You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
openmw/components/sceneutil/lightmanager.cpp

1360 lines
49 KiB
C++

#include "lightmanager.hpp"
#include <algorithm>
#include <array>
#include <cstring>
#include <iterator>
#include <osg/BufferIndexBinding>
#include <osg/BufferObject>
#include <osg/Endian>
#include <osg/ValueObject>
#include <osgUtil/CullVisitor>
#include <components/resource/scenemanager.hpp>
#include <components/sceneutil/glextensions.hpp>
#include <components/sceneutil/util.hpp>
#include <components/shader/shadermanager.hpp>
#include <components/misc/constants.hpp>
#include <components/misc/hash.hpp>
#include <components/debug/debuglog.hpp>
namespace
{
constexpr int ffpMaxLights = 8;
bool sortLights(const SceneUtil::LightManager::LightSourceViewBound* left,
const SceneUtil::LightManager::LightSourceViewBound* right)
{
static auto constexpr illuminationBias = 81.f;
return left->mViewBound.center().length2() - left->mViewBound.radius2() * illuminationBias
< right->mViewBound.center().length2() - right->mViewBound.radius2() * illuminationBias;
}
void configurePosition(osg::Matrixf& mat, const osg::Vec4& pos)
{
mat(0, 0) = pos.x();
mat(0, 1) = pos.y();
mat(0, 2) = pos.z();
}
void configureAmbient(osg::Matrixf& mat, const osg::Vec4& color)
{
mat(1, 0) = color.r();
mat(1, 1) = color.g();
mat(1, 2) = color.b();
}
void configureDiffuse(osg::Matrixf& mat, const osg::Vec4& color)
{
mat(2, 0) = color.r();
mat(2, 1) = color.g();
mat(2, 2) = color.b();
}
void configureSpecular(osg::Matrixf& mat, const osg::Vec4& color)
{
mat(3, 0) = color.r();
mat(3, 1) = color.g();
mat(3, 2) = color.b();
mat(3, 3) = color.a();
}
void configureAttenuation(osg::Matrixf& mat, float c, float l, float q, float r)
{
mat(0, 3) = c;
mat(1, 3) = l;
mat(2, 3) = q;
mat(3, 3) = r;
}
}
namespace SceneUtil
{
namespace
{
const std::unordered_map<std::string, LightingMethod> lightingMethodSettingMap = {
{ "legacy", LightingMethod::FFP },
{ "shaders compatibility", LightingMethod::PerObjectUniform },
{ "shaders", LightingMethod::SingleUBO },
};
}
static int sLightId = 0;
// Handles a GLSL shared layout by using configured offsets and strides to fill a continuous buffer, making the data
// upload to GPU simpler.
class LightBuffer : public osg::Referenced
{
public:
enum LayoutOffset
{
Diffuse,
DiffuseSign,
Ambient,
Specular,
Position,
AttenuationRadius
};
LightBuffer(int count)
: mData(new osg::FloatArray(3 * 4 * count))
, mEndian(osg::getCpuByteOrder())
, mCount(count)
, mCachedSunPos(osg::Vec4())
{
}
LightBuffer(const LightBuffer&) = delete;
void setDiffuse(int index, const osg::Vec4& value)
{
// Deal with negative lights (negative diffuse) by passing a sign bit in the unused alpha component
auto positiveColor = value;
unsigned int signBit = 1;
if (value[0] < 0)
{
positiveColor *= -1.0;
signBit = ~0u;
}
unsigned int packedColor = asRGBA(positiveColor);
std::memcpy(&(*mData)[getOffset(index, Diffuse)], &packedColor, sizeof(unsigned int));
std::memcpy(&(*mData)[getOffset(index, DiffuseSign)], &signBit, sizeof(unsigned int));
}
void setAmbient(int index, const osg::Vec4& value)
{
unsigned int packed = asRGBA(value);
std::memcpy(&(*mData)[getOffset(index, Ambient)], &packed, sizeof(unsigned int));
}
void setSpecular(int index, const osg::Vec4& value)
{
unsigned int packed = asRGBA(value);
std::memcpy(&(*mData)[getOffset(index, Specular)], &packed, sizeof(unsigned int));
}
void setPosition(int index, const osg::Vec4& value)
{
std::memcpy(&(*mData)[getOffset(index, Position)], value.ptr(), sizeof(osg::Vec4f));
}
void setAttenuationRadius(int index, const osg::Vec4& value)
{
std::memcpy(&(*mData)[getOffset(index, AttenuationRadius)], value.ptr(), sizeof(osg::Vec4f));
}
auto& getData() { return mData; }
void dirty() { mData->dirty(); }
static constexpr int queryBlockSize(int sz) { return 3 * osg::Vec4::num_components * sizeof(GLfloat) * sz; }
void setCachedSunPos(const osg::Vec4& pos) { mCachedSunPos = pos; }
void uploadCachedSunPos(const osg::Matrix& viewMat)
{
osg::Vec4 viewPos = mCachedSunPos * viewMat;
std::memcpy(&(*mData)[getOffset(0, Position)], viewPos.ptr(), sizeof(osg::Vec4f));
}
unsigned int asRGBA(const osg::Vec4& value) const
{
return mEndian == osg::BigEndian ? value.asABGR() : value.asRGBA();
}
int getOffset(int index, LayoutOffset slot) const { return mOffsets.get(index, slot); }
void configureLayout(int offsetColors, int offsetPosition, int offsetAttenuationRadius, int size, int stride)
{
configureLayout(Offsets(offsetColors, offsetPosition, offsetAttenuationRadius, stride), size);
}
void configureLayout(const LightBuffer* other)
{
mOffsets = other->mOffsets;
int size = other->mData->size();
configureLayout(mOffsets, size);
}
private:
class Offsets
{
public:
Offsets()
: mStride(12)
{
mValues[Diffuse] = 0;
mValues[Ambient] = 1;
mValues[Specular] = 2;
mValues[DiffuseSign] = 3;
mValues[Position] = 4;
mValues[AttenuationRadius] = 8;
}
Offsets(int offsetColors, int offsetPosition, int offsetAttenuationRadius, int stride)
: mStride((offsetAttenuationRadius + sizeof(GLfloat) * osg::Vec4::num_components + stride) / 4)
{
constexpr auto sizeofFloat = sizeof(GLfloat);
const auto diffuseOffset = offsetColors / sizeofFloat;
mValues[Diffuse] = diffuseOffset;
mValues[Ambient] = diffuseOffset + 1;
mValues[Specular] = diffuseOffset + 2;
mValues[DiffuseSign] = diffuseOffset + 3;
mValues[Position] = offsetPosition / sizeofFloat;
mValues[AttenuationRadius] = offsetAttenuationRadius / sizeofFloat;
}
int get(int index, LayoutOffset slot) const { return mStride * index + mValues[slot]; }
private:
int mStride;
std::array<int, 6> mValues;
};
void configureLayout(const Offsets& offsets, int size)
{
// Copy cloned data using current layout into current data using new layout.
// This allows to preserve osg::FloatArray buffer object in mData.
const auto data = mData->asVector();
mData->resizeArray(static_cast<unsigned>(size));
for (int i = 0; i < mCount; ++i)
{
std::memcpy(
&(*mData)[offsets.get(i, Diffuse)], data.data() + getOffset(i, Diffuse), sizeof(osg::Vec4f));
std::memcpy(
&(*mData)[offsets.get(i, Position)], data.data() + getOffset(i, Position), sizeof(osg::Vec4f));
std::memcpy(&(*mData)[offsets.get(i, AttenuationRadius)], data.data() + getOffset(i, AttenuationRadius),
sizeof(osg::Vec4f));
}
mOffsets = offsets;
}
osg::ref_ptr<osg::FloatArray> mData;
osg::Endian mEndian;
int mCount;
Offsets mOffsets;
osg::Vec4 mCachedSunPos;
};
struct LightStateCache
{
std::vector<osg::Light*> lastAppliedLight;
};
LightStateCache* getLightStateCache(size_t contextid, size_t size = 8)
{
static std::vector<LightStateCache> cacheVector;
if (cacheVector.size() < contextid + 1)
cacheVector.resize(contextid + 1);
cacheVector[contextid].lastAppliedLight.resize(size);
return &cacheVector[contextid];
}
void configureStateSetSunOverride(
LightManager* lightManager, const osg::Light* light, osg::StateSet* stateset, int mode)
{
auto method = lightManager->getLightingMethod();
switch (method)
{
case LightingMethod::FFP:
{
break;
}
case LightingMethod::PerObjectUniform:
{
osg::Matrixf lightMat;
configurePosition(lightMat, light->getPosition());
configureAmbient(lightMat, light->getAmbient());
configureDiffuse(lightMat, light->getDiffuse());
configureSpecular(lightMat, light->getSpecular());
stateset->addUniform(lightManager->generateLightBufferUniform(lightMat), mode);
break;
}
case LightingMethod::SingleUBO:
{
osg::ref_ptr<LightBuffer> buffer = new LightBuffer(lightManager->getMaxLightsInScene());
buffer->setDiffuse(0, light->getDiffuse());
buffer->setAmbient(0, light->getAmbient());
buffer->setSpecular(0, light->getSpecular());
buffer->setPosition(0, light->getPosition());
osg::ref_ptr<osg::UniformBufferObject> ubo = new osg::UniformBufferObject;
buffer->getData()->setBufferObject(ubo);
osg::ref_ptr<osg::UniformBufferBinding> ubb
= new osg::UniformBufferBinding(static_cast<int>(Resource::SceneManager::UBOBinding::LightBuffer),
buffer->getData(), 0, buffer->getData()->getTotalDataSize());
stateset->setAttributeAndModes(ubb, mode);
break;
}
}
}
class DisableLight : public osg::StateAttribute
{
public:
DisableLight()
: mIndex(0)
{
}
DisableLight(int index)
: mIndex(index)
{
}
DisableLight(const DisableLight& copy, const osg::CopyOp& copyop = osg::CopyOp::SHALLOW_COPY)
: osg::StateAttribute(copy, copyop)
, mIndex(copy.mIndex)
{
}
META_StateAttribute(SceneUtil, DisableLight, osg::StateAttribute::LIGHT)
unsigned int getMember() const override { return mIndex; }
bool getModeUsage(ModeUsage& usage) const override
{
usage.usesMode(GL_LIGHT0 + mIndex);
return true;
}
int compare(const StateAttribute& sa) const override
{
throw std::runtime_error("DisableLight::compare: unimplemented");
}
void apply(osg::State& state) const override
{
int lightNum = GL_LIGHT0 + mIndex;
glLightfv(lightNum, GL_AMBIENT, mNullptr.ptr());
glLightfv(lightNum, GL_DIFFUSE, mNullptr.ptr());
glLightfv(lightNum, GL_SPECULAR, mNullptr.ptr());
LightStateCache* cache = getLightStateCache(state.getContextID());
cache->lastAppliedLight[mIndex] = nullptr;
}
private:
size_t mIndex;
osg::Vec4f mNullptr;
};
class FFPLightStateAttribute : public osg::StateAttribute
{
public:
FFPLightStateAttribute()
: mIndex(0)
{
}
FFPLightStateAttribute(size_t index, const std::vector<osg::ref_ptr<osg::Light>>& lights)
: mIndex(index)
, mLights(lights)
{
}
FFPLightStateAttribute(
const FFPLightStateAttribute& copy, const osg::CopyOp& copyop = osg::CopyOp::SHALLOW_COPY)
: osg::StateAttribute(copy, copyop)
, mIndex(copy.mIndex)
, mLights(copy.mLights)
{
}
unsigned int getMember() const override { return mIndex; }
bool getModeUsage(ModeUsage& usage) const override
{
for (size_t i = 0; i < mLights.size(); ++i)
usage.usesMode(GL_LIGHT0 + mIndex + i);
return true;
}
int compare(const StateAttribute& sa) const override
{
throw std::runtime_error("FFPLightStateAttribute::compare: unimplemented");
}
META_StateAttribute(SceneUtil, FFPLightStateAttribute, osg::StateAttribute::LIGHT)
void apply(osg::State& state) const override
{
if (mLights.empty())
return;
osg::Matrix modelViewMatrix = state.getModelViewMatrix();
state.applyModelViewMatrix(state.getInitialViewMatrix());
LightStateCache* cache = getLightStateCache(state.getContextID());
for (size_t i = 0; i < mLights.size(); ++i)
{
osg::Light* current = cache->lastAppliedLight[i + mIndex];
if (current != mLights[i].get())
{
applyLight((GLenum)((int)GL_LIGHT0 + i + mIndex), mLights[i].get());
cache->lastAppliedLight[i + mIndex] = mLights[i].get();
}
}
state.applyModelViewMatrix(modelViewMatrix);
}
void applyLight(GLenum lightNum, const osg::Light* light) const
{
glLightfv(lightNum, GL_AMBIENT, light->getAmbient().ptr());
glLightfv(lightNum, GL_DIFFUSE, light->getDiffuse().ptr());
glLightfv(lightNum, GL_SPECULAR, light->getSpecular().ptr());
glLightfv(lightNum, GL_POSITION, light->getPosition().ptr());
// TODO: enable this once spot lights are supported
// need to transform SPOT_DIRECTION by the world matrix?
// glLightfv(lightNum, GL_SPOT_DIRECTION, light->getDirection().ptr());
// glLightf(lightNum, GL_SPOT_EXPONENT, light->getSpotExponent());
// glLightf(lightNum, GL_SPOT_CUTOFF, light->getSpotCutoff());
glLightf(lightNum, GL_CONSTANT_ATTENUATION, light->getConstantAttenuation());
glLightf(lightNum, GL_LINEAR_ATTENUATION, light->getLinearAttenuation());
glLightf(lightNum, GL_QUADRATIC_ATTENUATION, light->getQuadraticAttenuation());
}
private:
size_t mIndex;
std::vector<osg::ref_ptr<osg::Light>> mLights;
};
struct StateSetGenerator
{
LightManager* mLightManager;
virtual ~StateSetGenerator() {}
virtual osg::ref_ptr<osg::StateSet> generate(const LightManager::LightList& lightList, size_t frameNum) = 0;
virtual void update(osg::StateSet* stateset, const LightManager::LightList& lightList, size_t frameNum) {}
osg::Matrix mViewMatrix;
};
struct StateSetGeneratorFFP : StateSetGenerator
{
osg::ref_ptr<osg::StateSet> generate(const LightManager::LightList& lightList, size_t frameNum) override
{
osg::ref_ptr<osg::StateSet> stateset = new osg::StateSet;
std::vector<osg::ref_ptr<osg::Light>> lights;
lights.reserve(lightList.size());
for (size_t i = 0; i < lightList.size(); ++i)
lights.emplace_back(lightList[i]->mLightSource->getLight(frameNum));
// the first light state attribute handles the actual state setting for all lights
// it's best to batch these up so that we don't need to touch the modelView matrix more than necessary
// don't use setAttributeAndModes, that does not support light indices!
stateset->setAttribute(
new FFPLightStateAttribute(mLightManager->getStartLight(), std::move(lights)), osg::StateAttribute::ON);
for (size_t i = 0; i < lightList.size(); ++i)
stateset->setMode(GL_LIGHT0 + mLightManager->getStartLight() + i, osg::StateAttribute::ON);
// need to push some dummy attributes to ensure proper state tracking
// lights need to reset to their default when the StateSet is popped
for (size_t i = 1; i < lightList.size(); ++i)
stateset->setAttribute(
mLightManager->getDummies()[i + mLightManager->getStartLight()].get(), osg::StateAttribute::ON);
return stateset;
}
};
struct StateSetGeneratorSingleUBO : StateSetGenerator
{
osg::ref_ptr<osg::StateSet> generate(const LightManager::LightList& lightList, size_t frameNum) override
{
osg::ref_ptr<osg::StateSet> stateset = new osg::StateSet;
osg::ref_ptr<osg::Uniform> indicesUni
= new osg::Uniform(osg::Uniform::Type::INT, "PointLightIndex", mLightManager->getMaxLights());
int pointCount = 0;
for (size_t i = 0; i < lightList.size(); ++i)
{
int bufIndex = mLightManager->getLightIndexMap(frameNum)[lightList[i]->mLightSource->getId()];
indicesUni->setElement(pointCount++, bufIndex);
}
stateset->addUniform(indicesUni);
stateset->addUniform(new osg::Uniform("PointLightCount", pointCount));
return stateset;
}
// Cached statesets must be revalidated in case the light indices change. There is no actual link between
// a light's ID and the buffer index it will eventually be assigned (or reassigned) to.
void update(osg::StateSet* stateset, const LightManager::LightList& lightList, size_t frameNum) override
{
int newCount = 0;
int oldCount;
auto uOldArray = stateset->getUniform("PointLightIndex");
auto uOldCount = stateset->getUniform("PointLightCount");
uOldCount->get(oldCount);
// max lights count can change during runtime
oldCount = std::min(mLightManager->getMaxLights(), oldCount);
auto& lightData = mLightManager->getLightIndexMap(frameNum);
for (int i = 0; i < oldCount; ++i)
{
auto* lightSource = lightList[i]->mLightSource;
auto it = lightData.find(lightSource->getId());
if (it != lightData.end())
uOldArray->setElement(newCount++, it->second);
}
uOldArray->dirty();
uOldCount->set(newCount);
}
};
struct StateSetGeneratorPerObjectUniform : StateSetGenerator
{
osg::ref_ptr<osg::StateSet> generate(const LightManager::LightList& lightList, size_t frameNum) override
{
osg::ref_ptr<osg::StateSet> stateset = new osg::StateSet;
osg::ref_ptr<osg::Uniform> data
= mLightManager->generateLightBufferUniform(mLightManager->getSunlightBuffer(frameNum));
for (size_t i = 0; i < lightList.size(); ++i)
{
auto* light = lightList[i]->mLightSource->getLight(frameNum);
osg::Matrixf lightMat;
configurePosition(lightMat, light->getPosition() * mViewMatrix);
configureAmbient(lightMat, light->getAmbient());
configureDiffuse(lightMat, light->getDiffuse());
configureSpecular(lightMat, light->getSpecular());
configureAttenuation(lightMat, light->getConstantAttenuation(), light->getLinearAttenuation(),
light->getQuadraticAttenuation(), lightList[i]->mLightSource->getRadius());
data->setElement(i + 1, lightMat);
}
stateset->addUniform(data);
stateset->addUniform(new osg::Uniform("PointLightCount", static_cast<int>(lightList.size() + 1)));
return stateset;
}
};
LightManager* findLightManager(const osg::NodePath& path)
{
for (size_t i = 0; i < path.size(); ++i)
{
if (LightManager* lightManager = dynamic_cast<LightManager*>(path[i]))
return lightManager;
}
return nullptr;
}
// Set on a LightSource. Adds the light source to its light manager for the current frame.
// This allows us to keep track of the current lights in the scene graph without tying creation & destruction to the
// manager.
class CollectLightCallback : public NodeCallback<CollectLightCallback>
{
public:
CollectLightCallback()
: mLightManager(nullptr)
{
}
CollectLightCallback(const CollectLightCallback& copy, const osg::CopyOp& copyop)
: NodeCallback<CollectLightCallback>(copy, copyop)
, mLightManager(nullptr)
{
}
META_Object(SceneUtil, CollectLightCallback)
void operator()(osg::Node* node, osg::NodeVisitor* nv)
{
if (!mLightManager)
{
mLightManager = findLightManager(nv->getNodePath());
if (!mLightManager)
throw std::runtime_error("can't find parent LightManager");
}
mLightManager->addLight(
static_cast<LightSource*>(node), osg::computeLocalToWorld(nv->getNodePath()), nv->getTraversalNumber());
traverse(node, nv);
}
private:
LightManager* mLightManager;
};
// Set on a LightManager. Clears the data from the previous frame.
class LightManagerUpdateCallback : public SceneUtil::NodeCallback<LightManagerUpdateCallback>
{
public:
void operator()(osg::Node* node, osg::NodeVisitor* nv)
{
LightManager* lightManager = static_cast<LightManager*>(node);
lightManager->update(nv->getTraversalNumber());
traverse(node, nv);
}
};
class LightManagerCullCallback
: public SceneUtil::NodeCallback<LightManagerCullCallback, LightManager*, osgUtil::CullVisitor*>
{
public:
LightManagerCullCallback(LightManager* lightManager)
{
if (!lightManager->getUBOManager())
return;
for (size_t i = 0; i < mUBBs.size(); ++i)
{
auto& buffer = lightManager->getUBOManager()->getLightBuffer(i);
mUBBs[i]
= new osg::UniformBufferBinding(static_cast<int>(Resource::SceneManager::UBOBinding::LightBuffer),
buffer->getData(), 0, buffer->getData()->getTotalDataSize());
}
}
void operator()(LightManager* node, osgUtil::CullVisitor* cv)
{
osg::ref_ptr<osg::StateSet> stateset = new osg::StateSet;
if (node->getLightingMethod() == LightingMethod::SingleUBO)
{
const size_t frameId = cv->getTraversalNumber() % 2;
stateset->setAttributeAndModes(mUBBs[frameId], osg::StateAttribute::ON);
auto& buffer = node->getUBOManager()->getLightBuffer(cv->getTraversalNumber());
if (auto sun = node->getSunlight())
{
buffer->setCachedSunPos(sun->getPosition());
buffer->setAmbient(0, sun->getAmbient());
buffer->setDiffuse(0, sun->getDiffuse());
buffer->setSpecular(0, sun->getSpecular());
}
}
else if (node->getLightingMethod() == LightingMethod::PerObjectUniform)
{
if (auto sun = node->getSunlight())
{
osg::Matrixf lightMat;
configurePosition(
lightMat, sun->getPosition() * (*cv->getCurrentRenderStage()->getInitialViewMatrix()));
configureAmbient(lightMat, sun->getAmbient());
configureDiffuse(lightMat, sun->getDiffuse());
configureSpecular(lightMat, sun->getSpecular());
node->setSunlightBuffer(lightMat, cv->getTraversalNumber());
stateset->addUniform(node->generateLightBufferUniform(lightMat));
}
}
cv->pushStateSet(stateset);
traverse(node, cv);
cv->popStateSet();
if (node->getPPLightsBuffer() && cv->getCurrentCamera()->getName() == Constants::SceneCamera)
node->getPPLightsBuffer()->updateCount(cv->getTraversalNumber());
}
std::array<osg::ref_ptr<osg::UniformBufferBinding>, 2> mUBBs;
};
UBOManager::UBOManager(int lightCount)
: mDummyProgram(new osg::Program)
, mInitLayout(false)
, mDirty({ true, true })
, mTemplate(new LightBuffer(lightCount))
{
static const std::string dummyVertSource = generateDummyShader(lightCount);
// Needed to query the layout of the buffer object. The layout specifier needed to use the std140 layout is not
// reliably available, regardless of extensions, until GLSL 140.
mDummyProgram->addShader(new osg::Shader(osg::Shader::VERTEX, dummyVertSource));
mDummyProgram->addBindUniformBlock(
"LightBufferBinding", static_cast<int>(Resource::SceneManager::UBOBinding::LightBuffer));
for (size_t i = 0; i < mLightBuffers.size(); ++i)
{
mLightBuffers[i] = new LightBuffer(lightCount);
osg::ref_ptr<osg::UniformBufferObject> ubo = new osg::UniformBufferObject;
ubo->setUsage(GL_STREAM_DRAW);
mLightBuffers[i]->getData()->setBufferObject(ubo);
}
}
UBOManager::UBOManager(const UBOManager& copy, const osg::CopyOp& copyop)
: osg::StateAttribute(copy, copyop)
, mDummyProgram(copy.mDummyProgram)
, mInitLayout(copy.mInitLayout)
{
}
void UBOManager::releaseGLObjects(osg::State* state) const
{
mDummyProgram->releaseGLObjects(state);
}
int UBOManager::compare(const StateAttribute& sa) const
{
throw std::runtime_error("LightManagerStateAttribute::compare: unimplemented");
}
void UBOManager::apply(osg::State& state) const
{
unsigned int frame = state.getFrameStamp()->getFrameNumber();
unsigned int index = frame % 2;
if (!mInitLayout)
{
mDummyProgram->apply(state);
auto handle = mDummyProgram->getPCP(state)->getHandle();
auto* ext = state.get<osg::GLExtensions>();
int activeUniformBlocks = 0;
ext->glGetProgramiv(handle, GL_ACTIVE_UNIFORM_BLOCKS, &activeUniformBlocks);
// wait until the UBO binding is created
if (activeUniformBlocks > 0)
{
initSharedLayout(ext, handle, frame);
mInitLayout = true;
}
}
else if (mDirty[index])
{
mDirty[index] = false;
mLightBuffers[index]->configureLayout(mTemplate);
}
mLightBuffers[index]->uploadCachedSunPos(state.getInitialViewMatrix());
mLightBuffers[index]->dirty();
}
std::string UBOManager::generateDummyShader(int maxLightsInScene)
{
const std::string define = "@maxLightsInScene";
std::string shader = R"GLSL(
#version 120
#extension GL_ARB_uniform_buffer_object : require
struct LightData {
ivec4 packedColors;
vec4 position;
vec4 attenuation;
};
uniform LightBufferBinding {
LightData LightBuffer[@maxLightsInScene];
};
void main()
{
gl_Position = vec4(0.0);
}
)GLSL";
shader.replace(shader.find(define), define.length(), std::to_string(maxLightsInScene));
return shader;
}
void UBOManager::initSharedLayout(osg::GLExtensions* ext, int handle, unsigned int frame) const
{
constexpr std::array<unsigned int, 1> index
= { static_cast<unsigned int>(Resource::SceneManager::UBOBinding::LightBuffer) };
int totalBlockSize = -1;
int stride = -1;
ext->glGetActiveUniformBlockiv(handle, 0, GL_UNIFORM_BLOCK_DATA_SIZE, &totalBlockSize);
ext->glGetActiveUniformsiv(handle, index.size(), index.data(), GL_UNIFORM_ARRAY_STRIDE, &stride);
std::array<const char*, 3> names = {
"LightBuffer[0].packedColors",
"LightBuffer[0].position",
"LightBuffer[0].attenuation",
};
std::vector<unsigned int> indices(names.size());
std::vector<int> offsets(names.size());
ext->glGetUniformIndices(handle, names.size(), names.data(), indices.data());
ext->glGetActiveUniformsiv(handle, indices.size(), indices.data(), GL_UNIFORM_OFFSET, offsets.data());
mTemplate->configureLayout(offsets[0], offsets[1], offsets[2], totalBlockSize, stride);
}
LightingMethod LightManager::getLightingMethodFromString(const std::string& value)
{
auto it = lightingMethodSettingMap.find(value);
if (it != lightingMethodSettingMap.end())
return it->second;
constexpr const char* fallback = "shaders compatibility";
Log(Debug::Warning) << "Unknown lighting method '" << value << "', returning fallback '" << fallback << "'";
return LightingMethod::PerObjectUniform;
}
std::string LightManager::getLightingMethodString(LightingMethod method)
{
for (const auto& p : lightingMethodSettingMap)
if (p.second == method)
return p.first;
return "";
}
LightManager::LightManager(const LightSettings& settings)
: mStartLight(0)
, mLightingMask(~0u)
, mSun(nullptr)
, mPointLightRadiusMultiplier(1.f)
, mPointLightFadeEnd(0.f)
, mPointLightFadeStart(0.f)
{
osg::GLExtensions* exts = SceneUtil::glExtensionsReady() ? &SceneUtil::getGLExtensions() : nullptr;
bool supportsUBO = exts && exts->isUniformBufferObjectSupported;
bool supportsGPU4 = exts && exts->isGpuShader4Supported;
mSupported[static_cast<int>(LightingMethod::FFP)] = true;
mSupported[static_cast<int>(LightingMethod::PerObjectUniform)] = true;
mSupported[static_cast<int>(LightingMethod::SingleUBO)] = supportsUBO && supportsGPU4;
setUpdateCallback(new LightManagerUpdateCallback);
if (settings.mLightingMethod == LightingMethod::FFP)
{
initFFP(ffpMaxLights);
return;
}
static bool hasLoggedWarnings = false;
if (settings.mLightingMethod == LightingMethod::SingleUBO && !hasLoggedWarnings)
{
if (!supportsUBO)
Log(Debug::Warning)
<< "GL_ARB_uniform_buffer_object not supported: switching to shader compatibility lighting mode";
if (!supportsGPU4)
Log(Debug::Warning)
<< "GL_EXT_gpu_shader4 not supported: switching to shader compatibility lighting mode";
hasLoggedWarnings = true;
}
if (!supportsUBO || !supportsGPU4 || settings.mLightingMethod == LightingMethod::PerObjectUniform)
initPerObjectUniform(settings.mMaxLights);
else
initSingleUBO(settings.mMaxLights);
updateSettings(settings.mLightBoundsMultiplier, settings.mMaximumLightDistance, settings.mLightFadeStart);
getOrCreateStateSet()->addUniform(new osg::Uniform("PointLightCount", 0));
addCullCallback(new LightManagerCullCallback(this));
}
LightManager::LightManager(const LightManager& copy, const osg::CopyOp& copyop)
: osg::Group(copy, copyop)
, mStartLight(copy.mStartLight)
, mLightingMask(copy.mLightingMask)
, mSun(copy.mSun)
, mLightingMethod(copy.mLightingMethod)
, mPointLightRadiusMultiplier(copy.mPointLightRadiusMultiplier)
, mPointLightFadeEnd(copy.mPointLightFadeEnd)
, mPointLightFadeStart(copy.mPointLightFadeStart)
, mMaxLights(copy.mMaxLights)
, mPPLightBuffer(copy.mPPLightBuffer)
{
}
LightingMethod LightManager::getLightingMethod() const
{
return mLightingMethod;
}
bool LightManager::usingFFP() const
{
return mLightingMethod == LightingMethod::FFP;
}
int LightManager::getMaxLights() const
{
return mMaxLights;
}
void LightManager::setMaxLights(int value)
{
mMaxLights = value;
}
int LightManager::getMaxLightsInScene() const
{
static constexpr int max = 16384 / LightBuffer::queryBlockSize(1);
return max;
}
Shader::ShaderManager::DefineMap LightManager::getLightDefines() const
{
Shader::ShaderManager::DefineMap defines;
defines["maxLights"] = std::to_string(getMaxLights());
defines["maxLightsInScene"] = std::to_string(getMaxLightsInScene());
defines["lightingMethodFFP"] = getLightingMethod() == LightingMethod::FFP ? "1" : "0";
defines["lightingMethodPerObjectUniform"] = getLightingMethod() == LightingMethod::PerObjectUniform ? "1" : "0";
defines["lightingMethodUBO"] = getLightingMethod() == LightingMethod::SingleUBO ? "1" : "0";
defines["useUBO"] = std::to_string(getLightingMethod() == LightingMethod::SingleUBO);
// exposes bitwise operators
defines["useGPUShader4"] = std::to_string(getLightingMethod() == LightingMethod::SingleUBO);
defines["getLight"] = getLightingMethod() == LightingMethod::FFP ? "gl_LightSource" : "LightBuffer";
defines["startLight"] = getLightingMethod() == LightingMethod::SingleUBO ? "0" : "1";
defines["endLight"] = getLightingMethod() == LightingMethod::FFP ? defines["maxLights"] : "PointLightCount";
return defines;
}
void LightManager::processChangedSettings(
float lightBoundsMultiplier, float maximumLightDistance, float lightFadeStart)
{
updateSettings(lightBoundsMultiplier, maximumLightDistance, lightFadeStart);
}
void LightManager::updateMaxLights(int maxLights)
{
if (usingFFP())
return;
setMaxLights(maxLights);
if (getLightingMethod() == LightingMethod::PerObjectUniform)
{
getStateSet()->removeUniform("LightBuffer");
getStateSet()->addUniform(generateLightBufferUniform(osg::Matrixf()));
}
for (auto& cache : mStateSetCache)
cache.clear();
}
void LightManager::updateSettings(float lightBoundsMultiplier, float maximumLightDistance, float lightFadeStart)
{
if (getLightingMethod() == LightingMethod::FFP)
return;
mPointLightRadiusMultiplier = lightBoundsMultiplier;
mPointLightFadeEnd = maximumLightDistance;
if (mPointLightFadeEnd > 0)
mPointLightFadeStart = mPointLightFadeEnd * lightFadeStart;
}
void LightManager::initFFP(int targetLights)
{
setLightingMethod(LightingMethod::FFP);
setMaxLights(targetLights);
for (int i = 0; i < getMaxLights(); ++i)
mDummies.push_back(new FFPLightStateAttribute(i, std::vector<osg::ref_ptr<osg::Light>>()));
}
void LightManager::initPerObjectUniform(int targetLights)
{
setLightingMethod(LightingMethod::PerObjectUniform);
setMaxLights(targetLights);
getOrCreateStateSet()->addUniform(generateLightBufferUniform(osg::Matrixf()));
}
void LightManager::initSingleUBO(int targetLights)
{
setLightingMethod(LightingMethod::SingleUBO);
setMaxLights(targetLights);
mUBOManager = new UBOManager(getMaxLightsInScene());
getOrCreateStateSet()->setAttributeAndModes(mUBOManager);
}
void LightManager::setLightingMethod(LightingMethod method)
{
mLightingMethod = method;
switch (method)
{
case LightingMethod::FFP:
mStateSetGenerator = std::make_unique<StateSetGeneratorFFP>();
break;
case LightingMethod::SingleUBO:
mStateSetGenerator = std::make_unique<StateSetGeneratorSingleUBO>();
break;
case LightingMethod::PerObjectUniform:
mStateSetGenerator = std::make_unique<StateSetGeneratorPerObjectUniform>();
break;
}
mStateSetGenerator->mLightManager = this;
}
void LightManager::setLightingMask(size_t mask)
{
mLightingMask = mask;
}
size_t LightManager::getLightingMask() const
{
return mLightingMask;
}
void LightManager::setStartLight(int start)
{
mStartLight = start;
if (!usingFFP())
return;
// Set default light state to zero
// This is necessary because shaders don't respect glDisable(GL_LIGHTX) so in addition to disabling
// we'll have to set a light state that has no visible effect
for (int i = start; i < getMaxLights(); ++i)
{
osg::ref_ptr<DisableLight> defaultLight(new DisableLight(i));
getOrCreateStateSet()->setAttributeAndModes(defaultLight, osg::StateAttribute::OFF);
}
}
int LightManager::getStartLight() const
{
return mStartLight;
}
void LightManager::update(size_t frameNum)
{
if (mPPLightBuffer)
mPPLightBuffer->clear(frameNum);
getLightIndexMap(frameNum).clear();
mLights.clear();
mLightsInViewSpace.clear();
// Do an occasional cleanup for orphaned lights.
for (int i = 0; i < 2; ++i)
{
if (mStateSetCache[i].size() > 5000)
mStateSetCache[i].clear();
}
}
void LightManager::addLight(LightSource* lightSource, const osg::Matrixf& worldMat, size_t frameNum)
{
LightSourceTransform l;
l.mLightSource = lightSource;
l.mWorldMatrix = worldMat;
osg::Vec3f pos = osg::Vec3f(worldMat.getTrans().x(), worldMat.getTrans().y(), worldMat.getTrans().z());
lightSource->getLight(frameNum)->setPosition(osg::Vec4f(pos, 1.f));
mLights.push_back(l);
}
void LightManager::setSunlight(osg::ref_ptr<osg::Light> sun)
{
if (usingFFP())
return;
mSun = sun;
}
osg::ref_ptr<osg::Light> LightManager::getSunlight()
{
return mSun;
}
size_t LightManager::HashLightIdList::operator()(const LightIdList& lightIdList) const
{
size_t hash = 0;
for (size_t i = 0; i < lightIdList.size(); ++i)
Misc::hashCombine(hash, lightIdList[i]);
return hash;
}
osg::ref_ptr<osg::StateSet> LightManager::getLightListStateSet(
const LightList& lightList, size_t frameNum, const osg::RefMatrix* viewMatrix)
{
if (getLightingMethod() == LightingMethod::PerObjectUniform)
{
mStateSetGenerator->mViewMatrix = *viewMatrix;
return mStateSetGenerator->generate(lightList, frameNum);
}
// possible optimization: return a StateSet containing all requested lights plus some extra lights (if a
// suitable one exists)
if (getLightingMethod() == LightingMethod::SingleUBO)
{
for (size_t i = 0; i < lightList.size(); ++i)
{
auto id = lightList[i]->mLightSource->getId();
if (getLightIndexMap(frameNum).find(id) != getLightIndexMap(frameNum).end())
continue;
int index = getLightIndexMap(frameNum).size() + 1;
updateGPUPointLight(index, lightList[i]->mLightSource, frameNum, viewMatrix);
getLightIndexMap(frameNum).emplace(id, index);
}
}
auto& stateSetCache = mStateSetCache[frameNum % 2];
LightIdList lightIdList;
lightIdList.reserve(lightList.size());
std::transform(lightList.begin(), lightList.end(), std::back_inserter(lightIdList),
[](const LightSourceViewBound* l) { return l->mLightSource->getId(); });
auto found = stateSetCache.find(lightIdList);
if (found != stateSetCache.end())
{
mStateSetGenerator->update(found->second, lightList, frameNum);
return found->second;
}
auto stateset = mStateSetGenerator->generate(lightList, frameNum);
stateSetCache.emplace(lightIdList, stateset);
return stateset;
}
const std::vector<LightManager::LightSourceViewBound>& LightManager::getLightsInViewSpace(
osgUtil::CullVisitor* cv, const osg::RefMatrix* viewMatrix, size_t frameNum)
{
osg::Camera* camera = cv->getCurrentCamera();
osg::observer_ptr<osg::Camera> camPtr(camera);
auto it = mLightsInViewSpace.find(camPtr);
if (it == mLightsInViewSpace.end())
{
it = mLightsInViewSpace.insert(std::make_pair(camPtr, LightSourceViewBoundCollection())).first;
for (const auto& transform : mLights)
{
osg::Matrixf worldViewMat = transform.mWorldMatrix * (*viewMatrix);
float radius = transform.mLightSource->getRadius();
osg::BoundingSphere viewBound = osg::BoundingSphere(osg::Vec3f(0, 0, 0), radius);
transformBoundingSphere(worldViewMat, viewBound);
if (transform.mLightSource->getLastAppliedFrame() != frameNum && mPointLightFadeEnd != 0.f)
{
const float fadeDelta = mPointLightFadeEnd - mPointLightFadeStart;
const float viewDelta = viewBound.center().length() - mPointLightFadeStart;
float fade = 1 - std::clamp(viewDelta / fadeDelta, 0.f, 1.f);
if (fade == 0.f)
continue;
auto* light = transform.mLightSource->getLight(frameNum);
light->setDiffuse(light->getDiffuse() * fade);
transform.mLightSource->setLastAppliedFrame(frameNum);
}
// remove lights culled by this camera
if (!usingFFP())
{
viewBound._radius *= 2.f;
if (cv->getModelViewCullingStack().front().isCulled(viewBound))
continue;
viewBound._radius /= 2.f;
}
viewBound._radius *= mPointLightRadiusMultiplier;
LightSourceViewBound l;
l.mLightSource = transform.mLightSource;
l.mViewBound = viewBound;
it->second.push_back(l);
}
const bool fillPPLights = mPPLightBuffer && it->first->getName() == Constants::SceneCamera;
if (fillPPLights || getLightingMethod() == LightingMethod::SingleUBO)
{
auto sorter = [](const LightSourceViewBound& left, const LightSourceViewBound& right) {
return left.mViewBound.center().length2() - left.mViewBound.radius2()
< right.mViewBound.center().length2() - right.mViewBound.radius2();
};
std::sort(it->second.begin(), it->second.end(), sorter);
if (fillPPLights)
{
for (const auto& bound : it->second)
{
if (bound.mLightSource->getEmpty())
continue;
const auto* light = bound.mLightSource->getLight(frameNum);
if (light->getDiffuse().x() >= 0.f)
mPPLightBuffer->setLight(frameNum, light, bound.mLightSource->getRadius());
}
}
if (it->second.size() > static_cast<size_t>(getMaxLightsInScene() - 1))
it->second.resize(getMaxLightsInScene() - 1);
}
}
return it->second;
}
void LightManager::updateGPUPointLight(
int index, LightSource* lightSource, size_t frameNum, const osg::RefMatrix* viewMatrix)
{
auto* light = lightSource->getLight(frameNum);
auto& buf = getUBOManager()->getLightBuffer(frameNum);
buf->setDiffuse(index, light->getDiffuse());
buf->setAmbient(index, light->getAmbient());
buf->setSpecular(index, light->getSpecular());
buf->setAttenuationRadius(index,
osg::Vec4(light->getConstantAttenuation(), light->getLinearAttenuation(), light->getQuadraticAttenuation(),
lightSource->getRadius()));
buf->setPosition(index, light->getPosition() * (*viewMatrix));
}
osg::ref_ptr<osg::Uniform> LightManager::generateLightBufferUniform(const osg::Matrixf& sun)
{
osg::ref_ptr<osg::Uniform> uniform = new osg::Uniform(osg::Uniform::FLOAT_MAT4, "LightBuffer", getMaxLights());
uniform->setElement(0, sun);
return uniform;
}
void LightManager::setCollectPPLights(bool enabled)
{
if (enabled)
mPPLightBuffer = std::make_shared<PPLightBuffer>();
else
mPPLightBuffer = nullptr;
}
LightSource::LightSource()
: mRadius(0.f)
, mActorFade(1.f)
, mLastAppliedFrame(0)
{
setUpdateCallback(new CollectLightCallback);
mId = sLightId++;
}
LightSource::LightSource(const LightSource& copy, const osg::CopyOp& copyop)
: osg::Node(copy, copyop)
, mRadius(copy.mRadius)
, mActorFade(copy.mActorFade)
, mLastAppliedFrame(copy.mLastAppliedFrame)
{
mId = sLightId++;
for (size_t i = 0; i < mLight.size(); ++i)
mLight[i] = new osg::Light(*copy.mLight[i].get(), copyop);
}
void LightListCallback::operator()(osg::Node* node, osgUtil::CullVisitor* cv)
{
bool pushedState = pushLightState(node, cv);
traverse(node, cv);
if (pushedState)
cv->popStateSet();
}
bool LightListCallback::pushLightState(osg::Node* node, osgUtil::CullVisitor* cv)
{
if (!mLightManager)
{
mLightManager = findLightManager(cv->getNodePath());
if (!mLightManager)
return false;
}
if (!(cv->getTraversalMask() & mLightManager->getLightingMask()))
return false;
// Possible optimizations:
// - organize lights in a quad tree
mLastFrameNumber = cv->getTraversalNumber();
// Don't use Camera::getViewMatrix, that one might be relative to another camera!
const osg::RefMatrix* viewMatrix = cv->getCurrentRenderStage()->getInitialViewMatrix();
const std::vector<LightManager::LightSourceViewBound>& lights
= mLightManager->getLightsInViewSpace(cv, viewMatrix, mLastFrameNumber);
// get the node bounds in view space
// NB do not node->getBound() * modelView, that would apply the node's transformation twice
osg::BoundingSphere nodeBound;
osg::Transform* transform = node->asTransform();
if (transform)
{
for (size_t i = 0; i < transform->getNumChildren(); ++i)
nodeBound.expandBy(transform->getChild(i)->getBound());
}
else
nodeBound = node->getBound();
osg::Matrixf mat = *cv->getModelViewMatrix();
transformBoundingSphere(mat, nodeBound);
mLightList.clear();
for (size_t i = 0; i < lights.size(); ++i)
{
const LightManager::LightSourceViewBound& l = lights[i];
if (mIgnoredLightSources.count(l.mLightSource))
continue;
if (l.mViewBound.intersects(nodeBound))
mLightList.push_back(&l);
}
if (!mLightList.empty())
{
size_t maxLights = mLightManager->getMaxLights() - mLightManager->getStartLight();
osg::ref_ptr<osg::StateSet> stateset = nullptr;
if (mLightList.size() > maxLights)
{
LightManager::LightList lightList = mLightList;
if (mLightManager->usingFFP())
{
for (auto it = lightList.begin(); it != lightList.end() && lightList.size() > maxLights;)
{
osg::BoundingSphere bs = (*it)->mViewBound;
bs._radius = bs._radius * 2.0;
if (cv->getModelViewCullingStack().front().isCulled(bs))
it = lightList.erase(it);
else
++it;
}
}
// sort by proximity to camera, then get rid of furthest away lights
std::sort(lightList.begin(), lightList.end(), sortLights);
while (lightList.size() > maxLights)
lightList.pop_back();
stateset = mLightManager->getLightListStateSet(
lightList, cv->getTraversalNumber(), cv->getCurrentRenderStage()->getInitialViewMatrix());
}
else
stateset = mLightManager->getLightListStateSet(
mLightList, cv->getTraversalNumber(), cv->getCurrentRenderStage()->getInitialViewMatrix());
cv->pushStateSet(stateset);
return true;
}
return false;
}
}