Update Recastnavigation to c40188c796f089f89a42e0b939d934178dbcfc5c

pull/2565/head
elsid 5 years ago
parent 224144f2b8
commit acb939a81b
No known key found for this signature in database
GPG Key ID: B845CB9FEE18AB40

@ -9,6 +9,16 @@
*.so *.so
*.idb *.idb
## Linux exes have no extension
RecastDemo/Bin/RecastDemo
RecastDemo/Bin/Tests
# Build directory
RecastDemo/Build
# Ignore meshes
RecastDemo/Bin/Meshes/*
## Logs and databases # ## Logs and databases #
*.log *.log
*.sql *.sql
@ -28,6 +38,9 @@ Thumbs.db
## xcode specific ## xcode specific
*xcuserdata* *xcuserdata*
## SDL contrib
RecastDemo/Contrib/SDL/*
## Generated doc files ## Generated doc files
Docs/html Docs/html

@ -1 +1 @@
3087e805b02d5eb8fff7851234fa2b3f71290eba c40188c796f089f89a42e0b939d934178dbcfc5c

@ -101,7 +101,9 @@ static void drawPolyBoundaries(duDebugDraw* dd, const dtMeshTile* tile,
} }
for (int m = 0, n = 2; m < 3; n=m++) for (int m = 0, n = 2; m < 3; n=m++)
{ {
if (((t[3] >> (n*2)) & 0x3) == 0) continue; // Skip inner detail edges. if ((dtGetDetailTriEdgeFlags(t[3], n) & DT_DETAIL_EDGE_BOUNDARY) == 0)
continue;
if (distancePtLine2d(tv[n],v0,v1) < thr && if (distancePtLine2d(tv[n],v0,v1) < thr &&
distancePtLine2d(tv[m],v0,v1) < thr) distancePtLine2d(tv[m],v0,v1) < thr)
{ {

@ -130,6 +130,11 @@ enum dtRaycastOptions
DT_RAYCAST_USE_COSTS = 0x01, ///< Raycast should calculate movement cost along the ray and fill RaycastHit::cost DT_RAYCAST_USE_COSTS = 0x01, ///< Raycast should calculate movement cost along the ray and fill RaycastHit::cost
}; };
enum dtDetailTriEdgeFlags
{
DT_DETAIL_EDGE_BOUNDARY = 0x01, ///< Detail triangle edge is part of the poly boundary
};
/// Limit raycasting during any angle pahfinding /// Limit raycasting during any angle pahfinding
/// The limit is given as a multiple of the character radius /// The limit is given as a multiple of the character radius
@ -287,7 +292,8 @@ struct dtMeshTile
/// The detail mesh's unique vertices. [(x, y, z) * dtMeshHeader::detailVertCount] /// The detail mesh's unique vertices. [(x, y, z) * dtMeshHeader::detailVertCount]
float* detailVerts; float* detailVerts;
/// The detail mesh's triangles. [(vertA, vertB, vertC) * dtMeshHeader::detailTriCount] /// The detail mesh's triangles. [(vertA, vertB, vertC, triFlags) * dtMeshHeader::detailTriCount].
/// See dtDetailTriEdgeFlags and dtGetDetailTriEdgeFlags.
unsigned char* detailTris; unsigned char* detailTris;
/// The tile bounding volume nodes. [Size: dtMeshHeader::bvNodeCount] /// The tile bounding volume nodes. [Size: dtMeshHeader::bvNodeCount]
@ -305,6 +311,15 @@ private:
dtMeshTile& operator=(const dtMeshTile&); dtMeshTile& operator=(const dtMeshTile&);
}; };
/// Get flags for edge in detail triangle.
/// @param triFlags[in] The flags for the triangle (last component of detail vertices above).
/// @param edgeIndex[in] The index of the first vertex of the edge. For instance, if 0,
/// returns flags for edge AB.
inline int dtGetDetailTriEdgeFlags(unsigned char triFlags, int edgeIndex)
{
return (triFlags >> (edgeIndex * 2)) & 0x3;
}
/// Configuration parameters used to define multi-tile navigation meshes. /// Configuration parameters used to define multi-tile navigation meshes.
/// The values are used to allocate space during the initialization of a navigation mesh. /// The values are used to allocate space during the initialization of a navigation mesh.
/// @see dtNavMesh::init() /// @see dtNavMesh::init()
@ -636,6 +651,8 @@ private:
/// Find nearest polygon within a tile. /// Find nearest polygon within a tile.
dtPolyRef findNearestPolyInTile(const dtMeshTile* tile, const float* center, dtPolyRef findNearestPolyInTile(const dtMeshTile* tile, const float* center,
const float* halfExtents, float* nearestPt) const; const float* halfExtents, float* nearestPt) const;
/// Returns whether position is over the poly and the height at the position if so.
bool getPolyHeight(const dtMeshTile* tile, const dtPoly* poly, const float* pos, float* height) const;
/// Returns closest point on polygon. /// Returns closest point on polygon.
void closestPointOnPoly(dtPolyRef ref, const float* pos, float* closest, bool* posOverPoly) const; void closestPointOnPoly(dtPolyRef ref, const float* pos, float* closest, bool* posOverPoly) const;
@ -655,6 +672,8 @@ private:
unsigned int m_tileBits; ///< Number of tile bits in the tile ID. unsigned int m_tileBits; ///< Number of tile bits in the tile ID.
unsigned int m_polyBits; ///< Number of poly bits in the tile ID. unsigned int m_polyBits; ///< Number of poly bits in the tile ID.
#endif #endif
friend class dtNavMeshQuery;
}; };
/// Allocates a navigation mesh object using the Detour allocator. /// Allocates a navigation mesh object using the Detour allocator.

@ -119,8 +119,6 @@ public:
}; };
/// Provides information about raycast hit /// Provides information about raycast hit
/// filled by dtNavMeshQuery::raycast /// filled by dtNavMeshQuery::raycast
/// @ingroup detour /// @ingroup detour

@ -203,14 +203,18 @@ void dtCalcPolyCenter(float* tc, const unsigned short* idx, int nidx, const floa
bool dtClosestHeightPointTriangle(const float* p, const float* a, const float* b, const float* c, float& h) bool dtClosestHeightPointTriangle(const float* p, const float* a, const float* b, const float* c, float& h)
{ {
const float EPS = 1e-6f;
float v0[3], v1[3], v2[3]; float v0[3], v1[3], v2[3];
dtVsub(v0, c,a); dtVsub(v0, c, a);
dtVsub(v1, b,a); dtVsub(v1, b, a);
dtVsub(v2, p,a); dtVsub(v2, p, a);
// Compute scaled barycentric coordinates // Compute scaled barycentric coordinates
float denom = v0[0] * v1[2] - v0[2] * v1[0]; float denom = v0[0] * v1[2] - v0[2] * v1[0];
if (fabsf(denom) < EPS)
return false;
float u = v1[2] * v2[0] - v1[0] * v2[2]; float u = v1[2] * v2[0] - v1[0] * v2[2];
float v = v0[0] * v2[2] - v0[2] * v2[0]; float v = v0[0] * v2[2] - v0[2] * v2[0];
@ -220,13 +224,9 @@ bool dtClosestHeightPointTriangle(const float* p, const float* a, const float* b
v = -v; v = -v;
} }
// The (sloppy) epsilon is needed to allow to get height of points which
// are interpolated along the edges of the triangles.
float epsilon = - 1e-4f * denom;
// If point lies inside the triangle, return interpolated ycoord. // If point lies inside the triangle, return interpolated ycoord.
if (u >= epsilon && v >= epsilon && (u+v) <= denom - epsilon) { if (u >= 0.0f && v >= 0.0f && (u + v) <= denom) {
h = a[1] + (v0[1]*u + v1[1]*v) / denom; h = a[1] + (v0[1] * u + v1[1] * v) / denom;
return true; return true;
} }
return false; return false;

@ -616,63 +616,84 @@ void dtNavMesh::baseOffMeshLinks(dtMeshTile* tile)
} }
} }
void dtNavMesh::closestPointOnPoly(dtPolyRef ref, const float* pos, float* closest, bool* posOverPoly) const namespace
{ {
const dtMeshTile* tile = 0; template<bool onlyBoundary>
const dtPoly* poly = 0; void closestPointOnDetailEdges(const dtMeshTile* tile, const dtPoly* poly, const float* pos, float* closest)
getTileAndPolyByRefUnsafe(ref, &tile, &poly); {
const unsigned int ip = (unsigned int)(poly - tile->polys);
const dtPolyDetail* pd = &tile->detailMeshes[ip];
// Off-mesh connections don't have detail polygons. float dmin = FLT_MAX;
if (poly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION) float tmin = 0;
const float* pmin = 0;
const float* pmax = 0;
for (int i = 0; i < pd->triCount; i++)
{ {
const float* v0 = &tile->verts[poly->verts[0]*3]; const unsigned char* tris = &tile->detailTris[(pd->triBase + i) * 4];
const float* v1 = &tile->verts[poly->verts[1]*3]; const int ANY_BOUNDARY_EDGE =
const float d0 = dtVdist(pos, v0); (DT_DETAIL_EDGE_BOUNDARY << 0) |
const float d1 = dtVdist(pos, v1); (DT_DETAIL_EDGE_BOUNDARY << 2) |
const float u = d0 / (d0+d1); (DT_DETAIL_EDGE_BOUNDARY << 4);
dtVlerp(closest, v0, v1, u); if (onlyBoundary && (tris[3] & ANY_BOUNDARY_EDGE) == 0)
if (posOverPoly) continue;
*posOverPoly = false;
return; const float* v[3];
for (int j = 0; j < 3; ++j)
{
if (tris[j] < poly->vertCount)
v[j] = &tile->verts[poly->verts[tris[j]] * 3];
else
v[j] = &tile->detailVerts[(pd->vertBase + (tris[j] - poly->vertCount)) * 3];
}
for (int k = 0, j = 2; k < 3; j = k++)
{
if ((dtGetDetailTriEdgeFlags(tris[3], j) & DT_DETAIL_EDGE_BOUNDARY) == 0 &&
(onlyBoundary || tris[j] < tris[k]))
{
// Only looking at boundary edges and this is internal, or
// this is an inner edge that we will see again or have already seen.
continue;
} }
float t;
float d = dtDistancePtSegSqr2D(pos, v[j], v[k], t);
if (d < dmin)
{
dmin = d;
tmin = t;
pmin = v[j];
pmax = v[k];
}
}
}
dtVlerp(closest, pmin, pmax, tmin);
}
}
bool dtNavMesh::getPolyHeight(const dtMeshTile* tile, const dtPoly* poly, const float* pos, float* height) const
{
// Off-mesh connections do not have detail polys and getting height
// over them does not make sense.
if (poly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION)
return false;
const unsigned int ip = (unsigned int)(poly - tile->polys); const unsigned int ip = (unsigned int)(poly - tile->polys);
const dtPolyDetail* pd = &tile->detailMeshes[ip]; const dtPolyDetail* pd = &tile->detailMeshes[ip];
// Clamp point to be inside the polygon.
float verts[DT_VERTS_PER_POLYGON*3]; float verts[DT_VERTS_PER_POLYGON*3];
float edged[DT_VERTS_PER_POLYGON];
float edget[DT_VERTS_PER_POLYGON];
const int nv = poly->vertCount; const int nv = poly->vertCount;
for (int i = 0; i < nv; ++i) for (int i = 0; i < nv; ++i)
dtVcopy(&verts[i*3], &tile->verts[poly->verts[i]*3]); dtVcopy(&verts[i*3], &tile->verts[poly->verts[i]*3]);
dtVcopy(closest, pos); if (!dtPointInPolygon(pos, verts, nv))
if (!dtDistancePtPolyEdgesSqr(pos, verts, nv, edged, edget)) return false;
{
// Point is outside the polygon, dtClamp to nearest edge.
float dmin = edged[0];
int imin = 0;
for (int i = 1; i < nv; ++i)
{
if (edged[i] < dmin)
{
dmin = edged[i];
imin = i;
}
}
const float* va = &verts[imin*3];
const float* vb = &verts[((imin+1)%nv)*3];
dtVlerp(closest, va, vb, edget[imin]);
if (posOverPoly) if (!height)
*posOverPoly = false; return true;
}
else
{
if (posOverPoly)
*posOverPoly = true;
}
// Find height at the location. // Find height at the location.
for (int j = 0; j < pd->triCount; ++j) for (int j = 0; j < pd->triCount; ++j)
@ -687,12 +708,53 @@ void dtNavMesh::closestPointOnPoly(dtPolyRef ref, const float* pos, float* close
v[k] = &tile->detailVerts[(pd->vertBase+(t[k]-poly->vertCount))*3]; v[k] = &tile->detailVerts[(pd->vertBase+(t[k]-poly->vertCount))*3];
} }
float h; float h;
if (dtClosestHeightPointTriangle(closest, v[0], v[1], v[2], h)) if (dtClosestHeightPointTriangle(pos, v[0], v[1], v[2], h))
{ {
closest[1] = h; *height = h;
break; return true;
} }
} }
// If all triangle checks failed above (can happen with degenerate triangles
// or larger floating point values) the point is on an edge, so just select
// closest. This should almost never happen so the extra iteration here is
// ok.
float closest[3];
closestPointOnDetailEdges<false>(tile, poly, pos, closest);
*height = closest[1];
return true;
}
void dtNavMesh::closestPointOnPoly(dtPolyRef ref, const float* pos, float* closest, bool* posOverPoly) const
{
const dtMeshTile* tile = 0;
const dtPoly* poly = 0;
getTileAndPolyByRefUnsafe(ref, &tile, &poly);
dtVcopy(closest, pos);
if (getPolyHeight(tile, poly, pos, &closest[1]))
{
if (posOverPoly)
*posOverPoly = true;
return;
}
if (posOverPoly)
*posOverPoly = false;
// Off-mesh connections don't have detail polygons.
if (poly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION)
{
const float* v0 = &tile->verts[poly->verts[0]*3];
const float* v1 = &tile->verts[poly->verts[1]*3];
float t;
dtDistancePtSegSqr2D(pos, v0, v1, t);
dtVlerp(closest, v0, v1, t);
return;
}
// Outside poly that is not an offmesh connection.
closestPointOnDetailEdges<true>(tile, poly, pos, closest);
} }
dtPolyRef dtNavMesh::findNearestPolyInTile(const dtMeshTile* tile, dtPolyRef dtNavMesh::findNearestPolyInTile(const dtMeshTile* tile,

@ -514,88 +514,14 @@ dtStatus dtNavMeshQuery::findRandomPointAroundCircle(dtPolyRef startRef, const f
dtStatus dtNavMeshQuery::closestPointOnPoly(dtPolyRef ref, const float* pos, float* closest, bool* posOverPoly) const dtStatus dtNavMeshQuery::closestPointOnPoly(dtPolyRef ref, const float* pos, float* closest, bool* posOverPoly) const
{ {
dtAssert(m_nav); dtAssert(m_nav);
const dtMeshTile* tile = 0; if (!m_nav->isValidPolyRef(ref) ||
const dtPoly* poly = 0; !pos || !dtVisfinite(pos) ||
if (dtStatusFailed(m_nav->getTileAndPolyByRef(ref, &tile, &poly))) !closest)
return DT_FAILURE | DT_INVALID_PARAM;
if (!tile)
return DT_FAILURE | DT_INVALID_PARAM;
if (!pos || !dtVisfinite(pos) || !closest)
return DT_FAILURE | DT_INVALID_PARAM;
// Off-mesh connections don't have detail polygons.
if (poly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION)
{ {
const float* v0 = &tile->verts[poly->verts[0]*3]; return DT_FAILURE | DT_INVALID_PARAM;
const float* v1 = &tile->verts[poly->verts[1]*3];
const float d0 = dtVdist(pos, v0);
const float d1 = dtVdist(pos, v1);
const float u = d0 / (d0+d1);
dtVlerp(closest, v0, v1, u);
if (posOverPoly)
*posOverPoly = false;
return DT_SUCCESS;
}
const unsigned int ip = (unsigned int)(poly - tile->polys);
const dtPolyDetail* pd = &tile->detailMeshes[ip];
// Clamp point to be inside the polygon.
float verts[DT_VERTS_PER_POLYGON*3];
float edged[DT_VERTS_PER_POLYGON];
float edget[DT_VERTS_PER_POLYGON];
const int nv = poly->vertCount;
for (int i = 0; i < nv; ++i)
dtVcopy(&verts[i*3], &tile->verts[poly->verts[i]*3]);
dtVcopy(closest, pos);
if (!dtDistancePtPolyEdgesSqr(pos, verts, nv, edged, edget))
{
// Point is outside the polygon, dtClamp to nearest edge.
float dmin = edged[0];
int imin = 0;
for (int i = 1; i < nv; ++i)
{
if (edged[i] < dmin)
{
dmin = edged[i];
imin = i;
}
}
const float* va = &verts[imin*3];
const float* vb = &verts[((imin+1)%nv)*3];
dtVlerp(closest, va, vb, edget[imin]);
if (posOverPoly)
*posOverPoly = false;
}
else
{
if (posOverPoly)
*posOverPoly = true;
}
// Find height at the location.
for (int j = 0; j < pd->triCount; ++j)
{
const unsigned char* t = &tile->detailTris[(pd->triBase+j)*4];
const float* v[3];
for (int k = 0; k < 3; ++k)
{
if (t[k] < poly->vertCount)
v[k] = &tile->verts[poly->verts[t[k]]*3];
else
v[k] = &tile->detailVerts[(pd->vertBase+(t[k]-poly->vertCount))*3];
}
float h;
if (dtClosestHeightPointTriangle(closest, v[0], v[1], v[2], h))
{
closest[1] = h;
break;
}
} }
m_nav->closestPointOnPoly(ref, pos, closest, posOverPoly);
return DT_SUCCESS; return DT_SUCCESS;
} }
@ -662,7 +588,7 @@ dtStatus dtNavMeshQuery::closestPointOnPolyBoundary(dtPolyRef ref, const float*
/// @par /// @par
/// ///
/// Will return #DT_FAILURE if the provided position is outside the xz-bounds /// Will return #DT_FAILURE | DT_INVALID_PARAM if the provided position is outside the xz-bounds
/// of the polygon. /// of the polygon.
/// ///
dtStatus dtNavMeshQuery::getPolyHeight(dtPolyRef ref, const float* pos, float* height) const dtStatus dtNavMeshQuery::getPolyHeight(dtPolyRef ref, const float* pos, float* height) const
@ -677,43 +603,24 @@ dtStatus dtNavMeshQuery::getPolyHeight(dtPolyRef ref, const float* pos, float* h
if (!pos || !dtVisfinite2D(pos)) if (!pos || !dtVisfinite2D(pos))
return DT_FAILURE | DT_INVALID_PARAM; return DT_FAILURE | DT_INVALID_PARAM;
// We used to return success for offmesh connections, but the
// getPolyHeight in DetourNavMesh does not do this, so special
// case it here.
if (poly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION) if (poly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION)
{ {
const float* v0 = &tile->verts[poly->verts[0]*3]; const float* v0 = &tile->verts[poly->verts[0]*3];
const float* v1 = &tile->verts[poly->verts[1]*3]; const float* v1 = &tile->verts[poly->verts[1]*3];
const float d0 = dtVdist2D(pos, v0); float t;
const float d1 = dtVdist2D(pos, v1); dtDistancePtSegSqr2D(pos, v0, v1, t);
const float u = d0 / (d0+d1);
if (height)
*height = v0[1] + (v1[1] - v0[1]) * u;
return DT_SUCCESS;
}
else
{
const unsigned int ip = (unsigned int)(poly - tile->polys);
const dtPolyDetail* pd = &tile->detailMeshes[ip];
for (int j = 0; j < pd->triCount; ++j)
{
const unsigned char* t = &tile->detailTris[(pd->triBase+j)*4];
const float* v[3];
for (int k = 0; k < 3; ++k)
{
if (t[k] < poly->vertCount)
v[k] = &tile->verts[poly->verts[t[k]]*3];
else
v[k] = &tile->detailVerts[(pd->vertBase+(t[k]-poly->vertCount))*3];
}
float h;
if (dtClosestHeightPointTriangle(pos, v[0], v[1], v[2], h))
{
if (height) if (height)
*height = h; *height = v0[1] + (v1[1] - v0[1])*t;
return DT_SUCCESS; return DT_SUCCESS;
} }
}
}
return DT_FAILURE | DT_INVALID_PARAM; return m_nav->getPolyHeight(tile, poly, pos, height)
? DT_SUCCESS
: DT_FAILURE | DT_INVALID_PARAM;
} }
class dtFindNearestPolyQuery : public dtPolyQuery class dtFindNearestPolyQuery : public dtPolyQuery

@ -1141,7 +1141,8 @@ static void getHeightData(rcContext* ctx, const rcCompactHeightfield& chf,
static unsigned char getEdgeFlags(const float* va, const float* vb, static unsigned char getEdgeFlags(const float* va, const float* vb,
const float* vpoly, const int npoly) const float* vpoly, const int npoly)
{ {
// Return true if edge (va,vb) is part of the polygon. // The flag returned by this function matches dtDetailTriEdgeFlags in Detour.
// Figure out if edge (va,vb) is part of the polygon boundary.
static const float thrSqr = rcSqr(0.001f); static const float thrSqr = rcSqr(0.001f);
for (int i = 0, j = npoly-1; i < npoly; j=i++) for (int i = 0, j = npoly-1; i < npoly; j=i++)
{ {

Loading…
Cancel
Save