#include "bulletnifloader.hpp" #include #include #include #include #include #include #include #include #include #include #include #include namespace { osg::Matrixf getWorldTransform(const Nif::Node& node) { if(node.parent != nullptr) return node.trafo.toMatrix() * getWorldTransform(*node.parent); return node.trafo.toMatrix(); } bool pathFileNameStartsWithX(const std::string& path) { const std::size_t slashpos = path.find_last_of("/\\"); const std::size_t letterPos = slashpos == std::string::npos ? 0 : slashpos + 1; return letterPos < path.size() && (path[letterPos] == 'x' || path[letterPos] == 'X'); } void fillTriangleMesh(btTriangleMesh& mesh, const Nif::NiTriShapeData& data, const osg::Matrixf &transform) { const std::vector &vertices = data.vertices; const std::vector &triangles = data.triangles; mesh.preallocateVertices(static_cast(vertices.size())); mesh.preallocateIndices(static_cast(triangles.size())); for (std::size_t i = 0; i < triangles.size(); i += 3) { mesh.addTriangle( Misc::Convert::toBullet(vertices[triangles[i + 0]] * transform), Misc::Convert::toBullet(vertices[triangles[i + 1]] * transform), Misc::Convert::toBullet(vertices[triangles[i + 2]] * transform) ); } } void fillTriangleMesh(btTriangleMesh& mesh, const Nif::NiTriStripsData& data, const osg::Matrixf &transform) { const std::vector &vertices = data.vertices; const std::vector> &strips = data.strips; mesh.preallocateVertices(static_cast(vertices.size())); int numTriangles = 0; for (const std::vector& strip : strips) { // Each strip with N points contains information about N-2 triangles. if (strip.size() >= 3) numTriangles += static_cast(strip.size()-2); } mesh.preallocateIndices(static_cast(numTriangles)); // It's triangulation time. Totally not a NifSkope spell ripoff. for (const std::vector& strip : strips) { // Can't make a triangle from less than 3 points. if (strip.size() < 3) continue; unsigned short a = strip[0], b = strip[0], c = strip[1]; for (size_t i = 2; i < strip.size(); i++) { a = b; b = c; c = strip[i]; if (a != b && b != c && a != c) { if (i%2==0) { mesh.addTriangle( Misc::Convert::toBullet(vertices[a] * transform), Misc::Convert::toBullet(vertices[b] * transform), Misc::Convert::toBullet(vertices[c] * transform) ); } else { mesh.addTriangle( Misc::Convert::toBullet(vertices[a] * transform), Misc::Convert::toBullet(vertices[c] * transform), Misc::Convert::toBullet(vertices[b] * transform) ); } } } } } template auto handleNiGeometry(const Nif::NiGeometry& geometry, Function&& function) -> decltype(function(static_cast(geometry.data.get()))) { if (geometry.recType == Nif::RC_NiTriShape || geometry.recType == Nif::RC_BSLODTriShape) { if (geometry.data->recType != Nif::RC_NiTriShapeData) return {}; auto data = static_cast(geometry.data.getPtr()); if (data->triangles.empty()) return {}; return function(static_cast(*data)); } if (geometry.recType == Nif::RC_NiTriStrips) { if (geometry.data->recType != Nif::RC_NiTriStripsData) return {}; auto data = static_cast(geometry.data.getPtr()); if (data->strips.empty()) return {}; return function(static_cast(*data)); } return {}; } std::monostate fillTriangleMesh(std::unique_ptr& mesh, const Nif::NiGeometry& geometry, const osg::Matrixf &transform) { return handleNiGeometry(geometry, [&] (const auto& data) { if (mesh == nullptr) mesh.reset(new btTriangleMesh(false)); fillTriangleMesh(*mesh, data, transform); return std::monostate {}; }); } std::unique_ptr makeChildMesh(const Nif::NiGeometry& geometry) { return handleNiGeometry(geometry, [&] (const auto& data) { std::unique_ptr mesh(new btTriangleMesh); fillTriangleMesh(*mesh, data, osg::Matrixf()); return mesh; }); } } namespace NifBullet { osg::ref_ptr BulletNifLoader::load(const Nif::File& nif) { mShape = new Resource::BulletShape; mCompoundShape.reset(); mStaticMesh.reset(); mAvoidStaticMesh.reset(); mShape->mFileHash = nif.getHash(); const size_t numRoots = nif.numRoots(); std::vector roots; for (size_t i = 0; i < numRoots; ++i) { const Nif::Record* r = nif.getRoot(i); if (!r) continue; const Nif::Node* node = dynamic_cast(r); if (node) roots.emplace_back(node); } const std::string filename = nif.getFilename(); mShape->mFileName = filename; if (roots.empty()) { warn("Found no root nodes in NIF file " + filename); return mShape; } // Try to find a valid bounding box first. If one's found for any root node, use that. for (const Nif::Node* node : roots) { if (findBoundingBox(*node, filename)) { const btVector3 extents = Misc::Convert::toBullet(mShape->mCollisionBox.mExtents); const btVector3 center = Misc::Convert::toBullet(mShape->mCollisionBox.mCenter); std::unique_ptr compound (new btCompoundShape); std::unique_ptr boxShape(new btBoxShape(extents)); btTransform transform = btTransform::getIdentity(); transform.setOrigin(center); compound->addChildShape(transform, boxShape.get()); boxShape.release(); mShape->mCollisionShape.reset(compound.release()); return mShape; } } // files with the name convention xmodel.nif usually have keyframes stored in a separate file xmodel.kf (see Animation::addAnimSource). // assume all nodes in the file will be animated const bool isAnimated = pathFileNameStartsWithX(filename); // If there's no bounding box, we'll have to generate a Bullet collision shape // from the collision data present in every root node. for (const Nif::Node* node : roots) { bool autogenerated = hasAutoGeneratedCollision(*node); handleNode(filename, *node, 0, autogenerated, isAnimated, autogenerated); } if (mCompoundShape) { if (mStaticMesh != nullptr && mStaticMesh->getNumTriangles() > 0) { btTransform trans; trans.setIdentity(); std::unique_ptr child(new Resource::TriangleMeshShape(mStaticMesh.get(), true)); mCompoundShape->addChildShape(trans, child.get()); child.release(); mStaticMesh.release(); } mShape->mCollisionShape = std::move(mCompoundShape); } else if (mStaticMesh != nullptr && mStaticMesh->getNumTriangles() > 0) { mShape->mCollisionShape.reset(new Resource::TriangleMeshShape(mStaticMesh.get(), true)); mStaticMesh.release(); } if (mAvoidStaticMesh != nullptr && mAvoidStaticMesh->getNumTriangles() > 0) { mShape->mAvoidCollisionShape.reset(new Resource::TriangleMeshShape(mAvoidStaticMesh.get(), false)); mAvoidStaticMesh.release(); } return mShape; } // Find a boundingBox in the node hierarchy. // Return: use bounding box for collision? bool BulletNifLoader::findBoundingBox(const Nif::Node& node, const std::string& filename) { if (node.hasBounds) { unsigned int type = node.bounds.type; switch (type) { case Nif::NiBoundingVolume::Type::BOX_BV: mShape->mCollisionBox.mExtents = node.bounds.box.extents; mShape->mCollisionBox.mCenter = node.bounds.box.center; break; default: { std::stringstream warning; warning << "Unsupported NiBoundingVolume type " << type << " in node " << node.recIndex; warning << " in file " << filename; warn(warning.str()); } } if (node.flags & Nif::NiNode::Flag_BBoxCollision) { return true; } } if (const Nif::NiNode *ninode = dynamic_cast(&node)) { const Nif::NodeList &list = ninode->children; for(size_t i = 0;i < list.length();i++) { if(!list[i].empty()) { if (findBoundingBox(list[i].get(), filename)) return true; } } } return false; } bool BulletNifLoader::hasAutoGeneratedCollision(const Nif::Node& rootNode) { if (const Nif::NiNode* ninode = dynamic_cast(&rootNode)) { const Nif::NodeList &list = ninode->children; for(size_t i = 0;i < list.length();i++) { if(!list[i].empty()) { if(list[i].getPtr()->recType == Nif::RC_RootCollisionNode) return false; } } } return true; } void BulletNifLoader::handleNode(const std::string& fileName, const Nif::Node& node, int flags, bool isCollisionNode, bool isAnimated, bool autogenerated, bool avoid) { // TODO: allow on-the fly collision switching via toggling this flag if (node.recType == Nif::RC_NiCollisionSwitch && !(node.flags & Nif::NiNode::Flag_ActiveCollision)) return; // Accumulate the flags from all the child nodes. This works for all // the flags we currently use, at least. flags |= node.flags; if (!node.controller.empty() && node.controller->recType == Nif::RC_NiKeyframeController && (node.controller->flags & Nif::NiNode::ControllerFlag_Active)) isAnimated = true; isCollisionNode = isCollisionNode || (node.recType == Nif::RC_RootCollisionNode); // Don't collide with AvoidNode shapes avoid = avoid || (node.recType == Nif::RC_AvoidNode); // We encountered a RootCollisionNode inside autogenerated mesh. It is not right. if (node.recType == Nif::RC_RootCollisionNode && autogenerated) Log(Debug::Info) << "RootCollisionNode is not attached to the root node in " << fileName << ". Treating it as a common NiTriShape."; // Check for extra data for (Nif::ExtraPtr e = node.extra; !e.empty(); e = e->next) { if (e->recType == Nif::RC_NiStringExtraData) { // String markers may contain important information // affecting the entire subtree of this node Nif::NiStringExtraData *sd = (Nif::NiStringExtraData*)e.getPtr(); if (Misc::StringUtils::ciCompareLen(sd->string, "NC", 2) == 0) { // No collision. Use an internal flag setting to mark this. flags |= 0x800; } else if (sd->string == "MRK" && autogenerated) { // Marker can still have collision if the model explicitely specifies it via a RootCollisionNode. return; } } } if (isCollisionNode) { // NOTE: a trishape with hasBounds=true, but no BBoxCollision flag should NOT go through handleNiTriShape! // It must be ignored completely. // (occurs in tr_ex_imp_wall_arch_04.nif) if(!node.hasBounds && (node.recType == Nif::RC_NiTriShape || node.recType == Nif::RC_NiTriStrips || node.recType == Nif::RC_BSLODTriShape)) { handleNiTriShape(node, flags, getWorldTransform(node), isAnimated, avoid); } } // For NiNodes, loop through children if (const Nif::NiNode *ninode = dynamic_cast(&node)) { const Nif::NodeList &list = ninode->children; for(size_t i = 0;i < list.length();i++) { if (list[i].empty()) continue; assert(list[i].get().parent == &node); handleNode(fileName, list[i].get(), flags, isCollisionNode, isAnimated, autogenerated, avoid); } } } void BulletNifLoader::handleNiTriShape(const Nif::Node& nifNode, int flags, const osg::Matrixf &transform, bool isAnimated, bool avoid) { // If the object was marked "NCO" earlier, it shouldn't collide with // anything. So don't do anything. if ((flags & 0x800)) return; handleNiTriShape(static_cast(nifNode), transform, isAnimated, avoid); } void BulletNifLoader::handleNiTriShape(const Nif::NiGeometry& niGeometry, const osg::Matrixf &transform, bool isAnimated, bool avoid) { if (niGeometry.data.empty() || niGeometry.data->vertices.empty()) return; if (!niGeometry.skin.empty()) isAnimated = false; if (isAnimated) { std::unique_ptr childMesh = makeChildMesh(niGeometry); if (childMesh == nullptr || childMesh->getNumTriangles() == 0) return; if (!mCompoundShape) mCompoundShape.reset(new btCompoundShape); std::unique_ptr childShape(new Resource::TriangleMeshShape(childMesh.get(), true)); childMesh.release(); float scale = niGeometry.trafo.scale; for (const Nif::Node* parent = niGeometry.parent; parent != nullptr; parent = parent->parent) scale *= parent->trafo.scale; osg::Quat q = transform.getRotate(); osg::Vec3f v = transform.getTrans(); childShape->setLocalScaling(btVector3(scale, scale, scale)); btTransform trans(btQuaternion(q.x(), q.y(), q.z(), q.w()), btVector3(v.x(), v.y(), v.z())); mShape->mAnimatedShapes.emplace(niGeometry.recIndex, mCompoundShape->getNumChildShapes()); mCompoundShape->addChildShape(trans, childShape.get()); childShape.release(); } else if (avoid) fillTriangleMesh(mAvoidStaticMesh, niGeometry, transform); else fillTriangleMesh(mStaticMesh, niGeometry, transform); } } // namespace NifBullet