|
|
|
@ -9,6 +9,7 @@
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#define REFRACTION @refraction_enabled
|
|
|
|
|
#define RAIN_RIPPLE_DETAIL @rain_ripple_detail
|
|
|
|
|
|
|
|
|
|
// Inspired by Blender GLSL Water by martinsh ( https://devlog-martinsh.blogspot.de/2012/07/waterundewater-shader-wip.html )
|
|
|
|
|
|
|
|
|
@ -55,14 +56,22 @@ const float WOBBLY_SHORE_FADE_DISTANCE = 6200.0; // fade out wobbly shores to
|
|
|
|
|
|
|
|
|
|
// ---------------- rain ripples related stuff ---------------------
|
|
|
|
|
|
|
|
|
|
const float RAIN_RIPPLE_GAPS = 5.0;
|
|
|
|
|
const float RAIN_RIPPLE_RADIUS = 0.1;
|
|
|
|
|
const float RAIN_RIPPLE_GAPS = 10.0;
|
|
|
|
|
const float RAIN_RIPPLE_RADIUS = 0.2;
|
|
|
|
|
|
|
|
|
|
vec2 randOffset(vec2 c)
|
|
|
|
|
float scramble(float x, float z)
|
|
|
|
|
{
|
|
|
|
|
return fract(vec2(
|
|
|
|
|
c.x * c.y / 8.0 + c.y * 0.3 + c.x * 0.2,
|
|
|
|
|
c.x * c.y / 14.0 + c.y * 0.5 + c.x * 0.7));
|
|
|
|
|
return fract(pow(fract(x)*3.0+1.0, z));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
vec2 randOffset(vec2 c, float time)
|
|
|
|
|
{
|
|
|
|
|
time = fract(time/1000.0);
|
|
|
|
|
c = vec2(c.x * c.y / 8.0 + c.y * 0.3 + c.x * 0.2,
|
|
|
|
|
c.x * c.y / 14.0 + c.y * 0.5 + c.x * 0.7);
|
|
|
|
|
c.x *= scramble(scramble(time + c.x/1000.0, 4.0), 3.0) + 1.0;
|
|
|
|
|
c.y *= scramble(scramble(time + c.y/1000.0, 3.5), 3.0) + 1.0;
|
|
|
|
|
return fract(c);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
float randPhase(vec2 c)
|
|
|
|
@ -70,43 +79,104 @@ float randPhase(vec2 c)
|
|
|
|
|
return fract((c.x * c.y) / (c.x + c.y + 0.1));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
vec4 circle(vec2 coords, vec2 i_part, float phase)
|
|
|
|
|
float blip(float x)
|
|
|
|
|
{
|
|
|
|
|
vec2 center = vec2(0.5,0.5) + (0.5 - RAIN_RIPPLE_RADIUS) * (2.0 * randOffset(i_part) - 1.0);
|
|
|
|
|
vec2 toCenter = coords - center;
|
|
|
|
|
float d = length(toCenter);
|
|
|
|
|
x = max(0.0, 1.0-x*x);
|
|
|
|
|
return x*x*x;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
float r = RAIN_RIPPLE_RADIUS * phase;
|
|
|
|
|
float blipDerivative(float x)
|
|
|
|
|
{
|
|
|
|
|
x = clamp(x, -1.0, 1.0);
|
|
|
|
|
float n = x*x-1.0;
|
|
|
|
|
return -6.0*x*n*n;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (d > r)
|
|
|
|
|
return vec4(0.0,0.0,1.0,0.0);
|
|
|
|
|
const float RAIN_RING_TIME_OFFSET = 1.0/6.0;
|
|
|
|
|
|
|
|
|
|
float sinValue = (sin(d / r * 1.2) + 0.7) / 2.0;
|
|
|
|
|
vec4 circle(vec2 coords, vec2 corner, float adjusted_time)
|
|
|
|
|
{
|
|
|
|
|
vec2 center = vec2(0.5,0.5) + (0.5 - RAIN_RIPPLE_RADIUS) * (2.0 * randOffset(corner, floor(adjusted_time)) - 1.0);
|
|
|
|
|
float phase = fract(adjusted_time);
|
|
|
|
|
vec2 toCenter = coords - center;
|
|
|
|
|
|
|
|
|
|
float height = (1.0 - abs(phase)) * pow(sinValue,3.0);
|
|
|
|
|
float r = RAIN_RIPPLE_RADIUS;
|
|
|
|
|
float d = length(toCenter);
|
|
|
|
|
float ringfollower = (phase-d/r)/RAIN_RING_TIME_OFFSET-1.0; // -1.0 ~ +1.0 cover the breadth of the ripple's ring
|
|
|
|
|
|
|
|
|
|
#if RAIN_RIPPLE_DETAIL > 0
|
|
|
|
|
// normal mapped ripples
|
|
|
|
|
if(ringfollower < -1.0 || ringfollower > 1.0)
|
|
|
|
|
return vec4(0.0);
|
|
|
|
|
|
|
|
|
|
if(d > 1.0) // normalize center direction vector, but not for near-center ripples
|
|
|
|
|
toCenter /= d;
|
|
|
|
|
|
|
|
|
|
float height = blip(ringfollower*2.0+0.5); // brighten up outer edge of ring; for fake specularity
|
|
|
|
|
float range_limit = blip(min(0.0, ringfollower));
|
|
|
|
|
float energy = 1.0-phase;
|
|
|
|
|
|
|
|
|
|
vec2 normal2d = -toCenter*blipDerivative(ringfollower)*5.0;
|
|
|
|
|
vec3 normal = vec3(normal2d, 0.5);
|
|
|
|
|
vec4 ret = vec4(normal, height);
|
|
|
|
|
ret.xyw *= energy*energy;
|
|
|
|
|
// do energy adjustment here rather than later, so that we can use the w component for fake specularity
|
|
|
|
|
ret.xyz = normalize(ret.xyz) * energy*range_limit;
|
|
|
|
|
ret.z *= range_limit;
|
|
|
|
|
return ret;
|
|
|
|
|
#else
|
|
|
|
|
// ring-only ripples
|
|
|
|
|
if(ringfollower < -1.0 || ringfollower > 0.5)
|
|
|
|
|
return vec4(0.0);
|
|
|
|
|
|
|
|
|
|
vec3 normal = normalize(mix(vec3(0.0,0.0,1.0),vec3(normalize(toCenter),0.0),height));
|
|
|
|
|
float energy = 1.0-phase;
|
|
|
|
|
float height = blip(ringfollower*2.0+0.5)*energy*energy; // fake specularity
|
|
|
|
|
|
|
|
|
|
return vec4(normal,height);
|
|
|
|
|
return vec4(0.0, 0.0, 0.0, height);
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
vec4 rain(vec2 uv, float time)
|
|
|
|
|
{
|
|
|
|
|
vec2 i_part = floor(uv * RAIN_RIPPLE_GAPS);
|
|
|
|
|
vec2 f_part = fract(uv * RAIN_RIPPLE_GAPS);
|
|
|
|
|
return circle(f_part,i_part,fract(time * 1.2 + randPhase(i_part)));
|
|
|
|
|
uv *= RAIN_RIPPLE_GAPS;
|
|
|
|
|
vec2 f_part = fract(uv);
|
|
|
|
|
vec2 i_part = floor(uv);
|
|
|
|
|
float adjusted_time = time * 1.2 + randPhase(i_part);
|
|
|
|
|
#if RAIN_RIPPLE_DETAIL > 0
|
|
|
|
|
vec4 a = circle(f_part, i_part, adjusted_time);
|
|
|
|
|
vec4 b = circle(f_part, i_part, adjusted_time - RAIN_RING_TIME_OFFSET);
|
|
|
|
|
vec4 c = circle(f_part, i_part, adjusted_time - RAIN_RING_TIME_OFFSET*2.0);
|
|
|
|
|
vec4 d = circle(f_part, i_part, adjusted_time - RAIN_RING_TIME_OFFSET*3.0);
|
|
|
|
|
vec4 ret;
|
|
|
|
|
ret.xy = a.xy - b.xy/2.0 + c.xy/4.0 - d.xy/8.0;
|
|
|
|
|
// z should always point up
|
|
|
|
|
ret.z = a.z + b.z /2.0 + c.z /4.0 + d.z /8.0;
|
|
|
|
|
//ret.xyz *= 1.5;
|
|
|
|
|
// fake specularity looks weird if we use every single ring, also if the inner rings are too bright
|
|
|
|
|
ret.w = (a.w + c.w /8.0)*1.5;
|
|
|
|
|
return ret;
|
|
|
|
|
#else
|
|
|
|
|
return circle(f_part, i_part, adjusted_time) * 1.5;
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
vec4 rainCombined(vec2 uv, float time) // returns ripple normal in xyz and ripple height in w
|
|
|
|
|
vec2 complex_mult(vec2 a, vec2 b)
|
|
|
|
|
{
|
|
|
|
|
return vec2(a.x*b.x - a.y*b.y, a.x*b.y + a.y*b.x);
|
|
|
|
|
}
|
|
|
|
|
vec4 rainCombined(vec2 uv, float time) // returns ripple normal in xyz and fake specularity in w
|
|
|
|
|
{
|
|
|
|
|
return
|
|
|
|
|
rain(uv,time) +
|
|
|
|
|
rain(uv + vec2(10.5,5.7),time) +
|
|
|
|
|
rain(uv * 0.75 + vec2(3.7,18.9),time) +
|
|
|
|
|
rain(uv * 0.9 + vec2(5.7,30.1),time) +
|
|
|
|
|
rain(uv * 0.8 + vec2(1.2,3.0),time);
|
|
|
|
|
rain(uv, time)
|
|
|
|
|
+ rain(complex_mult(uv, vec2(0.4, 0.7)) + vec2(1.2, 3.0),time)
|
|
|
|
|
#if RAIN_RIPPLE_DETAIL == 2
|
|
|
|
|
+ rain(uv * 0.75 + vec2( 3.7,18.9),time)
|
|
|
|
|
+ rain(uv * 0.9 + vec2( 5.7,30.1),time)
|
|
|
|
|
+ rain(uv * 1.0 + vec2(10.5 ,5.7),time)
|
|
|
|
|
#endif
|
|
|
|
|
;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -
|
|
|
|
|
|
|
|
|
|
float fresnel_dielectric(vec3 Incoming, vec3 Normal, float eta)
|
|
|
|
@ -193,11 +263,11 @@ void main(void)
|
|
|
|
|
vec4 rainRipple;
|
|
|
|
|
|
|
|
|
|
if (rainIntensity > 0.01)
|
|
|
|
|
rainRipple = rainCombined(position.xy / 1000.0,waterTimer) * clamp(rainIntensity,0.0,1.0);
|
|
|
|
|
rainRipple = rainCombined(position.xy/1000.0, waterTimer) * clamp(rainIntensity, 0.0, 1.0);
|
|
|
|
|
else
|
|
|
|
|
rainRipple = vec4(0.0);
|
|
|
|
|
|
|
|
|
|
vec3 rippleAdd = rainRipple.xyz * rainRipple.w * 10.0;
|
|
|
|
|
vec3 rippleAdd = rainRipple.xyz * 10.0;
|
|
|
|
|
|
|
|
|
|
vec2 bigWaves = vec2(BIG_WAVES_X,BIG_WAVES_Y);
|
|
|
|
|
vec2 midWaves = mix(vec2(MID_WAVES_X,MID_WAVES_Y),vec2(MID_WAVES_RAIN_X,MID_WAVES_RAIN_Y),rainIntensity);
|
|
|
|
@ -245,7 +315,14 @@ void main(void)
|
|
|
|
|
|
|
|
|
|
vec4 sunSpec = lcalcSpecular(0);
|
|
|
|
|
|
|
|
|
|
// artificial specularity to make rain ripples more noticeable
|
|
|
|
|
vec3 skyColorEstimate = vec3(max(0.0, mix(-0.3, 1.0, sunFade)));
|
|
|
|
|
vec3 rainSpecular = abs(rainRipple.w)*mix(skyColorEstimate, vec3(1.0), 0.05)*0.5;
|
|
|
|
|
|
|
|
|
|
#if REFRACTION
|
|
|
|
|
// no alpha here, so make sure raindrop ripple specularity gets properly subdued
|
|
|
|
|
rainSpecular *= clamp(fresnel*6.0 + specular * sunSpec.w, 0.0, 1.0);
|
|
|
|
|
|
|
|
|
|
// refraction
|
|
|
|
|
vec3 refraction = texture2D(refractionMap, screenCoords - screenCoordsOffset).rgb;
|
|
|
|
|
vec3 rawRefraction = refraction;
|
|
|
|
@ -265,7 +342,7 @@ void main(void)
|
|
|
|
|
vec3 scatterColour = mix(SCATTER_COLOUR*vec3(1.0,0.4,0.0), SCATTER_COLOUR, clamp(1.0-exp(-sunHeight*SUN_EXT), 0.0, 1.0));
|
|
|
|
|
vec3 lR = reflect(lVec, lNormal);
|
|
|
|
|
float lightScatter = clamp(dot(lVec,lNormal)*0.7+0.3, 0.0, 1.0) * clamp(dot(lR, vVec)*2.0-1.2, 0.0, 1.0) * SCATTER_AMOUNT * sunFade * clamp(1.0-exp(-sunHeight), 0.0, 1.0);
|
|
|
|
|
gl_FragData[0].xyz = mix( mix(refraction, scatterColour, lightScatter), reflection, fresnel) + specular * sunSpec.xyz + vec3(rainRipple.w) * 0.2;
|
|
|
|
|
gl_FragData[0].xyz = mix( mix(refraction, scatterColour, lightScatter), reflection, fresnel) + specular * sunSpec.xyz + rainSpecular;
|
|
|
|
|
gl_FragData[0].w = 1.0;
|
|
|
|
|
|
|
|
|
|
// wobbly water: hard-fade into refraction texture at extremely low depth, with a wobble based on normal mapping
|
|
|
|
@ -278,7 +355,7 @@ void main(void)
|
|
|
|
|
shoreOffset = clamp(mix(shoreOffset, 1.0, clamp(linearDepth / WOBBLY_SHORE_FADE_DISTANCE, 0.0, 1.0)), 0.0, 1.0);
|
|
|
|
|
gl_FragData[0].xyz = mix(rawRefraction, gl_FragData[0].xyz, shoreOffset);
|
|
|
|
|
#else
|
|
|
|
|
gl_FragData[0].xyz = mix(reflection, waterColor, (1.0-fresnel)*0.5) + specular * sunSpec.xyz + vec3(rainRipple.w) * 0.7;
|
|
|
|
|
gl_FragData[0].xyz = mix(reflection, waterColor, (1.0-fresnel)*0.5) + specular * sunSpec.xyz + rainSpecular;
|
|
|
|
|
gl_FragData[0].w = clamp(fresnel*6.0 + specular * sunSpec.w, 0.0, 1.0); //clamp(fresnel*2.0 + specular * gl_LightSource[0].specular.w, 0.0, 1.0);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
@ -288,7 +365,7 @@ void main(void)
|
|
|
|
|
#else
|
|
|
|
|
float fogValue = clamp((linearDepth - gl_Fog.start) * gl_Fog.scale, 0.0, 1.0);
|
|
|
|
|
#endif
|
|
|
|
|
gl_FragData[0].xyz = mix(gl_FragData[0].xyz, gl_Fog.color.xyz, fogValue);
|
|
|
|
|
gl_FragData[0].xyz = mix(gl_FragData[0].xyz, gl_Fog.color.xyz, fogValue);
|
|
|
|
|
|
|
|
|
|
applyShadowDebugOverlay();
|
|
|
|
|
}
|
|
|
|
|