#if !@lightingMethodFFP
float quickstep(float x)
{
    x = clamp(x, 0.0, 1.0);
    x = 1.0 - x*x;
    x = 1.0 - x*x;
    return x;
}
#endif

#if @lightingMethodUBO

const int mask = int(0xff);
const ivec4 shift = ivec4(int(0), int(8), int(16), int(24));

vec3 unpackRGB(int data)
{
    return vec3( (float(((data >> shift.x) & mask)) / 255.0)
                ,(float(((data >> shift.y) & mask)) / 255.0)
                ,(float(((data >> shift.z) & mask)) / 255.0));
}

vec4 unpackRGBA(int data)
{
    return vec4( (float(((data >> shift.x) & mask)) / 255.0)
                ,(float(((data >> shift.y) & mask)) / 255.0)
                ,(float(((data >> shift.z) & mask)) / 255.0)
                ,(float(((data >> shift.w) & mask)) / 255.0));
}

/* Layout:
packedColors: 8-bit unsigned RGB packed as (diffuse, ambient, specular).
              sign bit is stored in unused alpha component
attenuation: constant, linear, quadratic, light radius (as defined in content)
*/
struct LightData
{
    ivec4 packedColors;
    vec4 position;
    vec4 attenuation;
};

uniform int PointLightIndex[@maxLights];
uniform int PointLightCount;

// Defaults to shared layout. If we ever move to GLSL 140, std140 layout should be considered
uniform LightBufferBinding
{
    LightData LightBuffer[@maxLightsInScene];
};

#elif @lightingMethodPerObjectUniform

/* Layout:
--------------------------------------- -----------
|  pos_x  |  ambi_r  |  diff_r  |  spec_r         |
|  pos_y  |  ambi_g  |  diff_g  |  spec_g         |
|  pos_z  |  ambi_b  |  diff_b  |  spec_b         |
|  att_c  |  att_l   |  att_q   |  radius/spec_a  |
 --------------------------------------------------
*/
uniform mat4 LightBuffer[@maxLights];
uniform int PointLightCount;

#endif

#if !@lightingMethodFFP
float lcalcRadius(int lightIndex)
{
#if @lightingMethodPerObjectUniform
    return @getLight[lightIndex][3].w;
#else
    return @getLight[lightIndex].attenuation.w;
#endif
}
#endif

float lcalcIllumination(int lightIndex, float lightDistance)
{
#if @lightingMethodPerObjectUniform
    float illumination = clamp(1.0 / (@getLight[lightIndex][0].w + @getLight[lightIndex][1].w * lightDistance + @getLight[lightIndex][2].w * lightDistance * lightDistance), 0.0, 1.0);
    return (illumination * (1.0 - quickstep((lightDistance / lcalcRadius(lightIndex)) - 1.0)));
#elif @lightingMethodUBO
    float illumination = clamp(1.0 / (@getLight[lightIndex].attenuation.x + @getLight[lightIndex].attenuation.y * lightDistance + @getLight[lightIndex].attenuation.z * lightDistance * lightDistance), 0.0, 1.0);
    return (illumination * (1.0 - quickstep((lightDistance / lcalcRadius(lightIndex)) - 1.0)));
#else
    return clamp(1.0 / (@getLight[lightIndex].constantAttenuation + @getLight[lightIndex].linearAttenuation * lightDistance + @getLight[lightIndex].quadraticAttenuation * lightDistance * lightDistance), 0.0, 1.0);
#endif
}

vec3 lcalcPosition(int lightIndex)
{
#if @lightingMethodPerObjectUniform
    return @getLight[lightIndex][0].xyz;
#else
    return @getLight[lightIndex].position.xyz;
#endif
}

vec3 lcalcDiffuse(int lightIndex)
{
#if @lightingMethodPerObjectUniform
    return @getLight[lightIndex][2].xyz;
#elif @lightingMethodUBO
    return unpackRGB(@getLight[lightIndex].packedColors.x) * float(@getLight[lightIndex].packedColors.w);
#else
    return @getLight[lightIndex].diffuse.xyz;
#endif
}

vec3 lcalcAmbient(int lightIndex)
{
#if @lightingMethodPerObjectUniform
    return @getLight[lightIndex][1].xyz;
#elif @lightingMethodUBO
    return unpackRGB(@getLight[lightIndex].packedColors.y);
#else
    return @getLight[lightIndex].ambient.xyz;
#endif
}

vec4 lcalcSpecular(int lightIndex)
{
#if @lightingMethodPerObjectUniform
    return @getLight[lightIndex][3];
#elif @lightingMethodUBO
    return unpackRGBA(@getLight[lightIndex].packedColors.z);
#else
    return @getLight[lightIndex].specular;
#endif
}

void clampLightingResult(inout vec3 lighting)
{
#if @clamp
    lighting = clamp(lighting, vec3(0.0), vec3(1.0));
#else
    lighting = max(lighting, 0.0);
#endif
}