You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
openmw/components/nifosg/nifloader.cpp

2948 lines
139 KiB
C++

#include "nifloader.hpp"
#include <mutex>
#include <string_view>
#include <osg/Array>
#include <osg/Geometry>
#include <osg/LOD>
#include <osg/Matrixf>
#include <osg/Sequence>
#include <osg/Switch>
#include <osg/TexGen>
#include <osg/TexMat>
#include <osg/ValueObject>
// resource
#include <components/debug/debuglog.hpp>
#include <components/misc/constants.hpp>
#include <components/misc/osguservalues.hpp>
#include <components/misc/resourcehelpers.hpp>
#include <components/misc/strings/algorithm.hpp>
#include <components/misc/strings/lower.hpp>
#include <components/nif/parent.hpp>
#include <components/resource/bgsmfilemanager.hpp>
#include <components/resource/imagemanager.hpp>
// particle
#include <osgParticle/BoxPlacer>
#include <osgParticle/ConstantRateCounter>
#include <osgParticle/ModularProgram>
#include <osgParticle/ParticleSystem>
#include <osgParticle/ParticleSystemUpdater>
#include <osg/AlphaFunc>
#include <osg/BlendFunc>
#include <osg/Depth>
#include <osg/FrontFace>
#include <osg/Material>
#include <osg/PolygonMode>
#include <osg/PolygonOffset>
#include <osg/Stencil>
#include <osg/TexEnv>
#include <osg/TexEnvCombine>
#include <osg/Texture2D>
#include <components/bgsm/file.hpp>
#include <components/nif/effect.hpp>
#include <components/nif/exception.hpp>
#include <components/nif/extra.hpp>
#include <components/nif/niffile.hpp>
#include <components/nif/node.hpp>
#include <components/nif/particle.hpp>
#include <components/nif/property.hpp>
#include <components/nif/texture.hpp>
#include <components/sceneutil/depth.hpp>
#include <components/sceneutil/extradata.hpp>
#include <components/sceneutil/morphgeometry.hpp>
#include <components/sceneutil/riggeometry.hpp>
#include <components/sceneutil/skeleton.hpp>
#include <components/sceneutil/texturetype.hpp>
#include "fog.hpp"
#include "matrixtransform.hpp"
#include "particle.hpp"
namespace
{
struct DisableOptimizer : osg::NodeVisitor
{
DisableOptimizer(osg::NodeVisitor::TraversalMode mode = TRAVERSE_ALL_CHILDREN)
: osg::NodeVisitor(mode)
{
}
void apply(osg::Node& node) override
{
node.setDataVariance(osg::Object::DYNAMIC);
traverse(node);
}
void apply(osg::Drawable& node) override { traverse(node); }
};
void getAllNiNodes(const Nif::NiAVObject* node, std::vector<int>& outIndices)
{
if (const Nif::NiNode* ninode = dynamic_cast<const Nif::NiNode*>(node))
{
outIndices.push_back(ninode->recIndex);
for (const auto& child : ninode->mChildren)
if (!child.empty())
getAllNiNodes(child.getPtr(), outIndices);
}
}
bool isTypeNiGeometry(int type)
{
switch (type)
{
case Nif::RC_NiTriShape:
case Nif::RC_NiTriStrips:
case Nif::RC_NiLines:
case Nif::RC_BSLODTriShape:
case Nif::RC_BSSegmentedTriShape:
return true;
}
return false;
}
bool isTypeBSGeometry(int type)
{
switch (type)
{
case Nif::RC_BSTriShape:
case Nif::RC_BSDynamicTriShape:
case Nif::RC_BSMeshLODTriShape:
case Nif::RC_BSSubIndexTriShape:
return true;
}
return false;
}
// Collect all properties affecting the given drawable that should be handled on drawable basis rather than on the
// node hierarchy above it.
void collectDrawableProperties(
const Nif::NiAVObject* nifNode, const Nif::Parent* parent, std::vector<const Nif::NiProperty*>& out)
{
if (parent != nullptr)
collectDrawableProperties(&parent->mNiNode, parent->mParent, out);
for (const auto& property : nifNode->mProperties)
{
if (!property.empty())
{
switch (property->recType)
{
case Nif::RC_NiMaterialProperty:
case Nif::RC_NiVertexColorProperty:
case Nif::RC_NiSpecularProperty:
case Nif::RC_NiAlphaProperty:
out.push_back(property.getPtr());
break;
default:
break;
}
}
}
}
// NodeCallback used to have a node always oriented towards the camera. The node can have translation and scale
// set just like a regular MatrixTransform, but the rotation set will be overridden in order to face the camera.
class BillboardCallback : public SceneUtil::NodeCallback<BillboardCallback, osg::Node*, osgUtil::CullVisitor*>
{
public:
BillboardCallback() {}
BillboardCallback(const BillboardCallback& copy, const osg::CopyOp& copyop)
: SceneUtil::NodeCallback<BillboardCallback, osg::Node*, osgUtil::CullVisitor*>(copy, copyop)
{
}
META_Object(NifOsg, BillboardCallback)
void operator()(osg::Node* node, osgUtil::CullVisitor* cv)
{
osg::Matrix modelView = *cv->getModelViewMatrix();
// attempt to preserve scale
float mag[3];
for (int i = 0; i < 3; ++i)
{
mag[i] = std::sqrt(modelView(0, i) * modelView(0, i) + modelView(1, i) * modelView(1, i)
+ modelView(2, i) * modelView(2, i));
}
modelView.setRotate(osg::Quat());
modelView(0, 0) = mag[0];
modelView(1, 1) = mag[1];
modelView(2, 2) = mag[2];
cv->pushModelViewMatrix(new osg::RefMatrix(modelView), osg::Transform::RELATIVE_RF);
traverse(node, cv);
cv->popModelViewMatrix();
}
};
void extractTextKeys(const Nif::NiTextKeyExtraData* tk, SceneUtil::TextKeyMap& textkeys)
{
for (const Nif::NiTextKeyExtraData::TextKey& key : tk->mList)
{
std::vector<std::string> results;
Misc::StringUtils::split(key.mText, results, "\r\n");
for (std::string& result : results)
{
Misc::StringUtils::trim(result);
Misc::StringUtils::lowerCaseInPlace(result);
if (!result.empty())
textkeys.emplace(key.mTime, std::move(result));
}
}
}
}
namespace NifOsg
{
bool Loader::sShowMarkers = false;
void Loader::setShowMarkers(bool show)
{
sShowMarkers = show;
}
bool Loader::getShowMarkers()
{
return sShowMarkers;
}
unsigned int Loader::sHiddenNodeMask = 0;
void Loader::setHiddenNodeMask(unsigned int mask)
{
sHiddenNodeMask = mask;
}
unsigned int Loader::getHiddenNodeMask()
{
return sHiddenNodeMask;
}
unsigned int Loader::sIntersectionDisabledNodeMask = ~0u;
void Loader::setIntersectionDisabledNodeMask(unsigned int mask)
{
sIntersectionDisabledNodeMask = mask;
}
unsigned int Loader::getIntersectionDisabledNodeMask()
{
return sIntersectionDisabledNodeMask;
}
class LoaderImpl
{
public:
/// @param filename used for warning messages.
LoaderImpl(const std::filesystem::path& filename, unsigned int ver, unsigned int userver, unsigned int bethver)
: mFilename(filename)
, mVersion(ver)
, mUserVersion(userver)
, mBethVersion(bethver)
{
}
std::filesystem::path mFilename;
unsigned int mVersion, mUserVersion, mBethVersion;
Resource::BgsmFileManager* mMaterialManager{ nullptr };
Resource::ImageManager* mImageManager{ nullptr };
size_t mFirstRootTextureIndex{ ~0u };
bool mFoundFirstRootTexturingProperty = false;
bool mHasNightDayLabel = false;
bool mHasHerbalismLabel = false;
bool mHasStencilProperty = false;
const Nif::NiSortAdjustNode* mPushedSorter = nullptr;
const Nif::NiSortAdjustNode* mLastAppliedNoInheritSorter = nullptr;
// This is used to queue emitters that weren't attached to their node yet.
std::vector<std::pair<size_t, osg::ref_ptr<Emitter>>> mEmitterQueue;
void loadKf(Nif::FileView nif, SceneUtil::KeyframeHolder& target) const
{
const Nif::NiSequenceStreamHelper* seq = nullptr;
const size_t numRoots = nif.numRoots();
for (size_t i = 0; i < numRoots; ++i)
{
const Nif::Record* r = nif.getRoot(i);
if (r && r->recType == Nif::RC_NiSequenceStreamHelper)
{
seq = static_cast<const Nif::NiSequenceStreamHelper*>(r);
break;
}
}
if (!seq)
{
Log(Debug::Warning) << "NIFFile Warning: Found no NiSequenceStreamHelper root record. File: "
<< nif.getFilename();
return;
}
Nif::ExtraList extraList = seq->getExtraList();
if (extraList.empty())
{
Log(Debug::Warning) << "NIFFile Warning: NiSequenceStreamHelper has no text keys. File: "
<< nif.getFilename();
return;
}
if (extraList[0]->recType != Nif::RC_NiTextKeyExtraData)
{
Log(Debug::Warning) << "NIFFile Warning: First extra data was not a NiTextKeyExtraData, but a "
<< std::string_view(extraList[0]->recName) << ". File: " << nif.getFilename();
return;
}
auto textKeyExtraData = static_cast<const Nif::NiTextKeyExtraData*>(extraList[0].getPtr());
extractTextKeys(textKeyExtraData, target.mTextKeys);
Nif::NiTimeControllerPtr ctrl = seq->mController;
for (size_t i = 1; i < extraList.size() && !ctrl.empty(); i++, (ctrl = ctrl->mNext))
{
Nif::ExtraPtr extra = extraList[i];
if (extra->recType != Nif::RC_NiStringExtraData || ctrl->recType != Nif::RC_NiKeyframeController)
{
Log(Debug::Warning) << "NIFFile Warning: Unexpected extra data " << extra->recName
<< " with controller " << ctrl->recName << ". File: " << nif.getFilename();
continue;
}
// Vanilla seems to ignore the "active" flag for NiKeyframeController,
// so we don't want to skip inactive controllers here.
const Nif::NiStringExtraData* strdata = static_cast<const Nif::NiStringExtraData*>(extra.getPtr());
const Nif::NiKeyframeController* key = static_cast<const Nif::NiKeyframeController*>(ctrl.getPtr());
if (key->mData.empty() && key->mInterpolator.empty())
continue;
if (!key->mInterpolator.empty() && key->mInterpolator->recType != Nif::RC_NiTransformInterpolator)
{
Log(Debug::Error) << "Unsupported interpolator type for NiKeyframeController " << key->recIndex
<< " in " << mFilename;
continue;
}
osg::ref_ptr<SceneUtil::KeyframeController> callback = new NifOsg::KeyframeController(key);
setupController(key, callback, /*animflags*/ 0);
if (!target.mKeyframeControllers.emplace(strdata->mData, callback).second)
Log(Debug::Verbose) << "Controller " << strdata->mData << " present more than once in "
<< nif.getFilename() << ", ignoring later version";
}
}
struct HandleNodeArgs
{
unsigned int mNifVersion;
SceneUtil::TextKeyMap* mTextKeys;
std::vector<unsigned int> mBoundTextures = {};
int mAnimFlags = 0;
bool mSkipMeshes = false;
bool mHasMarkers = false;
bool mHasAnimatedParents = false;
osg::Node* mRootNode = nullptr;
};
osg::ref_ptr<osg::Node> load(Nif::FileView nif)
{
const size_t numRoots = nif.numRoots();
std::vector<const Nif::NiAVObject*> roots;
for (size_t i = 0; i < numRoots; ++i)
{
const Nif::Record* r = nif.getRoot(i);
if (!r)
continue;
const Nif::NiAVObject* nifNode = dynamic_cast<const Nif::NiAVObject*>(r);
if (nifNode)
roots.emplace_back(nifNode);
}
if (roots.empty())
throw Nif::Exception("Found no root nodes", nif.getFilename());
osg::ref_ptr<SceneUtil::TextKeyMapHolder> textkeys(new SceneUtil::TextKeyMapHolder);
osg::ref_ptr<osg::Group> created(new osg::Group);
created->setDataVariance(osg::Object::STATIC);
for (const Nif::NiAVObject* root : roots)
{
auto node = handleNode(
root, nullptr, nullptr, { .mNifVersion = nif.getVersion(), .mTextKeys = &textkeys->mTextKeys });
created->addChild(node);
}
if (mHasNightDayLabel)
created->getOrCreateUserDataContainer()->addDescription(Constants::NightDayLabel);
if (mHasHerbalismLabel)
created->getOrCreateUserDataContainer()->addDescription(Constants::HerbalismLabel);
// Attach particle emitters to their nodes which should all be loaded by now.
handleQueuedParticleEmitters(created, nif);
if (nif.getUseSkinning())
{
osg::ref_ptr<SceneUtil::Skeleton> skel = new SceneUtil::Skeleton;
skel->setStateSet(created->getStateSet());
skel->setName(created->getName());
for (unsigned int i = 0; i < created->getNumChildren(); ++i)
skel->addChild(created->getChild(i));
created->removeChildren(0, created->getNumChildren());
created = skel;
}
if (!textkeys->mTextKeys.empty())
created->getOrCreateUserDataContainer()->addUserObject(textkeys);
created->setUserValue(Misc::OsgUserValues::sFileHash, nif.getHash());
return created;
}
void applyNodeProperties(const Nif::NiAVObject* nifNode, osg::Node* applyTo,
SceneUtil::CompositeStateSetUpdater* composite, std::vector<unsigned int>& boundTextures, int animflags)
{
bool hasStencilProperty = false;
for (const auto& property : nifNode->mProperties)
{
if (property.empty())
continue;
if (property.getPtr()->recType == Nif::RC_NiStencilProperty)
{
const Nif::NiStencilProperty* stencilprop
= static_cast<const Nif::NiStencilProperty*>(property.getPtr());
if (stencilprop->mEnabled)
{
hasStencilProperty = true;
break;
}
}
}
for (const auto& property : nifNode->mProperties)
{
if (!property.empty())
{
// Get the lowest numbered recIndex of the NiTexturingProperty root node.
// This is what is overridden when a spell effect "particle texture" is used.
if (nifNode->mParents.empty() && !mFoundFirstRootTexturingProperty
&& property.getPtr()->recType == Nif::RC_NiTexturingProperty)
{
mFirstRootTextureIndex = property.getPtr()->recIndex;
mFoundFirstRootTexturingProperty = true;
}
else if (property.getPtr()->recType == Nif::RC_NiTexturingProperty)
{
if (property.getPtr()->recIndex == mFirstRootTextureIndex)
applyTo->setUserValue("overrideFx", 1);
}
handleProperty(property.getPtr(), applyTo, composite, boundTextures, animflags, hasStencilProperty);
}
}
// NiAlphaProperty is handled as a drawable property
Nif::BSShaderPropertyPtr shaderprop = nullptr;
if (isTypeNiGeometry(nifNode->recType))
shaderprop = static_cast<const Nif::NiGeometry*>(nifNode)->mShaderProperty;
else if (isTypeBSGeometry(nifNode->recType))
shaderprop = static_cast<const Nif::BSTriShape*>(nifNode)->mShaderProperty;
if (!shaderprop.empty())
handleProperty(shaderprop.getPtr(), applyTo, composite, boundTextures, animflags, hasStencilProperty);
}
static void setupController(const Nif::NiTimeController* ctrl, SceneUtil::Controller* toSetup, int animflags)
{
bool autoPlay = animflags & Nif::NiNode::AnimFlag_AutoPlay;
if (autoPlay)
toSetup->setSource(std::make_shared<SceneUtil::FrameTimeSource>());
toSetup->setFunction(std::make_shared<ControllerFunction>(ctrl));
}
static osg::ref_ptr<osg::LOD> handleLodNode(const Nif::NiLODNode* niLodNode)
{
osg::ref_ptr<osg::LOD> lod(new osg::LOD);
lod->setName(niLodNode->mName);
lod->setCenterMode(osg::LOD::USER_DEFINED_CENTER);
lod->setCenter(niLodNode->mLODCenter);
for (unsigned int i = 0; i < niLodNode->mLODLevels.size(); ++i)
{
const Nif::NiLODNode::LODRange& range = niLodNode->mLODLevels[i];
lod->setRange(i, range.mMinRange, range.mMaxRange);
}
lod->setRangeMode(osg::LOD::DISTANCE_FROM_EYE_POINT);
return lod;
}
static osg::ref_ptr<osg::Switch> handleSwitchNode(const Nif::NiSwitchNode* niSwitchNode)
{
osg::ref_ptr<osg::Switch> switchNode(new osg::Switch);
switchNode->setName(niSwitchNode->mName);
switchNode->setNewChildDefaultValue(false);
switchNode->setSingleChildOn(niSwitchNode->mInitialIndex);
return switchNode;
}
static osg::ref_ptr<osg::Sequence> prepareSequenceNode(const Nif::NiAVObject* nifNode)
{
const Nif::NiFltAnimationNode* niFltAnimationNode = static_cast<const Nif::NiFltAnimationNode*>(nifNode);
osg::ref_ptr<osg::Sequence> sequenceNode(new osg::Sequence);
sequenceNode->setName(niFltAnimationNode->mName);
if (!niFltAnimationNode->mChildren.empty())
{
if (niFltAnimationNode->swing())
sequenceNode->setDefaultTime(
niFltAnimationNode->mDuration / (niFltAnimationNode->mChildren.size() * 2));
else
sequenceNode->setDefaultTime(niFltAnimationNode->mDuration / niFltAnimationNode->mChildren.size());
}
return sequenceNode;
}
static void activateSequenceNode(osg::Group* osgNode, const Nif::NiAVObject* nifNode)
{
const Nif::NiFltAnimationNode* niFltAnimationNode = static_cast<const Nif::NiFltAnimationNode*>(nifNode);
osg::Sequence* sequenceNode = static_cast<osg::Sequence*>(osgNode);
if (niFltAnimationNode->swing())
sequenceNode->setInterval(osg::Sequence::SWING, 0, -1);
else
sequenceNode->setInterval(osg::Sequence::LOOP, 0, -1);
sequenceNode->setDuration(1.0f, -1);
sequenceNode->setMode(osg::Sequence::START);
}
osg::ref_ptr<osg::Image> handleSourceTexture(const Nif::NiSourceTexture* st) const
{
if (st)
{
if (st->mExternal)
return getTextureImage(st->mFile);
if (!st->mData.empty())
return handleInternalTexture(st->mData.getPtr());
}
return nullptr;
}
bool handleEffect(const Nif::NiAVObject* nifNode, osg::StateSet* stateset)
{
if (nifNode->recType != Nif::RC_NiTextureEffect)
{
Log(Debug::Info) << "Unhandled effect " << nifNode->recName << " in " << mFilename;
return false;
}
const Nif::NiTextureEffect* textureEffect = static_cast<const Nif::NiTextureEffect*>(nifNode);
if (!textureEffect->mSwitchState)
return false;
if (textureEffect->mTextureType != Nif::NiTextureEffect::TextureType::EnvironmentMap)
{
Log(Debug::Info) << "Unhandled NiTextureEffect type "
<< static_cast<uint32_t>(textureEffect->mTextureType) << " in " << mFilename;
return false;
}
if (textureEffect->mTexture.empty())
{
Log(Debug::Info) << "NiTextureEffect missing source texture in " << mFilename;
return false;
}
osg::ref_ptr<osg::TexGen> texGen(new osg::TexGen);
switch (textureEffect->mCoordGenType)
{
case Nif::NiTextureEffect::CoordGenType::WorldParallel:
texGen->setMode(osg::TexGen::OBJECT_LINEAR);
break;
case Nif::NiTextureEffect::CoordGenType::WorldPerspective:
texGen->setMode(osg::TexGen::EYE_LINEAR);
break;
case Nif::NiTextureEffect::CoordGenType::SphereMap:
texGen->setMode(osg::TexGen::SPHERE_MAP);
break;
default:
Log(Debug::Info) << "Unhandled NiTextureEffect CoordGenType "
<< static_cast<uint32_t>(textureEffect->mCoordGenType) << " in " << mFilename;
return false;
}
const unsigned int uvSet = 0;
const unsigned int texUnit = 3; // FIXME
std::vector<unsigned int> boundTextures;
boundTextures.resize(3); // Dummy vector for attachNiSourceTexture
attachNiSourceTexture("envMap", textureEffect->mTexture.getPtr(), textureEffect->wrapS(),
textureEffect->wrapT(), uvSet, stateset, boundTextures);
stateset->setTextureAttributeAndModes(texUnit, texGen, osg::StateAttribute::ON);
stateset->setTextureAttributeAndModes(texUnit, createEmissiveTexEnv(), osg::StateAttribute::ON);
stateset->addUniform(new osg::Uniform("envMapColor", osg::Vec4f(1, 1, 1, 1)));
return true;
}
// Get a default dataVariance for this node to be used as a hint by optimization (post)routines
osg::ref_ptr<osg::Group> createNode(const Nif::NiAVObject* nifNode)
{
osg::ref_ptr<osg::Group> node;
osg::Object::DataVariance dataVariance = osg::Object::UNSPECIFIED;
switch (nifNode->recType)
{
case Nif::RC_NiBillboardNode:
dataVariance = osg::Object::DYNAMIC;
break;
default:
// The Root node can be created as a Group if no transformation is required.
// This takes advantage of the fact root nodes can't have additional controllers
// loaded from an external .kf file (original engine just throws "can't find node" errors if you
// try).
if (nifNode->mParents.empty() && nifNode->mController.empty() && nifNode->mTransform.isIdentity())
node = new osg::Group;
dataVariance = nifNode->mIsBone ? osg::Object::DYNAMIC : osg::Object::STATIC;
break;
}
if (!node)
node = new NifOsg::MatrixTransform(nifNode->mTransform);
node->setDataVariance(dataVariance);
return node;
}
osg::ref_ptr<osg::Node> handleNode(
const Nif::NiAVObject* nifNode, const Nif::Parent* parent, osg::Group* parentNode, HandleNodeArgs args)
{
if (args.mRootNode && Misc::StringUtils::ciEqual(nifNode->mName, "Bounding Box"))
return nullptr;
osg::ref_ptr<osg::Group> node = createNode(nifNode);
if (nifNode->recType == Nif::RC_NiBillboardNode)
{
node->addCullCallback(new BillboardCallback);
}
node->setName(nifNode->mName);
if (parentNode)
parentNode->addChild(node);
if (!args.mRootNode)
args.mRootNode = node;
// The original NIF record index is used for a variety of features:
// - finding the correct emitter node for a particle system
// - establishing connections to the animated collision shapes, which are handled in a separate loader
// - finding a random child NiNode in NiBspArrayController
node->setUserValue("recIndex", nifNode->recIndex);
for (const auto& e : nifNode->getExtraList())
{
if (e->recType == Nif::RC_NiTextKeyExtraData && args.mTextKeys)
{
const Nif::NiTextKeyExtraData* tk = static_cast<const Nif::NiTextKeyExtraData*>(e.getPtr());
extractTextKeys(tk, *args.mTextKeys);
}
else if (e->recType == Nif::RC_NiStringExtraData)
{
const Nif::NiStringExtraData* sd = static_cast<const Nif::NiStringExtraData*>(e.getPtr());
constexpr std::string_view extraDataIdentifer = "omw:data";
// String markers may contain important information
// affecting the entire subtree of this obj
if (sd->mData == "MRK")
{
// Marker objects. These meshes are only visible in the editor.
if (!Loader::getShowMarkers() && args.mRootNode == node)
args.mHasMarkers = true;
}
else if (sd->mData == "BONE")
{
node->getOrCreateUserDataContainer()->addDescription("CustomBone");
}
else if (sd->mData.rfind(extraDataIdentifer, 0) == 0)
{
node->setUserValue(
Misc::OsgUserValues::sExtraData, sd->mData.substr(extraDataIdentifer.length()));
}
}
else if (e->recType == Nif::RC_BSXFlags)
{
if (args.mRootNode != node)
continue;
auto bsxFlags = static_cast<const Nif::NiIntegerExtraData*>(e.getPtr());
// Marker objects.
if (!Loader::getShowMarkers() && (bsxFlags->mData & 32))
args.mHasMarkers = true;
}
}
if (nifNode->recType == Nif::RC_NiBSAnimationNode || nifNode->recType == Nif::RC_NiBSParticleNode)
args.mAnimFlags = nifNode->mFlags;
if (nifNode->recType == Nif::RC_NiSortAdjustNode)
{
auto sortNode = static_cast<const Nif::NiSortAdjustNode*>(nifNode);
if (sortNode->mSubSorter.empty())
{
Log(Debug::Warning) << "Empty accumulator found in '" << nifNode->recName << "' node "
<< nifNode->recIndex;
}
else
{
if (mPushedSorter && !mPushedSorter->mSubSorter.empty()
&& mPushedSorter->mMode != Nif::NiSortAdjustNode::SortingMode::Inherit)
mLastAppliedNoInheritSorter = mPushedSorter;
mPushedSorter = sortNode;
}
}
// Hide collision shapes, but don't skip the subgraph
// We still need to animate the hidden bones so the physics system can access them
if (nifNode->recType == Nif::RC_RootCollisionNode)
{
args.mSkipMeshes = true;
node->setNodeMask(Loader::getHiddenNodeMask());
}
// We can skip creating meshes for hidden nodes if they don't have a VisController that
// might make them visible later
if (nifNode->isHidden())
{
bool hasVisController = false;
for (Nif::NiTimeControllerPtr ctrl = nifNode->mController; !ctrl.empty(); ctrl = ctrl->mNext)
{
hasVisController |= (ctrl->recType == Nif::RC_NiVisController);
if (hasVisController)
break;
}
if (!hasVisController)
args.mSkipMeshes = true; // skip child meshes, but still create the child node hierarchy for
// animating collision shapes
node->setNodeMask(Loader::getHiddenNodeMask());
}
if (nifNode->recType == Nif::RC_NiCollisionSwitch && !nifNode->collisionActive())
{
node->setNodeMask(Loader::getIntersectionDisabledNodeMask());
// Don't let the optimizer mess with this node
node->setDataVariance(osg::Object::DYNAMIC);
}
osg::ref_ptr<SceneUtil::CompositeStateSetUpdater> composite = new SceneUtil::CompositeStateSetUpdater;
applyNodeProperties(nifNode, node, composite, args.mBoundTextures, args.mAnimFlags);
const bool isNiGeometry = isTypeNiGeometry(nifNode->recType);
const bool isBSGeometry = isTypeBSGeometry(nifNode->recType);
const bool isGeometry = isNiGeometry || isBSGeometry;
if (isGeometry && !args.mSkipMeshes)
{
bool skip = false;
if (args.mNifVersion <= Nif::NIFFile::NIFVersion::VER_MW)
{
skip = (args.mHasMarkers && Misc::StringUtils::ciStartsWith(nifNode->mName, "tri editormarker"))
|| Misc::StringUtils::ciStartsWith(nifNode->mName, "shadow")
|| Misc::StringUtils::ciStartsWith(nifNode->mName, "tri shadow");
}
else
{
if (args.mHasMarkers)
skip = Misc::StringUtils::ciStartsWith(nifNode->mName, "EditorMarker")
|| Misc::StringUtils::ciStartsWith(nifNode->mName, "VisibilityEditorMarker");
}
if (!skip)
{
if (isNiGeometry)
handleNiGeometry(nifNode, parent, node, composite, args.mBoundTextures, args.mAnimFlags);
else // isBSGeometry
handleBSGeometry(nifNode, parent, node, composite, args.mBoundTextures, args.mAnimFlags);
if (!nifNode->mController.empty())
handleMeshControllers(nifNode, node, composite, args.mBoundTextures, args.mAnimFlags);
}
}
if (nifNode->recType == Nif::RC_NiParticles)
handleParticleSystem(nifNode, parent, node, composite, args.mAnimFlags);
if (composite->getNumControllers() > 0)
{
osg::Callback* cb = composite;
if (composite->getNumControllers() == 1)
cb = composite->getController(0);
if (args.mAnimFlags & Nif::NiNode::AnimFlag_AutoPlay)
node->addCullCallback(cb);
else
node->addUpdateCallback(
cb); // have to remain as UpdateCallback so AssignControllerSourcesVisitor can find it.
}
bool isAnimated = false;
handleNodeControllers(nifNode, node, args.mAnimFlags, isAnimated);
args.mHasAnimatedParents |= isAnimated;
// Make sure empty nodes and animated shapes are not optimized away so the physics system can find them.
if (isAnimated || (args.mHasAnimatedParents && ((args.mSkipMeshes || args.mHasMarkers) || isGeometry)))
node->setDataVariance(osg::Object::DYNAMIC);
// LOD and Switch nodes must be wrapped by a transform (the current node) to support transformations
// properly and we need to attach their children to the osg::LOD/osg::Switch nodes but we must return that
// transform to the caller of handleNode instead of the actual LOD/Switch nodes.
osg::ref_ptr<osg::Group> currentNode = node;
if (nifNode->recType == Nif::RC_NiSwitchNode)
{
const Nif::NiSwitchNode* niSwitchNode = static_cast<const Nif::NiSwitchNode*>(nifNode);
osg::ref_ptr<osg::Switch> switchNode = handleSwitchNode(niSwitchNode);
node->addChild(switchNode);
if (niSwitchNode->mName == Constants::NightDayLabel)
mHasNightDayLabel = true;
else if (niSwitchNode->mName == Constants::HerbalismLabel)
mHasHerbalismLabel = true;
currentNode = switchNode;
}
else if (nifNode->recType == Nif::RC_NiLODNode)
{
const Nif::NiLODNode* niLodNode = static_cast<const Nif::NiLODNode*>(nifNode);
osg::ref_ptr<osg::LOD> lodNode = handleLodNode(niLodNode);
node->addChild(lodNode);
currentNode = lodNode;
}
else if (nifNode->recType == Nif::RC_NiFltAnimationNode)
{
osg::ref_ptr<osg::Sequence> sequenceNode = prepareSequenceNode(nifNode);
node->addChild(sequenceNode);
currentNode = sequenceNode;
}
const Nif::NiNode* ninode = dynamic_cast<const Nif::NiNode*>(nifNode);
if (ninode)
{
const Nif::NiAVObjectList& children = ninode->mChildren;
const Nif::Parent currentParent{ *ninode, parent };
for (const auto& child : children)
if (!child.empty())
handleNode(child.getPtr(), &currentParent, currentNode, args);
// Propagate effects to the the direct subgraph instead of the node itself
// This simulates their "affected node list" which Morrowind appears to replace with the subgraph (?)
// Note that the serialized affected node list is actually unused
for (const auto& effect : ninode->mEffects)
if (!effect.empty())
{
osg::ref_ptr<osg::StateSet> effectStateSet = new osg::StateSet;
if (handleEffect(effect.getPtr(), effectStateSet))
for (unsigned int i = 0; i < currentNode->getNumChildren(); ++i)
currentNode->getChild(i)->getOrCreateStateSet()->merge(*effectStateSet);
}
}
if (nifNode->recType == Nif::RC_NiFltAnimationNode)
activateSequenceNode(currentNode, nifNode);
return node;
}
void handleMeshControllers(const Nif::NiAVObject* nifNode, osg::Node* node,
SceneUtil::CompositeStateSetUpdater* composite, const std::vector<unsigned int>& boundTextures,
int animflags)
{
for (Nif::NiTimeControllerPtr ctrl = nifNode->mController; !ctrl.empty(); ctrl = ctrl->mNext)
{
if (!ctrl->isActive())
continue;
if (ctrl->recType == Nif::RC_NiUVController)
{
const Nif::NiUVController* niuvctrl = static_cast<const Nif::NiUVController*>(ctrl.getPtr());
if (niuvctrl->mData.empty())
continue;
std::set<unsigned int> texUnits;
// UVController should only work for textures which use the given UV Set.
for (unsigned int i = 0; i < boundTextures.size(); ++i)
{
if (boundTextures[i] == niuvctrl->mUvSet)
texUnits.insert(i);
}
osg::ref_ptr<UVController> uvctrl = new UVController(niuvctrl->mData.getPtr(), texUnits);
setupController(niuvctrl, uvctrl, animflags);
composite->addController(uvctrl);
}
}
}
void handleNodeControllers(const Nif::NiAVObject* nifNode, osg::Node* node, int animflags, bool& isAnimated)
{
for (Nif::NiTimeControllerPtr ctrl = nifNode->mController; !ctrl.empty(); ctrl = ctrl->mNext)
{
if (!ctrl->isActive())
continue;
if (ctrl->recType == Nif::RC_NiKeyframeController)
{
const Nif::NiKeyframeController* key = static_cast<const Nif::NiKeyframeController*>(ctrl.getPtr());
if (key->mData.empty() && key->mInterpolator.empty())
continue;
if (!key->mInterpolator.empty() && key->mInterpolator->recType != Nif::RC_NiTransformInterpolator)
{
Log(Debug::Error) << "Unsupported interpolator type for NiKeyframeController " << key->recIndex
<< " in " << mFilename << ": " << key->mInterpolator->recName;
continue;
}
osg::ref_ptr<KeyframeController> callback = new KeyframeController(key);
setupController(key, callback, animflags);
node->addUpdateCallback(callback);
isAnimated = true;
}
else if (ctrl->recType == Nif::RC_NiPathController)
{
const Nif::NiPathController* path = static_cast<const Nif::NiPathController*>(ctrl.getPtr());
if (path->mPathData.empty() || path->mPercentData.empty())
continue;
osg::ref_ptr<PathController> callback(new PathController(path));
setupController(path, callback, animflags);
node->addUpdateCallback(callback);
isAnimated = true;
}
else if (ctrl->recType == Nif::RC_NiVisController)
{
const Nif::NiVisController* visctrl = static_cast<const Nif::NiVisController*>(ctrl.getPtr());
if (visctrl->mData.empty() && visctrl->mInterpolator.empty())
continue;
if (!visctrl->mInterpolator.empty()
&& visctrl->mInterpolator->recType != Nif::RC_NiBoolInterpolator)
{
Log(Debug::Error) << "Unsupported interpolator type for NiVisController " << visctrl->recIndex
<< " in " << mFilename << ": " << visctrl->mInterpolator->recName;
continue;
}
osg::ref_ptr<VisController> callback(new VisController(visctrl, Loader::getHiddenNodeMask()));
setupController(visctrl, callback, animflags);
node->addUpdateCallback(callback);
}
else if (ctrl->recType == Nif::RC_NiRollController)
{
const Nif::NiRollController* rollctrl = static_cast<const Nif::NiRollController*>(ctrl.getPtr());
if (rollctrl->mData.empty() && rollctrl->mInterpolator.empty())
continue;
if (!rollctrl->mInterpolator.empty()
&& rollctrl->mInterpolator->recType != Nif::RC_NiFloatInterpolator)
{
Log(Debug::Error) << "Unsupported interpolator type for NiRollController " << rollctrl->recIndex
<< " in " << mFilename << ": " << rollctrl->mInterpolator->recName;
continue;
}
osg::ref_ptr<RollController> callback = new RollController(rollctrl);
setupController(rollctrl, callback, animflags);
node->addUpdateCallback(callback);
isAnimated = true;
}
else if (ctrl->recType == Nif::RC_NiGeomMorpherController
|| ctrl->recType == Nif::RC_NiParticleSystemController
|| ctrl->recType == Nif::RC_NiBSPArrayController || ctrl->recType == Nif::RC_NiUVController)
{
// These controllers are handled elsewhere
}
else
Log(Debug::Info) << "Unhandled controller " << ctrl->recName << " on node " << nifNode->recIndex
<< " in " << mFilename;
}
}
void handleMaterialControllers(const Nif::NiProperty* materialProperty,
SceneUtil::CompositeStateSetUpdater* composite, int animflags, const osg::Material* baseMaterial)
{
for (Nif::NiTimeControllerPtr ctrl = materialProperty->mController; !ctrl.empty(); ctrl = ctrl->mNext)
{
if (!ctrl->isActive())
continue;
if (ctrl->recType == Nif::RC_NiAlphaController)
{
const Nif::NiAlphaController* alphactrl = static_cast<const Nif::NiAlphaController*>(ctrl.getPtr());
if (alphactrl->mData.empty() && alphactrl->mInterpolator.empty())
continue;
if (!alphactrl->mInterpolator.empty()
&& alphactrl->mInterpolator->recType != Nif::RC_NiFloatInterpolator)
{
Log(Debug::Error)
<< "Unsupported interpolator type for NiAlphaController " << alphactrl->recIndex << " in "
<< mFilename << ": " << alphactrl->mInterpolator->recName;
continue;
}
osg::ref_ptr<AlphaController> osgctrl = new AlphaController(alphactrl, baseMaterial);
setupController(alphactrl, osgctrl, animflags);
composite->addController(osgctrl);
}
else if (ctrl->recType == Nif::RC_NiMaterialColorController)
{
const Nif::NiMaterialColorController* matctrl
= static_cast<const Nif::NiMaterialColorController*>(ctrl.getPtr());
Nif::NiInterpolatorPtr interp = matctrl->mInterpolator;
if (matctrl->mData.empty() && interp.empty())
continue;
if (mVersion <= Nif::NIFFile::VER_MW
&& matctrl->mTargetColor == Nif::NiMaterialColorController::TargetColor::Specular)
continue;
if (!interp.empty() && interp->recType != Nif::RC_NiPoint3Interpolator)
{
Log(Debug::Error) << "Unsupported interpolator type for NiMaterialColorController "
<< matctrl->recIndex << " in " << mFilename << ": " << interp->recName;
continue;
}
osg::ref_ptr<MaterialColorController> osgctrl = new MaterialColorController(matctrl, baseMaterial);
setupController(matctrl, osgctrl, animflags);
composite->addController(osgctrl);
}
else
Log(Debug::Info) << "Unexpected material controller " << ctrl->recType << " in " << mFilename;
}
}
osg::ref_ptr<osg::Image> getTextureImage(std::string_view path) const
{
if (!mImageManager)
return nullptr;
return mImageManager->getImage(
VFS::Path::toNormalized(Misc::ResourceHelpers::correctTexturePath(path, mImageManager->getVFS())));
}
osg::ref_ptr<osg::Texture2D> attachTexture(const std::string& name, osg::ref_ptr<osg::Image> image, bool wrapS,
bool wrapT, unsigned int uvSet, osg::StateSet* stateset, std::vector<unsigned int>& boundTextures) const
{
osg::ref_ptr<osg::Texture2D> texture2d = new osg::Texture2D(image);
if (image)
texture2d->setTextureSize(image->s(), image->t());
texture2d->setWrap(osg::Texture::WRAP_S, wrapS ? osg::Texture::REPEAT : osg::Texture::CLAMP_TO_EDGE);
texture2d->setWrap(osg::Texture::WRAP_T, wrapT ? osg::Texture::REPEAT : osg::Texture::CLAMP_TO_EDGE);
unsigned int texUnit = boundTextures.size();
if (stateset)
{
stateset->setTextureAttributeAndModes(texUnit, texture2d, osg::StateAttribute::ON);
stateset->setTextureAttributeAndModes(
texUnit, new SceneUtil::TextureType(name), osg::StateAttribute::ON);
}
boundTextures.emplace_back(uvSet);
return texture2d;
}
osg::ref_ptr<osg::Texture2D> attachExternalTexture(const std::string& name, const std::string& path, bool wrapS,
bool wrapT, unsigned int uvSet, osg::StateSet* stateset, std::vector<unsigned int>& boundTextures) const
{
return attachTexture(name, getTextureImage(path), wrapS, wrapT, uvSet, stateset, boundTextures);
}
osg::ref_ptr<osg::Texture2D> attachNiSourceTexture(const std::string& name, const Nif::NiSourceTexture* st,
bool wrapS, bool wrapT, unsigned int uvSet, osg::StateSet* stateset,
std::vector<unsigned int>& boundTextures) const
{
return attachTexture(name, handleSourceTexture(st), wrapS, wrapT, uvSet, stateset, boundTextures);
}
static void clearBoundTextures(osg::StateSet* stateset, std::vector<unsigned int>& boundTextures)
{
if (!boundTextures.empty())
{
for (unsigned int i = 0; i < boundTextures.size(); ++i)
stateset->setTextureMode(i, GL_TEXTURE_2D, osg::StateAttribute::OFF);
boundTextures.clear();
}
}
void handleTextureControllers(const Nif::NiProperty* texProperty,
SceneUtil::CompositeStateSetUpdater* composite, osg::StateSet* stateset, int animflags)
{
for (Nif::NiTimeControllerPtr ctrl = texProperty->mController; !ctrl.empty(); ctrl = ctrl->mNext)
{
if (!ctrl->isActive())
continue;
if (ctrl->recType == Nif::RC_NiFlipController)
{
const Nif::NiFlipController* flipctrl = static_cast<const Nif::NiFlipController*>(ctrl.getPtr());
if (!flipctrl->mInterpolator.empty()
&& flipctrl->mInterpolator->recType != Nif::RC_NiFloatInterpolator)
{
Log(Debug::Error) << "Unsupported interpolator type for NiFlipController " << flipctrl->recIndex
<< " in " << mFilename << ": " << flipctrl->mInterpolator->recName;
continue;
}
std::vector<osg::ref_ptr<osg::Texture2D>> textures;
// inherit wrap settings from the target slot
osg::Texture2D* inherit
= dynamic_cast<osg::Texture2D*>(stateset->getTextureAttribute(0, osg::StateAttribute::TEXTURE));
osg::Texture2D::WrapMode wrapS = osg::Texture2D::REPEAT;
osg::Texture2D::WrapMode wrapT = osg::Texture2D::REPEAT;
if (inherit)
{
wrapS = inherit->getWrap(osg::Texture2D::WRAP_S);
wrapT = inherit->getWrap(osg::Texture2D::WRAP_T);
}
const unsigned int uvSet = 0;
std::vector<unsigned int> boundTextures; // Dummy list for attachTexture
for (const auto& source : flipctrl->mSources)
{
if (source.empty())
continue;
// NB: not changing the stateset
osg::ref_ptr<osg::Texture2D> texture
= attachNiSourceTexture({}, source.getPtr(), wrapS, wrapT, uvSet, nullptr, boundTextures);
textures.push_back(texture);
}
osg::ref_ptr<FlipController> callback(new FlipController(flipctrl, textures));
setupController(ctrl.getPtr(), callback, animflags);
composite->addController(callback);
}
else
Log(Debug::Info) << "Unexpected texture controller " << ctrl->recName << " in " << mFilename;
}
}
void handleParticlePrograms(Nif::NiParticleModifierPtr modifier, Nif::NiParticleModifierPtr collider,
osg::Group* attachTo, osgParticle::ParticleSystem* partsys,
osgParticle::ParticleProcessor::ReferenceFrame rf)
{
osgParticle::ModularProgram* program = new osgParticle::ModularProgram;
attachTo->addChild(program);
program->setParticleSystem(partsys);
program->setReferenceFrame(rf);
for (; !modifier.empty(); modifier = modifier->mNext)
{
if (modifier->recType == Nif::RC_NiParticleGrowFade)
{
const Nif::NiParticleGrowFade* gf = static_cast<const Nif::NiParticleGrowFade*>(modifier.getPtr());
program->addOperator(new GrowFadeAffector(gf->mGrowTime, gf->mFadeTime));
}
else if (modifier->recType == Nif::RC_NiGravity)
{
const Nif::NiGravity* gr = static_cast<const Nif::NiGravity*>(modifier.getPtr());
program->addOperator(new GravityAffector(gr));
}
else if (modifier->recType == Nif::RC_NiParticleBomb)
{
auto bomb = static_cast<const Nif::NiParticleBomb*>(modifier.getPtr());
osg::ref_ptr<osgParticle::ModularProgram> bombProgram(new osgParticle::ModularProgram);
attachTo->addChild(bombProgram);
bombProgram->setParticleSystem(partsys);
bombProgram->setReferenceFrame(rf);
bombProgram->setStartTime(bomb->mStartTime);
bombProgram->setLifeTime(bomb->mDuration);
bombProgram->setEndless(false);
bombProgram->addOperator(new ParticleBomb(bomb));
}
else if (modifier->recType == Nif::RC_NiParticleColorModifier)
{
const Nif::NiParticleColorModifier* cl
= static_cast<const Nif::NiParticleColorModifier*>(modifier.getPtr());
if (cl->mData.empty())
continue;
const Nif::NiColorData* clrdata = cl->mData.getPtr();
program->addOperator(new ParticleColorAffector(clrdata));
}
else if (modifier->recType == Nif::RC_NiParticleRotation)
{
// unused
}
else
Log(Debug::Info) << "Unhandled particle modifier " << modifier->recName << " in " << mFilename;
}
for (; !collider.empty(); collider = collider->mNext)
{
if (collider->recType == Nif::RC_NiPlanarCollider)
{
const Nif::NiPlanarCollider* planarcollider
= static_cast<const Nif::NiPlanarCollider*>(collider.getPtr());
program->addOperator(new PlanarCollider(planarcollider));
}
else if (collider->recType == Nif::RC_NiSphericalCollider)
{
const Nif::NiSphericalCollider* sphericalcollider
= static_cast<const Nif::NiSphericalCollider*>(collider.getPtr());
program->addOperator(new SphericalCollider(sphericalcollider));
}
else
Log(Debug::Info) << "Unhandled particle collider " << collider->recName << " in " << mFilename;
}
}
// Load the initial state of the particle system, i.e. the initial particles and their positions, velocity and
// colors.
void handleParticleInitialState(
const Nif::NiAVObject* nifNode, ParticleSystem* partsys, const Nif::NiParticleSystemController* partctrl)
{
auto particleNode = static_cast<const Nif::NiParticles*>(nifNode);
if (particleNode->mData.empty())
{
partsys->setQuota(partctrl->mParticles.size());
return;
}
auto particledata = static_cast<const Nif::NiParticlesData*>(particleNode->mData.getPtr());
partsys->setQuota(particledata->mNumParticles);
osg::BoundingBox box;
int i = 0;
for (const auto& particle : partctrl->mParticles)
{
if (i++ >= particledata->mActiveCount)
break;
if (particle.mLifespan <= 0)
continue;
if (particle.mCode >= particledata->mVertices.size())
continue;
ParticleAgeSetter particletemplate(std::max(0.f, particle.mAge));
osgParticle::Particle* created = partsys->createParticle(&particletemplate);
created->setLifeTime(particle.mLifespan);
// Note this position and velocity is not correct for a particle system with absolute reference frame,
// which can not be done in this loader since we are not attached to the scene yet. Will be fixed up
// post-load in the SceneManager.
created->setVelocity(particle.mVelocity);
const osg::Vec3f& position = particledata->mVertices[particle.mCode];
created->setPosition(position);
created->setColorRange(osgParticle::rangev4(partctrl->mInitialColor, partctrl->mInitialColor));
created->setAlphaRange(osgParticle::rangef(1.f, 1.f));
float size = partctrl->mInitialSize;
if (particle.mCode < particledata->mSizes.size())
size *= particledata->mSizes[particle.mCode];
created->setSizeRange(osgParticle::rangef(size, size));
box.expandBy(osg::BoundingSphere(position, size));
}
// radius may be used to force a larger bounding box
box.expandBy(osg::BoundingSphere(osg::Vec3(0, 0, 0), particledata->mBoundingSphere.radius()));
partsys->setInitialBound(box);
}
osg::ref_ptr<Emitter> handleParticleEmitter(const Nif::NiParticleSystemController* partctrl)
{
std::vector<int> targets;
if (partctrl->recType == Nif::RC_NiBSPArrayController && !partctrl->emitAtVertex())
{
getAllNiNodes(partctrl->mEmitter.getPtr(), targets);
}
osg::ref_ptr<Emitter> emitter = new Emitter(targets);
osgParticle::ConstantRateCounter* counter = new osgParticle::ConstantRateCounter;
if (partctrl->noAutoAdjust())
counter->setNumberOfParticlesPerSecondToCreate(partctrl->mBirthRate);
else if (partctrl->mLifetime == 0 && partctrl->mLifetimeVariation == 0)
counter->setNumberOfParticlesPerSecondToCreate(0);
else
counter->setNumberOfParticlesPerSecondToCreate(
partctrl->mParticles.size() / (partctrl->mLifetime + partctrl->mLifetimeVariation / 2));
emitter->setCounter(counter);
ParticleShooter* shooter = new ParticleShooter(partctrl->mSpeed - partctrl->mSpeedVariation * 0.5f,
partctrl->mSpeed + partctrl->mSpeedVariation * 0.5f, partctrl->mPlanarAngle,
partctrl->mPlanarAngleVariation, partctrl->mDeclination, partctrl->mDeclinationVariation,
partctrl->mLifetime, partctrl->mLifetimeVariation);
emitter->setShooter(shooter);
emitter->setFlags(partctrl->mFlags);
if (partctrl->recType == Nif::RC_NiBSPArrayController && partctrl->emitAtVertex())
{
emitter->setGeometryEmitterTarget(partctrl->mEmitter->recIndex);
}
else
{
osgParticle::BoxPlacer* placer = new osgParticle::BoxPlacer;
placer->setXRange(-partctrl->mEmitterDimensions.x() / 2.f, partctrl->mEmitterDimensions.x() / 2.f);
placer->setYRange(-partctrl->mEmitterDimensions.y() / 2.f, partctrl->mEmitterDimensions.y() / 2.f);
placer->setZRange(-partctrl->mEmitterDimensions.z() / 2.f, partctrl->mEmitterDimensions.z() / 2.f);
emitter->setPlacer(placer);
}
return emitter;
}
void handleQueuedParticleEmitters(osg::Group* rootNode, Nif::FileView nif)
{
for (const auto& emitterPair : mEmitterQueue)
{
size_t recIndex = emitterPair.first;
FindGroupByRecIndex findEmitterNode(recIndex);
rootNode->accept(findEmitterNode);
osg::Group* emitterNode = findEmitterNode.mFound;
if (!emitterNode)
{
Log(Debug::Warning)
<< "NIFFile Warning: Failed to find particle emitter emitter node (node record index "
<< recIndex << "). File: " << nif.getFilename();
continue;
}
// Emitter attached to the emitter node. Note one side effect of the emitter using the CullVisitor is
// that hiding its node actually causes the emitter to stop firing. Convenient, because MW behaves this
// way too!
emitterNode->addChild(emitterPair.second);
DisableOptimizer disableOptimizer;
emitterNode->accept(disableOptimizer);
}
mEmitterQueue.clear();
}
void handleParticleSystem(const Nif::NiAVObject* nifNode, const Nif::Parent* parent, osg::Group* parentNode,
SceneUtil::CompositeStateSetUpdater* composite, int animflags)
{
osg::ref_ptr<ParticleSystem> partsys(new ParticleSystem);
partsys->setSortMode(osgParticle::ParticleSystem::SORT_BACK_TO_FRONT);
const Nif::NiParticleSystemController* partctrl = nullptr;
for (Nif::NiTimeControllerPtr ctrl = nifNode->mController; !ctrl.empty(); ctrl = ctrl->mNext)
{
if (!ctrl->isActive())
continue;
if (ctrl->recType == Nif::RC_NiParticleSystemController
|| ctrl->recType == Nif::RC_NiBSPArrayController)
partctrl = static_cast<Nif::NiParticleSystemController*>(ctrl.getPtr());
}
if (!partctrl)
{
Log(Debug::Info) << "No particle controller found in " << mFilename;
return;
}
osgParticle::ParticleProcessor::ReferenceFrame rf = (animflags & Nif::NiNode::ParticleFlag_LocalSpace)
? osgParticle::ParticleProcessor::RELATIVE_RF
: osgParticle::ParticleProcessor::ABSOLUTE_RF;
// HACK: ParticleSystem has no setReferenceFrame method
if (rf == osgParticle::ParticleProcessor::ABSOLUTE_RF)
{
partsys->getOrCreateUserDataContainer()->addDescription("worldspace");
}
partsys->setParticleScaleReferenceFrame(osgParticle::ParticleSystem::LOCAL_COORDINATES);
handleParticleInitialState(nifNode, partsys, partctrl);
partsys->getDefaultParticleTemplate().setSizeRange(
osgParticle::rangef(partctrl->mInitialSize, partctrl->mInitialSize));
partsys->getDefaultParticleTemplate().setColorRange(
osgParticle::rangev4(partctrl->mInitialColor, partctrl->mInitialColor));
partsys->getDefaultParticleTemplate().setAlphaRange(osgParticle::rangef(1.f, 1.f));
if (!partctrl->mEmitter.empty())
{
osg::ref_ptr<Emitter> emitter = handleParticleEmitter(partctrl);
emitter->setParticleSystem(partsys);
emitter->setReferenceFrame(osgParticle::ParticleProcessor::RELATIVE_RF);
// The emitter node may not actually be handled yet, so let's delay attaching the emitter to a later
// moment. If the emitter node is placed later than the particle node, it'll have a single frame delay
// in particle processing. But that shouldn't be a game-breaking issue.
mEmitterQueue.emplace_back(partctrl->mEmitter->recIndex, emitter);
osg::ref_ptr<ParticleSystemController> callback(new ParticleSystemController(partctrl));
setupController(partctrl, callback, animflags);
emitter->setUpdateCallback(callback);
if (!(animflags & Nif::NiNode::ParticleFlag_AutoPlay))
{
partsys->setFrozen(true);
}
// Due to odd code in the ParticleSystemUpdater, particle systems will not be updated in the first frame
// So do that update manually
osg::NodeVisitor nv;
partsys->update(0.0, nv);
}
// modifiers should be attached *after* the emitter in the scene graph for correct update order
// attach to same node as the ParticleSystem, we need osgParticle Operators to get the correct
// localToWorldMatrix for transforming to particle space
handleParticlePrograms(partctrl->mModifier, partctrl->mCollider, parentNode, partsys.get(), rf);
std::vector<const Nif::NiProperty*> drawableProps;
collectDrawableProperties(nifNode, parent, drawableProps);
applyDrawableProperties(parentNode, drawableProps, composite, true, animflags);
// particle system updater (after the emitters and modifiers in the scene graph)
// I think for correct culling needs to be *before* the ParticleSystem, though osg examples do it the other
// way
osg::ref_ptr<osgParticle::ParticleSystemUpdater> updater = new osgParticle::ParticleSystemUpdater;
updater->addParticleSystem(partsys);
parentNode->addChild(updater);
osg::Node* toAttach = partsys.get();
if (rf == osgParticle::ParticleProcessor::RELATIVE_RF)
parentNode->addChild(toAttach);
else
{
osg::MatrixTransform* trans = new osg::MatrixTransform;
trans->setUpdateCallback(new InverseWorldMatrix);
trans->addChild(toAttach);
parentNode->addChild(trans);
}
}
void handleNiGeometryData(const Nif::NiAVObject* nifNode, const Nif::Parent* parent, osg::Geometry* geometry,
osg::Node* parentNode, SceneUtil::CompositeStateSetUpdater* composite,
const std::vector<unsigned int>& boundTextures, int animflags)
{
const Nif::NiGeometry* niGeometry = static_cast<const Nif::NiGeometry*>(nifNode);
if (niGeometry->mData.empty())
return;
bool hasPartitions = false;
if (!niGeometry->mSkin.empty())
{
const Nif::NiSkinInstance* skin = niGeometry->mSkin.getPtr();
const Nif::NiSkinPartition* partitions = skin->getPartitions();
hasPartitions = partitions != nullptr;
if (hasPartitions)
{
for (const Nif::NiSkinPartition::Partition& partition : partitions->mPartitions)
{
const std::vector<unsigned short>& trueTriangles = partition.mTrueTriangles;
if (!trueTriangles.empty())
{
geometry->addPrimitiveSet(new osg::DrawElementsUShort(
osg::PrimitiveSet::TRIANGLES, trueTriangles.size(), trueTriangles.data()));
}
for (const auto& strip : partition.mTrueStrips)
{
if (strip.size() < 3)
continue;
geometry->addPrimitiveSet(new osg::DrawElementsUShort(
osg::PrimitiveSet::TRIANGLE_STRIP, strip.size(), strip.data()));
}
}
}
}
const Nif::NiGeometryData* niGeometryData = niGeometry->mData.getPtr();
if (!hasPartitions)
{
if (niGeometry->recType == Nif::RC_NiTriShape || nifNode->recType == Nif::RC_BSLODTriShape)
{
auto data = static_cast<const Nif::NiTriShapeData*>(niGeometryData);
const std::vector<unsigned short>& triangles = data->mTriangles;
if (triangles.empty())
return;
geometry->addPrimitiveSet(
new osg::DrawElementsUShort(osg::PrimitiveSet::TRIANGLES, triangles.size(), triangles.data()));
}
else if (niGeometry->recType == Nif::RC_NiTriStrips)
{
auto data = static_cast<const Nif::NiTriStripsData*>(niGeometryData);
bool hasGeometry = false;
for (const std::vector<unsigned short>& strip : data->mStrips)
{
if (strip.size() < 3)
continue;
geometry->addPrimitiveSet(
new osg::DrawElementsUShort(osg::PrimitiveSet::TRIANGLE_STRIP, strip.size(), strip.data()));
hasGeometry = true;
}
if (!hasGeometry)
return;
}
else if (niGeometry->recType == Nif::RC_NiLines)
{
auto data = static_cast<const Nif::NiLinesData*>(niGeometryData);
const auto& line = data->mLines;
if (line.empty())
return;
geometry->addPrimitiveSet(
new osg::DrawElementsUShort(osg::PrimitiveSet::LINES, line.size(), line.data()));
}
}
const auto& vertices = niGeometryData->mVertices;
const auto& normals = niGeometryData->mNormals;
const auto& colors = niGeometryData->mColors;
if (!vertices.empty())
geometry->setVertexArray(new osg::Vec3Array(vertices.size(), vertices.data()));
if (!normals.empty())
geometry->setNormalArray(
new osg::Vec3Array(normals.size(), normals.data()), osg::Array::BIND_PER_VERTEX);
if (!colors.empty())
geometry->setColorArray(new osg::Vec4Array(colors.size(), colors.data()), osg::Array::BIND_PER_VERTEX);
const auto& uvlist = niGeometryData->mUVList;
int textureStage = 0;
for (std::vector<unsigned int>::const_iterator it = boundTextures.begin(); it != boundTextures.end();
++it, ++textureStage)
{
unsigned int uvSet = *it;
if (uvSet >= uvlist.size())
{
Log(Debug::Verbose) << "Out of bounds UV set " << uvSet << " on shape \"" << nifNode->mName
<< "\" in " << mFilename;
if (uvlist.empty())
continue;
uvSet = 0;
}
geometry->setTexCoordArray(textureStage, new osg::Vec2Array(uvlist[uvSet].size(), uvlist[uvSet].data()),
osg::Array::BIND_PER_VERTEX);
}
// osg::Material properties are handled here for two reasons:
// - if there are no vertex colors, we need to disable colorMode.
// - there are 3 "overlapping" nif properties that all affect the osg::Material, handling them
// above the actual renderable would be tedious.
std::vector<const Nif::NiProperty*> drawableProps;
collectDrawableProperties(nifNode, parent, drawableProps);
if (!niGeometry->mShaderProperty.empty())
drawableProps.emplace_back(niGeometry->mShaderProperty.getPtr());
if (!niGeometry->mAlphaProperty.empty())
drawableProps.emplace_back(niGeometry->mAlphaProperty.getPtr());
applyDrawableProperties(parentNode, drawableProps, composite, !niGeometryData->mColors.empty(), animflags);
}
void handleNiGeometry(const Nif::NiAVObject* nifNode, const Nif::Parent* parent, osg::Group* parentNode,
SceneUtil::CompositeStateSetUpdater* composite, const std::vector<unsigned int>& boundTextures,
int animflags)
{
assert(isTypeNiGeometry(nifNode->recType));
osg::ref_ptr<osg::Geometry> geom(new osg::Geometry);
handleNiGeometryData(nifNode, parent, geom, parentNode, composite, boundTextures, animflags);
// If the record had no valid geometry data in it, early-out
if (geom->empty())
return;
osg::ref_ptr<osg::Drawable> drawable = geom;
auto niGeometry = static_cast<const Nif::NiGeometry*>(nifNode);
if (!niGeometry->mSkin.empty())
{
osg::ref_ptr<SceneUtil::RigGeometry> rig(new SceneUtil::RigGeometry);
rig->setSourceGeometry(geom);
const Nif::NiSkinInstance* skin = niGeometry->mSkin.getPtr();
const Nif::NiSkinData* data = skin->mData.getPtr();
const Nif::NiAVObjectList& bones = skin->mBones;
// Assign bone weights
std::vector<SceneUtil::RigGeometry::BoneInfo> boneInfo;
std::vector<SceneUtil::RigGeometry::VertexWeights> influences;
boneInfo.resize(bones.size());
influences.resize(bones.size());
for (std::size_t i = 0; i < bones.size(); ++i)
{
boneInfo[i].mName = Misc::StringUtils::lowerCase(bones[i].getPtr()->mName);
boneInfo[i].mInvBindMatrix = data->mBones[i].mTransform.toMatrix();
boneInfo[i].mBoundSphere = data->mBones[i].mBoundSphere;
influences[i] = data->mBones[i].mWeights;
}
rig->setBoneInfo(std::move(boneInfo));
rig->setInfluences(influences);
drawable = rig;
}
for (Nif::NiTimeControllerPtr ctrl = nifNode->mController; !ctrl.empty(); ctrl = ctrl->mNext)
{
if (!ctrl->isActive())
continue;
if (ctrl->recType == Nif::RC_NiGeomMorpherController)
{
if (!niGeometry->mSkin.empty())
continue;
auto nimorphctrl = static_cast<const Nif::NiGeomMorpherController*>(ctrl.getPtr());
if (nimorphctrl->mData.empty())
continue;
const std::vector<Nif::NiMorphData::MorphData>& morphs = nimorphctrl->mData.getPtr()->mMorphs;
if (morphs.empty()
|| morphs[0].mVertices.size()
!= static_cast<const osg::Vec3Array*>(geom->getVertexArray())->size())
continue;
osg::ref_ptr<SceneUtil::MorphGeometry> morphGeom = new SceneUtil::MorphGeometry;
morphGeom->setSourceGeometry(geom);
for (unsigned int i = 0; i < morphs.size(); ++i)
morphGeom->addMorphTarget(
new osg::Vec3Array(morphs[i].mVertices.size(), morphs[i].mVertices.data()), 0.f);
osg::ref_ptr<GeomMorpherController> morphctrl = new GeomMorpherController(nimorphctrl);
setupController(ctrl.getPtr(), morphctrl, animflags);
morphGeom->setUpdateCallback(morphctrl);
drawable = morphGeom;
break;
}
}
drawable->setName(nifNode->mName);
parentNode->addChild(drawable);
}
void handleBSGeometry(const Nif::NiAVObject* nifNode, const Nif::Parent* parent, osg::Group* parentNode,
SceneUtil::CompositeStateSetUpdater* composite, const std::vector<unsigned int>& boundTextures,
int animflags)
{
assert(isTypeBSGeometry(nifNode->recType));
auto bsTriShape = static_cast<const Nif::BSTriShape*>(nifNode);
const std::vector<unsigned short>& triangles = bsTriShape->mTriangles;
if (triangles.empty())
return;
osg::ref_ptr<osg::Geometry> geometry(new osg::Geometry);
geometry->addPrimitiveSet(
new osg::DrawElementsUShort(osg::PrimitiveSet::TRIANGLES, triangles.size(), triangles.data()));
osg::ref_ptr<osg::Drawable> drawable = geometry;
// Some input geometry may not be used as is so it needs to be converted.
// Normals, tangents and bitangents use a special normal map-like format not equivalent to snorm8 or unorm8
auto normbyteToFloat = [](uint8_t value) { return value / 255.f * 2.f - 1.f; };
// Vertices and UV sets may be half-precision.
// OSG doesn't have a way to pass half-precision data at the moment.
auto halfToFloat = [](uint16_t value) {
uint32_t bits = static_cast<uint32_t>(value & 0x8000) << 16;
const uint32_t exp16 = (value & 0x7c00) >> 10;
uint32_t frac16 = value & 0x3ff;
if (exp16)
bits |= (exp16 + 0x70) << 23;
else if (frac16)
{
uint8_t offset = 0;
do
{
++offset;
frac16 <<= 1;
} while ((frac16 & 0x400) != 0x400);
frac16 &= 0x3ff;
bits |= (0x71 - offset) << 23;
}
bits |= frac16 << 13;
float result;
std::memcpy(&result, &bits, sizeof(float));
return result;
};
const bool fullPrec = bsTriShape->mVertDesc.mFlags & Nif::BSVertexDesc::VertexAttribute::Full_Precision;
const bool hasVertices = bsTriShape->mVertDesc.mFlags & Nif::BSVertexDesc::VertexAttribute::Vertex;
const bool hasNormals = bsTriShape->mVertDesc.mFlags & Nif::BSVertexDesc::VertexAttribute::Normals;
const bool hasColors = bsTriShape->mVertDesc.mFlags & Nif::BSVertexDesc::VertexAttribute::Vertex_Colors;
const bool hasUV = bsTriShape->mVertDesc.mFlags & Nif::BSVertexDesc::VertexAttribute::UVs;
std::vector<osg::Vec3f> vertices;
std::vector<osg::Vec3f> normals;
std::vector<osg::Vec4ub> colors;
std::vector<osg::Vec2f> uvlist;
for (auto& elem : bsTriShape->mVertData)
{
if (hasVertices)
{
if (fullPrec)
vertices.emplace_back(elem.mVertex.x(), elem.mVertex.y(), elem.mVertex.z());
else
vertices.emplace_back(halfToFloat(elem.mHalfVertex[0]), halfToFloat(elem.mHalfVertex[1]),
halfToFloat(elem.mHalfVertex[2]));
}
if (hasNormals)
normals.emplace_back(normbyteToFloat(elem.mNormal[0]), normbyteToFloat(elem.mNormal[1]),
normbyteToFloat(elem.mNormal[2]));
if (hasColors)
colors.emplace_back(elem.mVertColor[0], elem.mVertColor[1], elem.mVertColor[2], elem.mVertColor[3]);
if (hasUV)
uvlist.emplace_back(halfToFloat(elem.mUV[0]), 1.0 - halfToFloat(elem.mUV[1]));
}
if (!vertices.empty())
geometry->setVertexArray(new osg::Vec3Array(vertices.size(), vertices.data()));
if (!normals.empty())
geometry->setNormalArray(
new osg::Vec3Array(normals.size(), normals.data()), osg::Array::BIND_PER_VERTEX);
if (!colors.empty())
geometry->setColorArray(
new osg::Vec4ubArray(colors.size(), colors.data()), osg::Array::BIND_PER_VERTEX);
if (!uvlist.empty())
geometry->setTexCoordArray(
0, new osg::Vec2Array(uvlist.size(), uvlist.data()), osg::Array::BIND_PER_VERTEX);
// This is the skinning data Fallout 4 provides
// TODO: support Skyrim SE skinning data
if (!bsTriShape->mSkin.empty() && bsTriShape->mSkin->recType == Nif::RC_BSSkinInstance
&& bsTriShape->mVertDesc.mFlags & Nif::BSVertexDesc::VertexAttribute::Skinned)
{
osg::ref_ptr<SceneUtil::RigGeometry> rig(new SceneUtil::RigGeometry);
rig->setSourceGeometry(std::move(geometry));
const Nif::BSSkinInstance* skin = static_cast<const Nif::BSSkinInstance*>(bsTriShape->mSkin.getPtr());
const Nif::BSSkinBoneData* data = skin->mData.getPtr();
const Nif::NiAVObjectList& bones = skin->mBones;
std::vector<SceneUtil::RigGeometry::BoneInfo> boneInfo;
std::vector<SceneUtil::RigGeometry::BoneWeights> influences;
boneInfo.resize(bones.size());
influences.resize(vertices.size());
for (std::size_t i = 0; i < bones.size(); ++i)
{
boneInfo[i].mName = Misc::StringUtils::lowerCase(bones[i].getPtr()->mName);
boneInfo[i].mInvBindMatrix = data->mBones[i].mTransform.toMatrix();
boneInfo[i].mBoundSphere = data->mBones[i].mBoundSphere;
}
for (size_t i = 0; i < vertices.size(); i++)
{
const Nif::BSVertexData& vertData = bsTriShape->mVertData[i];
for (int j = 0; j < 4; j++)
influences[i].emplace_back(vertData.mBoneIndices[j], halfToFloat(vertData.mBoneWeights[j]));
}
rig->setBoneInfo(std::move(boneInfo));
rig->setInfluences(influences);
drawable = rig;
}
std::vector<const Nif::NiProperty*> drawableProps;
collectDrawableProperties(nifNode, parent, drawableProps);
if (!bsTriShape->mShaderProperty.empty())
drawableProps.emplace_back(bsTriShape->mShaderProperty.getPtr());
if (!bsTriShape->mAlphaProperty.empty())
drawableProps.emplace_back(bsTriShape->mAlphaProperty.getPtr());
applyDrawableProperties(parentNode, drawableProps, composite, !colors.empty(), animflags);
drawable->setName(nifNode->mName);
parentNode->addChild(drawable);
}
osg::BlendFunc::BlendFuncMode getBlendMode(int mode)
{
switch (mode)
{
case 0:
return osg::BlendFunc::ONE;
case 1:
return osg::BlendFunc::ZERO;
case 2:
return osg::BlendFunc::SRC_COLOR;
case 3:
return osg::BlendFunc::ONE_MINUS_SRC_COLOR;
case 4:
return osg::BlendFunc::DST_COLOR;
case 5:
return osg::BlendFunc::ONE_MINUS_DST_COLOR;
case 6:
return osg::BlendFunc::SRC_ALPHA;
case 7:
return osg::BlendFunc::ONE_MINUS_SRC_ALPHA;
case 8:
return osg::BlendFunc::DST_ALPHA;
case 9:
return osg::BlendFunc::ONE_MINUS_DST_ALPHA;
case 10:
return osg::BlendFunc::SRC_ALPHA_SATURATE;
default:
Log(Debug::Info) << "Unexpected blend mode: " << mode << " in " << mFilename;
return osg::BlendFunc::SRC_ALPHA;
}
}
osg::AlphaFunc::ComparisonFunction getTestMode(int mode)
{
switch (mode)
{
case 0:
return osg::AlphaFunc::ALWAYS;
case 1:
return osg::AlphaFunc::LESS;
case 2:
return osg::AlphaFunc::EQUAL;
case 3:
return osg::AlphaFunc::LEQUAL;
case 4:
return osg::AlphaFunc::GREATER;
case 5:
return osg::AlphaFunc::NOTEQUAL;
case 6:
return osg::AlphaFunc::GEQUAL;
case 7:
return osg::AlphaFunc::NEVER;
default:
Log(Debug::Info) << "Unexpected blend mode: " << mode << " in " << mFilename;
return osg::AlphaFunc::LEQUAL;
}
}
osg::Stencil::Function getStencilFunction(Nif::NiStencilProperty::TestFunc func)
{
using TestFunc = Nif::NiStencilProperty::TestFunc;
switch (func)
{
case TestFunc::Never:
return osg::Stencil::NEVER;
case TestFunc::Less:
return osg::Stencil::LESS;
case TestFunc::Equal:
return osg::Stencil::EQUAL;
case TestFunc::LessEqual:
return osg::Stencil::LEQUAL;
case TestFunc::Greater:
return osg::Stencil::GREATER;
case TestFunc::NotEqual:
return osg::Stencil::NOTEQUAL;
case TestFunc::GreaterEqual:
return osg::Stencil::GEQUAL;
case TestFunc::Always:
return osg::Stencil::ALWAYS;
default:
Log(Debug::Info) << "Unexpected stencil function: " << static_cast<uint32_t>(func) << " in "
<< mFilename;
return osg::Stencil::NEVER;
}
}
osg::Stencil::Operation getStencilOperation(Nif::NiStencilProperty::Action op)
{
using Action = Nif::NiStencilProperty::Action;
switch (op)
{
case Action::Keep:
return osg::Stencil::KEEP;
case Action::Zero:
return osg::Stencil::ZERO;
case Action::Replace:
return osg::Stencil::REPLACE;
case Action::Increment:
return osg::Stencil::INCR;
case Action::Decrement:
return osg::Stencil::DECR;
case Action::Invert:
return osg::Stencil::INVERT;
default:
Log(Debug::Info) << "Unexpected stencil operation: " << static_cast<uint32_t>(op) << " in "
<< mFilename;
return osg::Stencil::KEEP;
}
}
osg::ref_ptr<osg::Image> handleInternalTexture(const Nif::NiPixelData* pixelData) const
{
if (pixelData->mMipmaps.empty())
return nullptr;
// Not fatal, but warn the user
if (pixelData->mNumFaces != 1)
Log(Debug::Info) << "Unsupported multifaceted internal texture in " << mFilename;
using Nif::NiPixelFormat;
NiPixelFormat niPixelFormat = pixelData->mPixelFormat;
GLenum pixelformat = 0;
// Pixel row alignment. Defining it to be consistent with OSG DDS plugin
int packing = 1;
switch (niPixelFormat.mFormat)
{
case NiPixelFormat::Format::RGB:
pixelformat = GL_RGB;
break;
case NiPixelFormat::Format::RGBA:
pixelformat = GL_RGBA;
break;
case NiPixelFormat::Format::Palette:
case NiPixelFormat::Format::PaletteAlpha:
pixelformat = GL_RED; // Each color is defined by a byte.
break;
case NiPixelFormat::Format::BGR:
pixelformat = GL_BGR;
break;
case NiPixelFormat::Format::BGRA:
pixelformat = GL_BGRA;
break;
case NiPixelFormat::Format::DXT1:
pixelformat = GL_COMPRESSED_RGBA_S3TC_DXT1_EXT;
packing = 2;
break;
case NiPixelFormat::Format::DXT3:
pixelformat = GL_COMPRESSED_RGBA_S3TC_DXT3_EXT;
packing = 4;
break;
case NiPixelFormat::Format::DXT5:
pixelformat = GL_COMPRESSED_RGBA_S3TC_DXT5_EXT;
packing = 4;
break;
default:
Log(Debug::Info) << "Unhandled internal pixel format "
<< static_cast<uint32_t>(niPixelFormat.mFormat) << " in " << mFilename;
return nullptr;
}
int width = 0;
int height = 0;
std::vector<unsigned int> mipmapOffsets;
for (unsigned int i = 0; i < pixelData->mMipmaps.size(); ++i)
{
const Nif::NiPixelData::Mipmap& mip = pixelData->mMipmaps[i];
size_t mipSize = osg::Image::computeImageSizeInBytes(
mip.mWidth, mip.mHeight, 1, pixelformat, GL_UNSIGNED_BYTE, packing);
if (mipSize + mip.mOffset > pixelData->mData.size())
{
Log(Debug::Info) << "Internal texture's mipmap data out of bounds, ignoring texture";
return nullptr;
}
if (i != 0)
mipmapOffsets.push_back(mip.mOffset);
else
{
width = mip.mWidth;
height = mip.mHeight;
}
}
if (width <= 0 || height <= 0)
{
Log(Debug::Info) << "Internal Texture Width and height must be non zero, ignoring texture";
return nullptr;
}
osg::ref_ptr<osg::Image> image(new osg::Image);
const std::vector<unsigned char>& pixels = pixelData->mData;
switch (niPixelFormat.mFormat)
{
case NiPixelFormat::Format::RGB:
case NiPixelFormat::Format::RGBA:
case NiPixelFormat::Format::BGR:
case NiPixelFormat::Format::BGRA:
case NiPixelFormat::Format::DXT1:
case NiPixelFormat::Format::DXT3:
case NiPixelFormat::Format::DXT5:
{
unsigned char* data = new unsigned char[pixels.size()];
memcpy(data, pixels.data(), pixels.size());
image->setImage(width, height, 1, pixelformat, pixelformat, GL_UNSIGNED_BYTE, data,
osg::Image::USE_NEW_DELETE, packing);
break;
}
case NiPixelFormat::Format::Palette:
case NiPixelFormat::Format::PaletteAlpha:
{
if (pixelData->mPalette.empty() || niPixelFormat.mBitsPerPixel != 8)
{
Log(Debug::Info) << "Palettized texture in " << mFilename << " is invalid, ignoring";
return nullptr;
}
pixelformat = niPixelFormat.mFormat == NiPixelFormat::Format::PaletteAlpha ? GL_RGBA : GL_RGB;
// We're going to convert the indices that pixel data contains
// into real colors using the palette.
const auto& palette = pixelData->mPalette->mColors;
const int numChannels = pixelformat == GL_RGBA ? 4 : 3;
unsigned char* data = new unsigned char[pixels.size() * numChannels];
unsigned char* pixel = data;
for (unsigned char index : pixels)
{
memcpy(pixel, &palette[index], sizeof(unsigned char) * numChannels);
pixel += numChannels;
}
for (unsigned int& offset : mipmapOffsets)
offset *= numChannels;
image->setImage(width, height, 1, pixelformat, pixelformat, GL_UNSIGNED_BYTE, data,
osg::Image::USE_NEW_DELETE, packing);
break;
}
default:
return nullptr;
}
image->setMipmapLevels(mipmapOffsets);
image->flipVertical();
return image;
}
static osg::ref_ptr<osg::TexEnvCombine> createEmissiveTexEnv()
{
osg::ref_ptr<osg::TexEnvCombine> texEnv(new osg::TexEnvCombine);
// Sum the previous colour and the emissive colour.
texEnv->setCombine_RGB(osg::TexEnvCombine::ADD);
texEnv->setSource0_RGB(osg::TexEnvCombine::PREVIOUS);
texEnv->setSource1_RGB(osg::TexEnvCombine::TEXTURE);
// Keep the previous alpha.
texEnv->setCombine_Alpha(osg::TexEnvCombine::REPLACE);
texEnv->setSource0_Alpha(osg::TexEnvCombine::PREVIOUS);
texEnv->setOperand0_Alpha(osg::TexEnvCombine::SRC_ALPHA);
return texEnv;
}
void handleDepthFlags(osg::StateSet* stateset, bool depthTest, bool depthWrite)
{
if (!depthWrite && !depthTest)
{
stateset->setMode(GL_DEPTH_TEST, osg::StateAttribute::OFF);
return;
}
osg::ref_ptr<osg::Depth> depth = new osg::Depth;
depth->setWriteMask(depthWrite);
if (!depthTest)
depth->setFunction(osg::Depth::ALWAYS);
depth = shareAttribute(depth);
stateset->setAttributeAndModes(depth, osg::StateAttribute::ON);
}
void handleTextureProperty(const Nif::NiTexturingProperty* texprop, const std::string& nodeName,
osg::StateSet* stateset, SceneUtil::CompositeStateSetUpdater* composite,
std::vector<unsigned int>& boundTextures, int animflags)
{
// overriding a parent NiTexturingProperty, so remove what was previously bound
clearBoundTextures(stateset, boundTextures);
// If this loop is changed such that the base texture isn't guaranteed to end up in texture unit 0, the
// shadow casting shader will need to be updated accordingly.
for (size_t i = 0; i < texprop->mTextures.size(); ++i)
{
const Nif::NiTexturingProperty::Texture& tex = texprop->mTextures[i];
if (tex.mEnabled || (i == Nif::NiTexturingProperty::BaseTexture && !texprop->mController.empty()))
{
std::string textureName;
switch (i)
{
// These are handled later on
case Nif::NiTexturingProperty::BaseTexture:
textureName = "diffuseMap";
break;
case Nif::NiTexturingProperty::GlowTexture:
textureName = "emissiveMap";
break;
case Nif::NiTexturingProperty::DarkTexture:
textureName = "darkMap";
break;
case Nif::NiTexturingProperty::BumpTexture:
textureName = "bumpMap";
break;
case Nif::NiTexturingProperty::DetailTexture:
textureName = "detailMap";
break;
case Nif::NiTexturingProperty::DecalTexture:
textureName = "decalMap";
break;
case Nif::NiTexturingProperty::GlossTexture:
textureName = "glossMap";
break;
default:
{
Log(Debug::Info) << "Unhandled texture stage " << i << " on shape \"" << nodeName
<< "\" in " << mFilename;
continue;
}
}
const unsigned int texUnit = boundTextures.size();
if (tex.mEnabled)
{
if (tex.mSourceTexture.empty() && texprop->mController.empty())
{
if (i == 0)
Log(Debug::Warning) << "Base texture is in use but empty on shape \"" << nodeName
<< "\" in " << mFilename;
continue;
}
if (!tex.mSourceTexture.empty())
attachNiSourceTexture(textureName, tex.mSourceTexture.getPtr(), tex.wrapS(), tex.wrapT(),
tex.mUVSet, stateset, boundTextures);
else
attachTexture(
textureName, nullptr, tex.wrapS(), tex.wrapT(), tex.mUVSet, stateset, boundTextures);
}
else
{
// Texture only comes from NiFlipController, so tex is ignored, set defaults
attachTexture(textureName, nullptr, true, true, 0, stateset, boundTextures);
}
if (i == Nif::NiTexturingProperty::GlowTexture)
{
stateset->setTextureAttributeAndModes(texUnit, createEmissiveTexEnv(), osg::StateAttribute::ON);
}
else if (i == Nif::NiTexturingProperty::DarkTexture)
{
osg::TexEnv* texEnv = new osg::TexEnv;
// Modulate both the colour and the alpha with the dark map.
texEnv->setMode(osg::TexEnv::MODULATE);
stateset->setTextureAttributeAndModes(texUnit, texEnv, osg::StateAttribute::ON);
}
else if (i == Nif::NiTexturingProperty::DetailTexture)
{
osg::TexEnvCombine* texEnv = new osg::TexEnvCombine;
// Modulate previous colour...
texEnv->setCombine_RGB(osg::TexEnvCombine::MODULATE);
texEnv->setSource0_RGB(osg::TexEnvCombine::PREVIOUS);
texEnv->setOperand0_RGB(osg::TexEnvCombine::SRC_COLOR);
// with the detail map's colour,
texEnv->setSource1_RGB(osg::TexEnvCombine::TEXTURE);
texEnv->setOperand1_RGB(osg::TexEnvCombine::SRC_COLOR);
// and a twist:
texEnv->setScale_RGB(2.f);
// Keep the previous alpha.
texEnv->setCombine_Alpha(osg::TexEnvCombine::REPLACE);
texEnv->setSource0_Alpha(osg::TexEnvCombine::PREVIOUS);
texEnv->setOperand0_Alpha(osg::TexEnvCombine::SRC_ALPHA);
stateset->setTextureAttributeAndModes(texUnit, texEnv, osg::StateAttribute::ON);
}
else if (i == Nif::NiTexturingProperty::BumpTexture)
{
// Bump maps offset the environment map.
// Set this texture to Off by default since we can't render it with the fixed-function pipeline
stateset->setTextureMode(texUnit, GL_TEXTURE_2D, osg::StateAttribute::OFF);
osg::Matrix2 bumpMapMatrix(texprop->mBumpMapMatrix.x(), texprop->mBumpMapMatrix.y(),
texprop->mBumpMapMatrix.z(), texprop->mBumpMapMatrix.w());
stateset->addUniform(new osg::Uniform("bumpMapMatrix", bumpMapMatrix));
stateset->addUniform(new osg::Uniform("envMapLumaBias", texprop->mEnvMapLumaBias));
}
else if (i == Nif::NiTexturingProperty::GlossTexture)
{
// A gloss map is an environment map mask.
// Gloss maps are only implemented in the object shaders as well.
stateset->setTextureMode(texUnit, GL_TEXTURE_2D, osg::StateAttribute::OFF);
}
else if (i == Nif::NiTexturingProperty::DecalTexture)
{
// This is only an inaccurate imitation of the original implementation,
// see https://github.com/niftools/nifskope/issues/184
osg::TexEnvCombine* texEnv = new osg::TexEnvCombine;
// Interpolate to the decal texture's colour...
texEnv->setCombine_RGB(osg::TexEnvCombine::INTERPOLATE);
texEnv->setSource0_RGB(osg::TexEnvCombine::TEXTURE);
texEnv->setOperand0_RGB(osg::TexEnvCombine::SRC_COLOR);
// ...from the previous colour...
texEnv->setSource1_RGB(osg::TexEnvCombine::PREVIOUS);
texEnv->setOperand1_RGB(osg::TexEnvCombine::SRC_COLOR);
// using the decal texture's alpha as the factor.
texEnv->setSource2_RGB(osg::TexEnvCombine::TEXTURE);
texEnv->setOperand2_RGB(osg::TexEnvCombine::SRC_ALPHA);
// Keep the previous alpha.
texEnv->setCombine_Alpha(osg::TexEnvCombine::REPLACE);
texEnv->setSource0_Alpha(osg::TexEnvCombine::PREVIOUS);
texEnv->setOperand0_Alpha(osg::TexEnvCombine::SRC_ALPHA);
stateset->setTextureAttributeAndModes(texUnit, texEnv, osg::StateAttribute::ON);
}
}
}
handleTextureControllers(texprop, composite, stateset, animflags);
}
static Bgsm::MaterialFilePtr getShaderMaterial(
std::string_view path, Resource::BgsmFileManager* materialManager)
{
if (!materialManager)
return nullptr;
if (!Misc::StringUtils::ciEndsWith(path, ".bgem") && !Misc::StringUtils::ciEndsWith(path, ".bgsm"))
return nullptr;
std::string normalizedPath = Misc::ResourceHelpers::correctMaterialPath(path, materialManager->getVFS());
try
{
return materialManager->get(VFS::Path::Normalized(normalizedPath));
}
catch (std::exception& e)
{
Log(Debug::Error) << "Failed to load shader material: " << e.what();
return nullptr;
}
}
void handleShaderMaterialNodeProperties(
const Bgsm::MaterialFile* material, osg::StateSet* stateset, std::vector<unsigned int>& boundTextures)
{
const unsigned int uvSet = 0;
const bool wrapS = material->wrapS();
const bool wrapT = material->wrapT();
if (material->mShaderType == Bgsm::ShaderType::Lighting)
{
const Bgsm::BGSMFile* bgsm = static_cast<const Bgsm::BGSMFile*>(material);
if (!bgsm->mDiffuseMap.empty())
attachExternalTexture(
"diffuseMap", bgsm->mDiffuseMap, wrapS, wrapT, uvSet, stateset, boundTextures);
if (!bgsm->mNormalMap.empty())
attachExternalTexture("normalMap", bgsm->mNormalMap, wrapS, wrapT, uvSet, stateset, boundTextures);
if (bgsm->mGlowMapEnabled && !bgsm->mGlowMap.empty())
attachExternalTexture("emissiveMap", bgsm->mGlowMap, wrapS, wrapT, uvSet, stateset, boundTextures);
if (bgsm->mTree)
stateset->addUniform(new osg::Uniform("useTreeAnim", true));
}
else if (material->mShaderType == Bgsm::ShaderType::Effect)
{
const Bgsm::BGEMFile* bgem = static_cast<const Bgsm::BGEMFile*>(material);
if (!bgem->mBaseMap.empty())
attachExternalTexture("diffuseMap", bgem->mBaseMap, wrapS, wrapT, uvSet, stateset, boundTextures);
bool useFalloff = bgem->mFalloff;
stateset->addUniform(new osg::Uniform("useFalloff", useFalloff));
if (useFalloff)
stateset->addUniform(new osg::Uniform("falloffParams", bgem->mFalloffParams));
}
if (material->mTwoSided)
stateset->setMode(GL_CULL_FACE, osg::StateAttribute::OFF);
handleDepthFlags(stateset, material->mDepthTest, material->mDepthWrite);
}
void handleDecal(bool enabled, bool hasSortAlpha, osg::Node& node)
{
if (!enabled)
return;
osg::ref_ptr<osg::StateSet> stateset = node.getOrCreateStateSet();
osg::ref_ptr<osg::PolygonOffset> polygonOffset(new osg::PolygonOffset);
polygonOffset->setUnits(SceneUtil::AutoDepth::isReversed() ? 1.f : -1.f);
polygonOffset->setFactor(SceneUtil::AutoDepth::isReversed() ? 0.65f : -0.65f);
polygonOffset = shareAttribute(polygonOffset);
stateset->setAttributeAndModes(polygonOffset, osg::StateAttribute::ON);
if (!mPushedSorter && !hasSortAlpha)
stateset->setRenderBinDetails(1, "SORT_BACK_TO_FRONT");
}
void handleAlphaTesting(
bool enabled, osg::AlphaFunc::ComparisonFunction function, int threshold, osg::Node& node)
{
if (enabled)
{
osg::ref_ptr<osg::AlphaFunc> alphaFunc(new osg::AlphaFunc(function, threshold / 255.f));
alphaFunc = shareAttribute(alphaFunc);
node.getOrCreateStateSet()->setAttributeAndModes(alphaFunc, osg::StateAttribute::ON);
}
else if (osg::StateSet* stateset = node.getStateSet())
{
stateset->removeAttribute(osg::StateAttribute::ALPHAFUNC);
stateset->removeMode(GL_ALPHA_TEST);
}
}
void handleAlphaBlending(
bool enabled, int sourceMode, int destMode, bool sort, bool& hasSortAlpha, osg::Node& node)
{
if (enabled)
{
osg::ref_ptr<osg::StateSet> stateset = node.getOrCreateStateSet();
osg::ref_ptr<osg::BlendFunc> blendFunc(
new osg::BlendFunc(getBlendMode(sourceMode), getBlendMode(destMode)));
// on AMD hardware, alpha still seems to be stored with an RGBA framebuffer with OpenGL.
// This might be mandated by the OpenGL 2.1 specification section 2.14.9, or might be a bug.
// Either way, D3D8.1 doesn't do that, so adapt the destination factor.
if (blendFunc->getDestination() == GL_DST_ALPHA)
blendFunc->setDestination(GL_ONE);
blendFunc = shareAttribute(blendFunc);
stateset->setAttributeAndModes(blendFunc, osg::StateAttribute::ON);
if (sort)
{
hasSortAlpha = true;
if (!mPushedSorter)
stateset->setRenderingHint(osg::StateSet::TRANSPARENT_BIN);
}
else if (!mPushedSorter)
{
stateset->setRenderBinToInherit();
}
}
else if (osg::ref_ptr<osg::StateSet> stateset = node.getStateSet())
{
stateset->removeAttribute(osg::StateAttribute::BLENDFUNC);
stateset->removeMode(GL_BLEND);
if (!mPushedSorter)
stateset->setRenderBinToInherit();
}
}
void handleShaderMaterialDrawableProperties(
const Bgsm::MaterialFile* shaderMat, osg::ref_ptr<osg::Material> mat, osg::Node& node, bool& hasSortAlpha)
{
mat->setAlpha(osg::Material::FRONT_AND_BACK, shaderMat->mTransparency);
handleAlphaTesting(shaderMat->mAlphaTest, osg::AlphaFunc::GREATER, shaderMat->mAlphaTestThreshold, node);
handleAlphaBlending(shaderMat->mAlphaBlend, shaderMat->mSourceBlendMode, shaderMat->mDestinationBlendMode,
true, hasSortAlpha, node);
handleDecal(shaderMat->mDecal, hasSortAlpha, node);
if (shaderMat->mShaderType == Bgsm::ShaderType::Lighting)
{
auto bgsm = static_cast<const Bgsm::BGSMFile*>(shaderMat);
mat->setEmission(osg::Material::FRONT_AND_BACK, osg::Vec4f(bgsm->mEmittanceColor, 1.f));
mat->setSpecular(osg::Material::FRONT_AND_BACK, osg::Vec4f(bgsm->mSpecularColor, 1.f));
}
else if (shaderMat->mShaderType == Bgsm::ShaderType::Effect)
{
auto bgem = static_cast<const Bgsm::BGEMFile*>(shaderMat);
mat->setEmission(osg::Material::FRONT_AND_BACK, osg::Vec4f(bgem->mEmittanceColor, 1.f));
if (bgem->mSoft)
SceneUtil::setupSoftEffect(node, bgem->mSoftDepth, true, bgem->mSoftDepth);
}
}
void handleTextureSet(const Nif::BSShaderTextureSet* textureSet, bool wrapS, bool wrapT,
const std::string& nodeName, osg::StateSet* stateset, std::vector<unsigned int>& boundTextures)
{
const unsigned int uvSet = 0;
for (size_t i = 0; i < textureSet->mTextures.size(); ++i)
{
if (textureSet->mTextures[i].empty())
continue;
switch (static_cast<Nif::BSShaderTextureSet::TextureType>(i))
{
case Nif::BSShaderTextureSet::TextureType::Base:
attachExternalTexture(
"diffuseMap", textureSet->mTextures[i], wrapS, wrapT, uvSet, stateset, boundTextures);
break;
case Nif::BSShaderTextureSet::TextureType::Normal:
attachExternalTexture(
"normalMap", textureSet->mTextures[i], wrapS, wrapT, uvSet, stateset, boundTextures);
break;
case Nif::BSShaderTextureSet::TextureType::Glow:
attachExternalTexture(
"emissiveMap", textureSet->mTextures[i], wrapS, wrapT, uvSet, stateset, boundTextures);
break;
default:
{
Log(Debug::Info) << "Unhandled texture stage " << i << " on shape \"" << nodeName << "\" in "
<< mFilename;
continue;
}
}
}
}
std::string_view getBSShaderPrefix(unsigned int type) const
{
switch (static_cast<Nif::BSShaderType>(type))
{
case Nif::BSShaderType::ShaderType_Default:
return "bs/default";
case Nif::BSShaderType::ShaderType_NoLighting:
return "bs/nolighting";
case Nif::BSShaderType::ShaderType_TallGrass:
case Nif::BSShaderType::ShaderType_Sky:
case Nif::BSShaderType::ShaderType_Skin:
case Nif::BSShaderType::ShaderType_Water:
case Nif::BSShaderType::ShaderType_Lighting30:
case Nif::BSShaderType::ShaderType_Tile:
Log(Debug::Warning) << "Unhandled BSShaderType " << type << " in " << mFilename;
return "bs/default";
}
Log(Debug::Warning) << "Unknown BSShaderType " << type << " in " << mFilename;
return "bs/default";
}
std::string_view getBSLightingShaderPrefix(unsigned int type) const
{
switch (static_cast<Nif::BSLightingShaderType>(type))
{
case Nif::BSLightingShaderType::ShaderType_Default:
return "bs/default";
case Nif::BSLightingShaderType::ShaderType_EnvMap:
case Nif::BSLightingShaderType::ShaderType_Glow:
case Nif::BSLightingShaderType::ShaderType_Parallax:
case Nif::BSLightingShaderType::ShaderType_FaceTint:
case Nif::BSLightingShaderType::ShaderType_SkinTint:
case Nif::BSLightingShaderType::ShaderType_HairTint:
case Nif::BSLightingShaderType::ShaderType_ParallaxOcc:
case Nif::BSLightingShaderType::ShaderType_MultitexLand:
case Nif::BSLightingShaderType::ShaderType_LODLand:
case Nif::BSLightingShaderType::ShaderType_Snow:
case Nif::BSLightingShaderType::ShaderType_MultiLayerParallax:
case Nif::BSLightingShaderType::ShaderType_TreeAnim:
case Nif::BSLightingShaderType::ShaderType_LODObjects:
case Nif::BSLightingShaderType::ShaderType_SparkleSnow:
case Nif::BSLightingShaderType::ShaderType_LODObjectsHD:
case Nif::BSLightingShaderType::ShaderType_EyeEnvmap:
case Nif::BSLightingShaderType::ShaderType_Cloud:
case Nif::BSLightingShaderType::ShaderType_LODNoise:
case Nif::BSLightingShaderType::ShaderType_MultitexLandLODBlend:
case Nif::BSLightingShaderType::ShaderType_Dismemberment:
case Nif::BSLightingShaderType::ShaderType_Terrain:
Log(Debug::Warning) << "Unhandled BSLightingShaderType " << type << " in " << mFilename;
return "bs/default";
}
Log(Debug::Warning) << "Unknown BSLightingShaderType " << type << " in " << mFilename;
return "bs/default";
}
void handleProperty(const Nif::NiProperty* property, osg::Node* node,
SceneUtil::CompositeStateSetUpdater* composite, std::vector<unsigned int>& boundTextures, int animflags,
bool hasStencilProperty)
{
switch (property->recType)
{
case Nif::RC_NiStencilProperty:
{
const Nif::NiStencilProperty* stencilprop = static_cast<const Nif::NiStencilProperty*>(property);
osg::ref_ptr<osg::FrontFace> frontFace = new osg::FrontFace;
using DrawMode = Nif::NiStencilProperty::DrawMode;
switch (stencilprop->mDrawMode)
{
case DrawMode::Clockwise:
frontFace->setMode(osg::FrontFace::CLOCKWISE);
break;
case DrawMode::Default:
case DrawMode::CounterClockwise:
case DrawMode::Both:
default:
frontFace->setMode(osg::FrontFace::COUNTER_CLOCKWISE);
break;
}
frontFace = shareAttribute(frontFace);
osg::StateSet* stateset = node->getOrCreateStateSet();
stateset->setAttribute(frontFace, osg::StateAttribute::ON);
if (stencilprop->mDrawMode == DrawMode::Both)
stateset->setMode(GL_CULL_FACE, osg::StateAttribute::OFF);
else
stateset->setMode(GL_CULL_FACE, osg::StateAttribute::ON);
if (stencilprop->mEnabled)
{
mHasStencilProperty = true;
osg::ref_ptr<osg::Stencil> stencil = new osg::Stencil;
stencil->setFunction(getStencilFunction(stencilprop->mTestFunction), stencilprop->mStencilRef,
stencilprop->mStencilMask);
stencil->setStencilFailOperation(getStencilOperation(stencilprop->mFailAction));
stencil->setStencilPassAndDepthFailOperation(getStencilOperation(stencilprop->mZFailAction));
stencil->setStencilPassAndDepthPassOperation(getStencilOperation(stencilprop->mPassAction));
stencil = shareAttribute(stencil);
stateset->setAttributeAndModes(stencil, osg::StateAttribute::ON);
}
break;
}
case Nif::RC_NiWireframeProperty:
{
const Nif::NiWireframeProperty* wireprop = static_cast<const Nif::NiWireframeProperty*>(property);
osg::ref_ptr<osg::PolygonMode> mode = new osg::PolygonMode;
mode->setMode(osg::PolygonMode::FRONT_AND_BACK,
wireprop->mEnable ? osg::PolygonMode::LINE : osg::PolygonMode::FILL);
mode = shareAttribute(mode);
node->getOrCreateStateSet()->setAttributeAndModes(mode, osg::StateAttribute::ON);
break;
}
case Nif::RC_NiZBufferProperty:
{
const Nif::NiZBufferProperty* zprop = static_cast<const Nif::NiZBufferProperty*>(property);
osg::StateSet* stateset = node->getOrCreateStateSet();
// The test function from this property seems to be ignored.
handleDepthFlags(stateset, zprop->depthTest(), zprop->depthWrite());
break;
}
// OSG groups the material properties that NIFs have separate, so we have to parse them all again when
// one changed
case Nif::RC_NiMaterialProperty:
case Nif::RC_NiVertexColorProperty:
case Nif::RC_NiSpecularProperty:
{
// Handled on drawable level so we know whether vertex colors are available
break;
}
case Nif::RC_NiAlphaProperty:
{
// Handled on drawable level to prevent RenderBin nesting issues
break;
}
case Nif::RC_NiTexturingProperty:
{
const Nif::NiTexturingProperty* texprop = static_cast<const Nif::NiTexturingProperty*>(property);
osg::StateSet* stateset = node->getOrCreateStateSet();
handleTextureProperty(texprop, node->getName(), stateset, composite, boundTextures, animflags);
node->setUserValue("applyMode", static_cast<int>(texprop->mApplyMode));
break;
}
case Nif::RC_BSShaderPPLightingProperty:
{
auto texprop = static_cast<const Nif::BSShaderPPLightingProperty*>(property);
bool shaderRequired = true;
node->setUserValue("shaderPrefix", std::string(getBSShaderPrefix(texprop->mType)));
node->setUserValue("shaderRequired", shaderRequired);
osg::StateSet* stateset = node->getOrCreateStateSet();
clearBoundTextures(stateset, boundTextures);
if (!texprop->mTextureSet.empty())
handleTextureSet(texprop->mTextureSet.getPtr(), texprop->wrapS(), texprop->wrapT(),
node->getName(), stateset, boundTextures);
handleTextureControllers(texprop, composite, stateset, animflags);
if (texprop->refraction())
SceneUtil::setupDistortion(*node, texprop->mRefraction.mStrength);
break;
}
case Nif::RC_BSShaderNoLightingProperty:
{
auto texprop = static_cast<const Nif::BSShaderNoLightingProperty*>(property);
bool shaderRequired = true;
bool useFalloff = false;
node->setUserValue("shaderPrefix", std::string(getBSShaderPrefix(texprop->mType)));
node->setUserValue("shaderRequired", shaderRequired);
osg::StateSet* stateset = node->getOrCreateStateSet();
clearBoundTextures(stateset, boundTextures);
if (!texprop->mFilename.empty())
{
const unsigned int uvSet = 0;
attachExternalTexture("diffuseMap", texprop->mFilename, texprop->wrapS(), texprop->wrapT(),
uvSet, stateset, boundTextures);
}
if (mBethVersion >= 27)
{
useFalloff = true;
stateset->addUniform(new osg::Uniform("falloffParams", texprop->mFalloffParams));
}
stateset->addUniform(new osg::Uniform("useFalloff", useFalloff));
handleTextureControllers(texprop, composite, stateset, animflags);
handleDepthFlags(stateset, texprop->depthTest(), texprop->depthWrite());
break;
}
case Nif::RC_BSLightingShaderProperty:
{
auto texprop = static_cast<const Nif::BSLightingShaderProperty*>(property);
bool shaderRequired = true;
node->setUserValue("shaderPrefix", std::string(getBSLightingShaderPrefix(texprop->mType)));
node->setUserValue("shaderRequired", shaderRequired);
osg::StateSet* stateset = node->getOrCreateStateSet();
clearBoundTextures(stateset, boundTextures);
if (Bgsm::MaterialFilePtr material = getShaderMaterial(texprop->mName, mMaterialManager))
{
handleShaderMaterialNodeProperties(material.get(), stateset, boundTextures);
break;
}
if (!texprop->mTextureSet.empty())
handleTextureSet(texprop->mTextureSet.getPtr(), texprop->wrapS(), texprop->wrapT(),
node->getName(), stateset, boundTextures);
handleTextureControllers(texprop, composite, stateset, animflags);
if (texprop->doubleSided())
stateset->setMode(GL_CULL_FACE, osg::StateAttribute::OFF);
if (texprop->treeAnim())
stateset->addUniform(new osg::Uniform("useTreeAnim", true));
handleDepthFlags(stateset, texprop->depthTest(), texprop->depthWrite());
if (texprop->refraction())
SceneUtil::setupDistortion(*node, texprop->mRefractionStrength);
break;
}
case Nif::RC_BSEffectShaderProperty:
{
auto texprop = static_cast<const Nif::BSEffectShaderProperty*>(property);
bool shaderRequired = true;
// TODO: implement BSEffectShader as a shader
node->setUserValue("shaderPrefix", std::string("bs/nolighting"));
node->setUserValue("shaderRequired", shaderRequired);
osg::StateSet* stateset = node->getOrCreateStateSet();
clearBoundTextures(stateset, boundTextures);
if (Bgsm::MaterialFilePtr material = getShaderMaterial(texprop->mName, mMaterialManager))
{
handleShaderMaterialNodeProperties(material.get(), stateset, boundTextures);
break;
}
if (!texprop->mSourceTexture.empty())
{
const unsigned int uvSet = 0;
unsigned int texUnit = boundTextures.size();
attachExternalTexture("diffuseMap", texprop->mSourceTexture, texprop->wrapS(), texprop->wrapT(),
uvSet, stateset, boundTextures);
{
osg::ref_ptr<osg::TexMat> texMat(new osg::TexMat);
// This handles 20.2.0.7 UV settings like 4.0.0.2 UV settings (see NifOsg::UVController)
// TODO: verify
osg::Vec3f uvOrigin(0.5f, 0.5f, 0.f);
osg::Vec3f uvScale(texprop->mUVScale.x(), texprop->mUVScale.y(), 1.f);
osg::Vec3f uvTrans(-texprop->mUVOffset.x(), -texprop->mUVOffset.y(), 0.f);
osg::Matrixf mat = osg::Matrixf::translate(uvOrigin);
mat.preMultScale(uvScale);
mat.preMultTranslate(-uvOrigin);
mat.setTrans(mat.getTrans() + uvTrans);
texMat->setMatrix(mat);
stateset->setTextureAttributeAndModes(texUnit, texMat, osg::StateAttribute::ON);
}
}
bool useFalloff = texprop->useFalloff();
stateset->addUniform(new osg::Uniform("useFalloff", useFalloff));
if (useFalloff)
stateset->addUniform(new osg::Uniform("falloffParams", texprop->mFalloffParams));
handleTextureControllers(texprop, composite, stateset, animflags);
if (texprop->doubleSided())
stateset->setMode(GL_CULL_FACE, osg::StateAttribute::OFF);
handleDepthFlags(stateset, texprop->depthTest(), texprop->depthWrite());
break;
}
case Nif::RC_NiFogProperty:
{
const Nif::NiFogProperty* fogprop = static_cast<const Nif::NiFogProperty*>(property);
osg::StateSet* stateset = node->getOrCreateStateSet();
// Vertex alpha mode appears to be broken
if (!fogprop->vertexAlpha() && fogprop->enabled())
{
osg::ref_ptr<NifOsg::Fog> fog = new NifOsg::Fog;
fog->setMode(osg::Fog::LINEAR);
fog->setColor(osg::Vec4f(fogprop->mColour, 1.f));
fog->setDepth(fogprop->mFogDepth);
fog = shareAttribute(fog);
stateset->setAttributeAndModes(fog, osg::StateAttribute::ON);
// Intentionally ignoring radial fog flag
// We don't really want to override the global setting
}
else
{
osg::ref_ptr<osg::Fog> fog = new osg::Fog;
// Shaders don't respect glDisable(GL_FOG)
fog->setMode(osg::Fog::LINEAR);
fog->setStart(10000000);
fog->setEnd(10000000);
fog = shareAttribute(fog);
stateset->setAttributeAndModes(fog, osg::StateAttribute::OFF | osg::StateAttribute::OVERRIDE);
}
break;
}
// unused by mw
case Nif::RC_NiShadeProperty:
case Nif::RC_NiDitherProperty:
{
break;
}
default:
Log(Debug::Info) << "Unhandled " << property->recName << " in " << mFilename;
break;
}
}
struct CompareStateAttribute
{
bool operator()(
const osg::ref_ptr<osg::StateAttribute>& left, const osg::ref_ptr<osg::StateAttribute>& right) const
{
return left->compare(*right) < 0;
}
};
// global sharing of State Attributes will reduce the number of GL calls as the osg::State will check by pointer
// to see if state is the same
template <class Attribute>
Attribute* shareAttribute(const osg::ref_ptr<Attribute>& attr)
{
typedef std::set<osg::ref_ptr<Attribute>, CompareStateAttribute> Cache;
static Cache sCache;
static std::mutex sMutex;
std::lock_guard<std::mutex> lock(sMutex);
typename Cache::iterator found = sCache.find(attr);
if (found == sCache.end())
found = sCache.insert(attr).first;
return *found;
}
void applyDrawableProperties(osg::Node* node, const std::vector<const Nif::NiProperty*>& properties,
SceneUtil::CompositeStateSetUpdater* composite, bool hasVertexColors, int animflags)
{
// Specular lighting is enabled by default, but there's a quirk...
bool specEnabled = true;
osg::ref_ptr<osg::Material> mat(new osg::Material);
mat->setColorMode(hasVertexColors ? osg::Material::AMBIENT_AND_DIFFUSE : osg::Material::OFF);
// NIF material defaults don't match OpenGL defaults
mat->setDiffuse(osg::Material::FRONT_AND_BACK, osg::Vec4f(1, 1, 1, 1));
mat->setAmbient(osg::Material::FRONT_AND_BACK, osg::Vec4f(1, 1, 1, 1));
bool hasMatCtrl = false;
bool hasSortAlpha = false;
auto setBin_BackToFront = [](osg::StateSet* ss) { ss->setRenderBinDetails(0, "SORT_BACK_TO_FRONT"); };
auto setBin_Traversal = [](osg::StateSet* ss) { ss->setRenderBinDetails(2, "TraversalOrderBin"); };
auto lightmode = Nif::NiVertexColorProperty::LightMode::LightMode_EmiAmbDif;
float emissiveMult = 1.f;
float specStrength = 1.f;
for (const Nif::NiProperty* property : properties)
{
switch (property->recType)
{
case Nif::RC_NiSpecularProperty:
{
// Specular property can turn specular lighting off.
// FIXME: NiMaterialColorController doesn't care about this.
auto specprop = static_cast<const Nif::NiSpecularProperty*>(property);
specEnabled = specprop->mEnable;
break;
}
case Nif::RC_NiMaterialProperty:
{
const Nif::NiMaterialProperty* matprop = static_cast<const Nif::NiMaterialProperty*>(property);
mat->setDiffuse(osg::Material::FRONT_AND_BACK, osg::Vec4f(matprop->mDiffuse, matprop->mAlpha));
mat->setAmbient(osg::Material::FRONT_AND_BACK, osg::Vec4f(matprop->mAmbient, 1.f));
mat->setEmission(osg::Material::FRONT_AND_BACK, osg::Vec4f(matprop->mEmissive, 1.f));
emissiveMult = matprop->mEmissiveMult;
mat->setSpecular(osg::Material::FRONT_AND_BACK, osg::Vec4f(matprop->mSpecular, 1.f));
// NIFs may provide specular exponents way above OpenGL's limit.
// They can't be used properly, but we don't need OSG to constantly harass us about it.
float glossiness = std::clamp(matprop->mGlossiness, 0.f, 128.f);
mat->setShininess(osg::Material::FRONT_AND_BACK, glossiness);
if (!matprop->mController.empty())
{
hasMatCtrl = true;
handleMaterialControllers(matprop, composite, animflags, mat);
}
break;
}
case Nif::RC_NiVertexColorProperty:
{
const Nif::NiVertexColorProperty* vertprop
= static_cast<const Nif::NiVertexColorProperty*>(property);
using VertexMode = Nif::NiVertexColorProperty::VertexMode;
switch (vertprop->mVertexMode)
{
case VertexMode::VertMode_SrcIgnore:
{
mat->setColorMode(osg::Material::OFF);
break;
}
case VertexMode::VertMode_SrcEmissive:
{
mat->setColorMode(osg::Material::EMISSION);
break;
}
case VertexMode::VertMode_SrcAmbDif:
{
lightmode = vertprop->mLightingMode;
using LightMode = Nif::NiVertexColorProperty::LightMode;
switch (lightmode)
{
case LightMode::LightMode_Emissive:
{
mat->setColorMode(osg::Material::OFF);
break;
}
case LightMode::LightMode_EmiAmbDif:
default:
{
mat->setColorMode(osg::Material::AMBIENT_AND_DIFFUSE);
break;
}
}
break;
}
}
break;
}
case Nif::RC_NiAlphaProperty:
{
const Nif::NiAlphaProperty* alphaprop = static_cast<const Nif::NiAlphaProperty*>(property);
handleAlphaBlending(alphaprop->useAlphaBlending(), alphaprop->sourceBlendMode(),
alphaprop->destinationBlendMode(), !alphaprop->noSorter(), hasSortAlpha, *node);
handleAlphaTesting(alphaprop->useAlphaTesting(), getTestMode(alphaprop->alphaTestMode()),
alphaprop->mThreshold, *node);
break;
}
case Nif::RC_BSShaderPPLightingProperty:
{
auto shaderprop = static_cast<const Nif::BSShaderPPLightingProperty*>(property);
specEnabled = shaderprop->specular();
break;
}
case Nif::RC_BSLightingShaderProperty:
{
auto shaderprop = static_cast<const Nif::BSLightingShaderProperty*>(property);
if (Bgsm::MaterialFilePtr shaderMat = getShaderMaterial(shaderprop->mName, mMaterialManager))
{
handleShaderMaterialDrawableProperties(shaderMat.get(), mat, *node, hasSortAlpha);
if (shaderMat->mShaderType == Bgsm::ShaderType::Lighting)
{
auto bgsm = static_cast<const Bgsm::BGSMFile*>(shaderMat.get());
specEnabled = false; // bgsm->mSpecularEnabled; TODO: PBR specular lighting
specStrength = 1.f; // bgsm->mSpecularMult;
emissiveMult = bgsm->mEmittanceMult;
}
break;
}
mat->setAlpha(osg::Material::FRONT_AND_BACK, shaderprop->mAlpha);
mat->setEmission(osg::Material::FRONT_AND_BACK, osg::Vec4f(shaderprop->mEmissive, 1.f));
mat->setSpecular(osg::Material::FRONT_AND_BACK, osg::Vec4f(shaderprop->mSpecular, 1.f));
float glossiness = std::clamp(shaderprop->mGlossiness, 0.f, 128.f);
mat->setShininess(osg::Material::FRONT_AND_BACK, glossiness);
emissiveMult = shaderprop->mEmissiveMult;
specStrength = shaderprop->mSpecStrength;
specEnabled = shaderprop->specular();
handleDecal(shaderprop->decal(), hasSortAlpha, *node);
break;
}
case Nif::RC_BSEffectShaderProperty:
{
auto shaderprop = static_cast<const Nif::BSEffectShaderProperty*>(property);
if (Bgsm::MaterialFilePtr shaderMat = getShaderMaterial(shaderprop->mName, mMaterialManager))
{
handleShaderMaterialDrawableProperties(shaderMat.get(), mat, *node, hasSortAlpha);
break;
}
handleDecal(shaderprop->decal(), hasSortAlpha, *node);
if (shaderprop->softEffect())
SceneUtil::setupSoftEffect(
*node, shaderprop->mFalloffDepth, true, shaderprop->mFalloffDepth);
break;
}
default:
break;
}
}
// While NetImmerse and Gamebryo support specular lighting, Morrowind has its support disabled.
if (mVersion <= Nif::NIFFile::VER_MW || !specEnabled)
{
mat->setSpecular(osg::Material::FRONT_AND_BACK, osg::Vec4f(0.f, 0.f, 0.f, 0.f));
mat->setShininess(osg::Material::FRONT_AND_BACK, 0.f);
specStrength = 1.f;
}
if (lightmode == Nif::NiVertexColorProperty::LightMode::LightMode_Emissive)
{
osg::Vec4f diffuse = mat->getDiffuse(osg::Material::FRONT_AND_BACK);
diffuse = osg::Vec4f(0, 0, 0, diffuse.a());
mat->setDiffuse(osg::Material::FRONT_AND_BACK, diffuse);
mat->setAmbient(osg::Material::FRONT_AND_BACK, osg::Vec4f());
}
// If we're told to use vertex colors but there are none to use, use a default color instead.
if (!hasVertexColors)
{
switch (mat->getColorMode())
{
case osg::Material::AMBIENT:
mat->setAmbient(osg::Material::FRONT_AND_BACK, osg::Vec4f(1, 1, 1, 1));
break;
case osg::Material::AMBIENT_AND_DIFFUSE:
mat->setAmbient(osg::Material::FRONT_AND_BACK, osg::Vec4f(1, 1, 1, 1));
mat->setDiffuse(osg::Material::FRONT_AND_BACK, osg::Vec4f(1, 1, 1, 1));
break;
case osg::Material::EMISSION:
mat->setEmission(osg::Material::FRONT_AND_BACK, osg::Vec4f(1, 1, 1, 1));
break;
default:
break;
}
mat->setColorMode(osg::Material::OFF);
}
if (hasMatCtrl || mat->getColorMode() != osg::Material::OFF
|| mat->getEmission(osg::Material::FRONT_AND_BACK) != osg::Vec4f(0, 0, 0, 1)
|| mat->getDiffuse(osg::Material::FRONT_AND_BACK) != osg::Vec4f(1, 1, 1, 1)
|| mat->getAmbient(osg::Material::FRONT_AND_BACK) != osg::Vec4f(1, 1, 1, 1)
|| mat->getShininess(osg::Material::FRONT_AND_BACK) != 0
|| mat->getSpecular(osg::Material::FRONT_AND_BACK) != osg::Vec4f(0.f, 0.f, 0.f, 0.f))
{
mat = shareAttribute(mat);
node->getOrCreateStateSet()->setAttributeAndModes(mat, osg::StateAttribute::ON);
}
if (emissiveMult != 1.f)
node->getOrCreateStateSet()->addUniform(new osg::Uniform("emissiveMult", emissiveMult));
if (specStrength != 1.f)
node->getOrCreateStateSet()->addUniform(new osg::Uniform("specStrength", specStrength));
if (!mPushedSorter)
{
if (!hasSortAlpha && mHasStencilProperty)
setBin_Traversal(node->getOrCreateStateSet());
return;
}
osg::StateSet* stateset = node->getOrCreateStateSet();
auto assignBin = [&](Nif::NiSortAdjustNode::SortingMode mode, int type) {
if (mode == Nif::NiSortAdjustNode::SortingMode::Off)
{
setBin_Traversal(stateset);
return;
}
if (type == Nif::RC_NiAlphaAccumulator)
{
if (hasSortAlpha)
setBin_BackToFront(stateset);
else
setBin_Traversal(stateset);
}
else if (type == Nif::RC_NiClusterAccumulator)
setBin_BackToFront(stateset);
else
Log(Debug::Error) << "Unrecognized NiAccumulator in " << mFilename;
};
switch (mPushedSorter->mMode)
{
case Nif::NiSortAdjustNode::SortingMode::Inherit:
{
if (mLastAppliedNoInheritSorter)
assignBin(mLastAppliedNoInheritSorter->mMode, mLastAppliedNoInheritSorter->mSubSorter->recType);
else
assignBin(mPushedSorter->mMode, Nif::RC_NiAlphaAccumulator);
break;
}
case Nif::NiSortAdjustNode::SortingMode::Off:
{
setBin_Traversal(stateset);
break;
}
case Nif::NiSortAdjustNode::SortingMode::Subsort:
{
assignBin(mPushedSorter->mMode, mPushedSorter->mSubSorter->recType);
break;
}
}
}
};
osg::ref_ptr<osg::Node> Loader::load(
Nif::FileView file, Resource::ImageManager* imageManager, Resource::BgsmFileManager* materialManager)
{
LoaderImpl impl(file.getFilename(), file.getVersion(), file.getUserVersion(), file.getBethVersion());
impl.mMaterialManager = materialManager;
impl.mImageManager = imageManager;
return impl.load(file);
}
void Loader::loadKf(Nif::FileView kf, SceneUtil::KeyframeHolder& target)
{
LoaderImpl impl(kf.getFilename(), kf.getVersion(), kf.getUserVersion(), kf.getBethVersion());
impl.loadKf(kf, target);
}
}