
||||
/// @brief Synchronize several threads
|
||||
class Barrier
|
||||
{
|
||||
public:
|
||||
using BarrierCallback = std::function<void(void)>;
|
||||
/// @param count number of threads to wait on
|
||||
/// @param func callable to be executed once after all threads have met
|
||||
Barrier(int count, BarrierCallback&& func) : mThreadCount(count), mRendezvousCount(0), mGeneration(0)
|
||||
, mFunc(std::forward<BarrierCallback>(func))
|
||||
{}
|
||||
|
||||
/// @brief stop execution of threads until count distinct threads reach this point
|
||||
void wait()
|
||||
{
|
||||
std::unique_lock<std::mutex> lock(mMutex);
|
||||
|
||||
++mRendezvousCount;
|
||||
const int currentGeneration = mGeneration;
|
||||
if (mRendezvousCount == mThreadCount)
|
||||
{
|
||||
++mGeneration;
|
||||
mRendezvousCount = 0;
|
||||
mFunc();
|
||||
mRendezvous.notify_all();
|
||||
}
|
||||
else
|
||||
{
|
||||
mRendezvous.wait(lock, [&]() { return mGeneration != currentGeneration; });
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
int mThreadCount;
|
||||
int mRendezvousCount;
|
||||
int mGeneration;
|
||||
mutable std::mutex mMutex;
|
||||
std::condition_variable mRendezvous;
|
||||
BarrierCallback mFunc;
|
||||
};
|
||||
}
|
||||
|
||||
#endif
|
Loading…
Reference in New Issue