You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
openmw/extern/sol3/sol/usertype_proxy.hpp

188 lines
5.8 KiB
C++

// sol2
// The MIT License (MIT)
// Copyright (c) 2013-2021 Rapptz, ThePhD and contributors
// Permission is hereby granted, free of charge, to any person obtaining a copy of
// this software and associated documentation files (the "Software"), to deal in
// the Software without restriction, including without limitation the rights to
// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
// the Software, and to permit persons to whom the Software is furnished to do so,
// subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#ifndef SOL_USERTYPE_PROXY_HPP
#define SOL_USERTYPE_PROXY_HPP
#include <sol/traits.hpp>
#include <sol/function.hpp>
#include <sol/protected_function.hpp>
#include <sol/proxy_base.hpp>
namespace sol {
template <typename Table, typename Key>
struct usertype_proxy : public proxy_base<usertype_proxy<Table, Key>> {
private:
using key_type = detail::proxy_key_t<Key>;
template <typename T, std::size_t... I>
decltype(auto) tuple_get(std::index_sequence<I...>) const& {
return tbl.template traverse_get<T>(std::get<I>(key)...);
}
template <typename T, std::size_t... I>
decltype(auto) tuple_get(std::index_sequence<I...>) && {
return tbl.template traverse_get<T>(std::get<I>(std::move(key))...);
}
template <std::size_t... I, typename T>
void tuple_set(std::index_sequence<I...>, T&& value) & {
if constexpr (sizeof...(I) > 1) {
tbl.traverse_set(std::get<I>(key)..., std::forward<T>(value));
}
else {
tbl.set(std::get<I>(key)..., std::forward<T>(value));
}
}
template <std::size_t... I, typename T>
void tuple_set(std::index_sequence<I...>, T&& value) && {
if constexpr (sizeof...(I) > 1) {
tbl.traverse_set(std::get<I>(std::move(key))..., std::forward<T>(value));
}
else {
tbl.set(std::get<I>(std::move(key))..., std::forward<T>(value));
}
}
public:
Table tbl;
key_type key;
template <typename T>
usertype_proxy(Table table, T&& k) : tbl(table), key(std::forward<T>(k)) {
}
template <typename T>
usertype_proxy& set(T&& item) & {
using idx_seq = std::make_index_sequence<std::tuple_size_v<meta::unqualified_t<key_type>>>;
tuple_set(idx_seq(), std::forward<T>(item));
return *this;
}
template <typename T>
usertype_proxy&& set(T&& item) && {
using idx_seq = std::make_index_sequence<std::tuple_size_v<meta::unqualified_t<key_type>>>;
std::move(*this).tuple_set(idx_seq(), std::forward<T>(item));
return std::move(*this);
}
template <typename T>
usertype_proxy& operator=(T&& other) & {
return set(std::forward<T>(other));
}
template <typename T>
usertype_proxy&& operator=(T&& other) && {
return std::move(*this).set(std::forward<T>(other));
}
template <typename T>
usertype_proxy& operator=(std::initializer_list<T> other) & {
return set(std::move(other));
}
template <typename T>
usertype_proxy&& operator=(std::initializer_list<T> other) && {
return std::move(*this).set(std::move(other));
}
template <typename T>
decltype(auto) get() const& {
using idx_seq = std::make_index_sequence<std::tuple_size_v<meta::unqualified_t<key_type>>>;
return tuple_get<T>(idx_seq());
}
template <typename T>
decltype(auto) get() && {
using idx_seq = std::make_index_sequence<std::tuple_size_v<meta::unqualified_t<key_type>>>;
return std::move(*this).template tuple_get<T>(idx_seq());
}
template <typename K>
decltype(auto) operator[](K&& k) const& {
auto keys = meta::tuplefy(key, std::forward<K>(k));
return usertype_proxy<Table, decltype(keys)>(tbl, std::move(keys));
}
template <typename K>
decltype(auto) operator[](K&& k) & {
auto keys = meta::tuplefy(key, std::forward<K>(k));
return usertype_proxy<Table, decltype(keys)>(tbl, std::move(keys));
}
template <typename K>
decltype(auto) operator[](K&& k) && {
auto keys = meta::tuplefy(std::move(key), std::forward<K>(k));
return usertype_proxy<Table, decltype(keys)>(tbl, std::move(keys));
}
template <typename... Ret, typename... Args>
decltype(auto) call(Args&&... args) {
#if !defined(__clang__) && defined(_MSC_FULL_VER) && _MSC_FULL_VER >= 191200000
// MSVC is ass sometimes
return get<function>().call<Ret...>(std::forward<Args>(args)...);
#else
return get<function>().template call<Ret...>(std::forward<Args>(args)...);
#endif
}
template <typename... Args>
decltype(auto) operator()(Args&&... args) {
return call<>(std::forward<Args>(args)...);
}
bool valid() const {
auto pp = stack::push_pop(tbl);
auto p = stack::probe_get_field<std::is_same<meta::unqualified_t<Table>, global_table>::value>(lua_state(), key, lua_gettop(lua_state()));
lua_pop(lua_state(), p.levels);
return p;
}
int push() const noexcept {
return push(this->lua_state());
}
int push(lua_State* L) const noexcept {
return get<reference>().push(L);
}
type get_type() const {
type t = type::none;
auto pp = stack::push_pop(tbl);
auto p = stack::probe_get_field<std::is_same<meta::unqualified_t<Table>, global_table>::value>(lua_state(), key, lua_gettop(lua_state()));
if (p) {
t = type_of(lua_state(), -1);
}
lua_pop(lua_state(), p.levels);
return t;
}
lua_State* lua_state() const {
return tbl.lua_state();
}
};
} // namespace sol
#endif // SOL_USERTYPE_PROXY_HPP