#ifndef COMPONENTS_TERRAIN_STORAGE_H #define COMPONENTS_TERRAIN_STORAGE_H #include #include #include #include #include #include #include #include "defs.hpp" namespace osg { class Image; } namespace Terrain { /// We keep storage of terrain data abstract here since we need different implementations for game and editor /// @note The implementation must be thread safe. class Storage { public: virtual ~Storage() {} public: /// Get bounds of the whole terrain in cell units virtual void getBounds(float& minX, float& maxX, float& minY, float& maxY, ESM::RefId worldspace) = 0; /// Return true if there is land data for this cell /// May be overriden for a faster implementation virtual bool hasData(ESM::ExteriorCellLocation cellLocation) { float dummy; return getMinMaxHeights( 1, osg::Vec2f(cellLocation.mX + 0.5, cellLocation.mY + 0.5), cellLocation.mWorldspace, dummy, dummy); } /// Get the minimum and maximum heights of a terrain region. /// @note Will only be called for chunks with size = minBatchSize, i.e. leafs of the quad tree. /// Larger chunks can simply merge AABB of children. /// @param size size of the chunk in cell units /// @param center center of the chunk in cell units /// @param min min height will be stored here /// @param max max height will be stored here /// @return true if there was data available for this terrain chunk virtual bool getMinMaxHeights( float size, const osg::Vec2f& center, ESM::RefId worldspace, float& min, float& max) = 0; /// Fill vertex buffers for a terrain chunk. /// @note May be called from background threads. Make sure to only call thread-safe functions from here! /// @note returned colors need to be in render-system specific format! Use RenderSystem::convertColourValue. /// @note Vertices should be written in row-major order (a row is defined as parallel to the x-axis). /// The specified positions should be in local space, i.e. relative to the center of the terrain chunk. /// @param lodLevel LOD level, 0 = most detailed /// @param size size of the terrain chunk in cell units /// @param center center of the chunk in cell units /// @param positions buffer to write vertices /// @param normals buffer to write vertex normals /// @param colours buffer to write vertex colours virtual void fillVertexBuffers(int lodLevel, float size, const osg::Vec2f& center, ESM::RefId worldspace, osg::Vec3Array& positions, osg::Vec3Array& normals, osg::Vec4ubArray& colours) = 0; typedef std::vector> ImageVector; /// Create textures holding layer blend values for a terrain chunk. /// @note The terrain chunk shouldn't be larger than one cell since otherwise we might /// have to do a ridiculous amount of different layers. For larger chunks, composite maps should be used. /// @note May be called from background threads. Make sure to only call thread-safe functions from here! /// @param chunkSize size of the terrain chunk in cell units /// @param chunkCenter center of the chunk in cell units /// @param blendmaps created blendmaps will be written here /// @param layerList names of the layer textures used will be written here virtual void getBlendmaps(float chunkSize, const osg::Vec2f& chunkCenter, ImageVector& blendmaps, std::vector& layerList, ESM::RefId worldspace) = 0; virtual float getHeightAt(const osg::Vec3f& worldPos, ESM::RefId worldspace) = 0; /// Get the transformation factor for mapping cell units to world units. virtual float getCellWorldSize(ESM::RefId worldspace) = 0; /// Get the number of vertices on one side for each cell. Should be (power of two)+1 virtual int getCellVertices(ESM::RefId worldspace) = 0; virtual int getBlendmapScale(float chunkSize) = 0; }; } #endif