#ifndef MISC_MATHUTIL_H #define MISC_MATHUTIL_H #include #include #include #include #include #include namespace Misc { /// Normalizes given angle to the range [-PI, PI]. E.g. PI*3/2 -> -PI/2. inline double normalizeAngle(double angle) { double fullTurns = angle / (2 * osg::PI) + 0.5; return (fullTurns - floor(fullTurns) - 0.5) * (2 * osg::PI); } /// Rotates given 2d vector counterclockwise. Angle is in radians. inline osg::Vec2f rotateVec2f(osg::Vec2f vec, float angle) { float s = std::sin(angle); float c = std::cos(angle); return osg::Vec2f(vec.x() * c + vec.y() * -s, vec.x() * s + vec.y() * c); } inline osg::Vec3f toEulerAnglesXZ(osg::Vec3f forward) { float x = -asin(forward.z()); float z = atan2(forward.x(), forward.y()); return osg::Vec3f(x, 0, z); } inline osg::Vec3f toEulerAnglesXZ(osg::Quat quat) { return toEulerAnglesXZ(quat * osg::Vec3f(0, 1, 0)); } inline osg::Vec3f toEulerAnglesXZ(osg::Matrixf m) { osg::Vec3f forward(m(1, 0), m(1, 1), m(1, 2)); forward.normalize(); return toEulerAnglesXZ(forward); } inline osg::Vec3f toEulerAnglesZYX(osg::Vec3f forward, osg::Vec3f up) { float y = -asin(up.x()); float x = atan2(up.y(), up.z()); osg::Vec3f forwardZ = (osg::Quat(x, osg::Vec3f(1, 0, 0)) * osg::Quat(y, osg::Vec3f(0, 1, 0))) * forward; float z = atan2(forwardZ.x(), forwardZ.y()); return osg::Vec3f(x, y, z); } inline osg::Vec3f toEulerAnglesZYX(osg::Quat quat) { return toEulerAnglesZYX(quat * osg::Vec3f(0, 1, 0), quat * osg::Vec3f(0, 0, 1)); } inline osg::Vec3f toEulerAnglesZYX(osg::Matrixf m) { osg::Vec3f forward(m(1, 0), m(1, 1), m(1, 2)); osg::Vec3f up(m(2, 0), m(2, 1), m(2, 2)); forward.normalize(); up.normalize(); return toEulerAnglesZYX(forward, up); } template bool isPowerOfTwo(T x) { static_assert(std::is_integral_v); return ((x > 0) && ((x & (x - 1)) == 0)); } inline int nextPowerOfTwo(int v) { if (isPowerOfTwo(v)) return v; int depth = 0; while (v) { v >>= 1; depth++; } return 1 << depth; } } #endif