1
0
Fork 0
mirror of https://github.com/OpenMW/openmw.git synced 2025-01-16 15:29:55 +00:00

Add a precision parameter to format floating point number in stats mode

This commit is contained in:
fredzio 2021-12-01 11:11:02 +01:00 committed by Frederic Chardon
parent 71f020c23b
commit b02560bbae

View file

@ -35,6 +35,8 @@ import termtables
'between Physics Actors and physics_time_taken. Format: --plot <x> <y> <function>.')
@click.option('--stats', type=str, multiple=True,
help='Print table with stats for a given metric containing min, max, mean, median etc.')
@click.option('--precision', type=int,
help='Format floating point numbers with given precision')
@click.option('--timeseries_sum', is_flag=True,
help='Add a graph to timeseries for a sum per frame of all given timeseries metrics.')
@click.option('--commulative_timeseries_sum', is_flag=True,
@ -54,7 +56,7 @@ import termtables
@click.option('--threshold_value', type=float, default=1.05/60,
help='Threshold for hist_over.')
@click.argument('path', type=click.Path(), nargs=-1)
def main(print_keys, timeseries, hist, hist_ratio, stdev_hist, plot, stats,
def main(print_keys, timeseries, hist, hist_ratio, stdev_hist, plot, stats, precision,
timeseries_sum, stats_sum, begin_frame, end_frame, path,
commulative_timeseries, commulative_timeseries_sum, frame_number_name,
hist_threshold, threshold_name, threshold_value):
@ -82,7 +84,7 @@ def main(print_keys, timeseries, hist, hist_ratio, stdev_hist, plot, stats,
if plot:
draw_plots(sources=frames, plots=plot)
if stats:
print_stats(sources=frames, keys=stats, stats_sum=stats_sum)
print_stats(sources=frames, keys=stats, stats_sum=stats_sum, precision=precision)
if hist_threshold:
draw_hist_threshold(sources=frames, keys=hist_threshold, begin_frame=begin_frame,
threshold_name=threshold_name, threshold_value=threshold_value)
@ -242,13 +244,13 @@ def draw_plots(sources, plots):
fig.canvas.set_window_title('plots')
def print_stats(sources, keys, stats_sum):
def print_stats(sources, keys, stats_sum, precision):
stats = list()
for name, frames in sources.items():
for key in keys:
stats.append(make_stats(source=name, key=key, values=filter_not_none(frames[key])))
stats.append(make_stats(source=name, key=key, values=filter_not_none(frames[key]), precision=precision))
if stats_sum:
stats.append(make_stats(source=name, key='sum', values=sum_multiple(frames, keys)))
stats.append(make_stats(source=name, key='sum', values=sum_multiple(frames, keys), precision=precision))
metrics = list(stats[0].keys())
termtables.print(
[list(v.values()) for v in stats],
@ -282,6 +284,10 @@ def filter_not_none(values):
return [v for v in values if v is not None]
def fixed_float(value, precision):
return '{v:.{p}f}'.format(v=value, p=precision) if precision else value
def sum_multiple(frames, keys):
result = collections.Counter()
for key in keys:
@ -292,17 +298,17 @@ def sum_multiple(frames, keys):
return numpy.array([result[k] for k in sorted(result.keys())])
def make_stats(source, key, values):
def make_stats(source, key, values, precision):
return collections.OrderedDict(
source=source,
key=key,
number=len(values),
min=min(values),
max=max(values),
mean=statistics.mean(values),
median=statistics.median(values),
stdev=statistics.stdev(values),
q95=numpy.quantile(values, 0.95),
min=fixed_float(min(values), precision),
max=fixed_float(max(values), precision),
mean=fixed_float(statistics.mean(values), precision),
median=fixed_float(statistics.median(values), precision),
stdev=fixed_float(statistics.stdev(values), precision),
q95=fixed_float(numpy.quantile(values, 0.95), precision),
)