mirror of
				https://github.com/OpenMW/openmw.git
				synced 2025-10-31 07:26:38 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			126 lines
		
	
	
	
		
			3.6 KiB
		
	
	
	
		
			GLSL
		
	
	
	
	
	
			
		
		
	
	
			126 lines
		
	
	
	
		
			3.6 KiB
		
	
	
	
		
			GLSL
		
	
	
	
	
	
| #ifndef LIB_WATER_RIPPLES
 | |
| #define LIB_WATER_RIPPLES
 | |
| 
 | |
| #define RAIN_RIPPLE_DETAIL @rain_ripple_detail
 | |
| 
 | |
| const float RAIN_RIPPLE_GAPS = 10.0;
 | |
| const float RAIN_RIPPLE_RADIUS = 0.2;
 | |
| 
 | |
| float scramble(float x, float z)
 | |
| {
 | |
|     return fract(pow(fract(x)*3.0+1.0, z));
 | |
| }
 | |
| 
 | |
| vec2 randOffset(vec2 c, float time)
 | |
| {
 | |
|   time = fract(time/1000.0);
 | |
|   c = vec2(c.x * c.y /  8.0 + c.y * 0.3 + c.x * 0.2,
 | |
|            c.x * c.y / 14.0 + c.y * 0.5 + c.x * 0.7);
 | |
|   c.x *= scramble(scramble(time + c.x/1000.0, 4.0), 3.0) + 1.0;
 | |
|   c.y *= scramble(scramble(time + c.y/1000.0, 3.5), 3.0) + 1.0;
 | |
|   return fract(c);
 | |
| }
 | |
| 
 | |
| float randPhase(vec2 c)
 | |
| {
 | |
|   return fract((c.x * c.y) /  (c.x + c.y + 0.1));
 | |
| }
 | |
| 
 | |
| float blip(float x)
 | |
| {
 | |
|   x = max(0.0, 1.0-x*x);
 | |
|   return x*x*x;
 | |
| }
 | |
| 
 | |
| float blipDerivative(float x)
 | |
| {
 | |
|   x = clamp(x, -1.0, 1.0);
 | |
|   float n = x*x-1.0;
 | |
|   return -6.0*x*n*n;
 | |
| }
 | |
| 
 | |
| const float RAIN_RING_TIME_OFFSET = 1.0/6.0;
 | |
| 
 | |
| vec4 circle(vec2 coords, vec2 corner, float adjusted_time)
 | |
| {
 | |
|   vec2 center = vec2(0.5,0.5) + (0.5 - RAIN_RIPPLE_RADIUS) * (2.0 * randOffset(corner, floor(adjusted_time)) - 1.0);
 | |
|   float phase = fract(adjusted_time);
 | |
|   vec2 toCenter = coords - center;
 | |
| 
 | |
|   float r = RAIN_RIPPLE_RADIUS;
 | |
|   float d = length(toCenter);
 | |
|   float ringfollower = (phase-d/r)/RAIN_RING_TIME_OFFSET-1.0; // -1.0 ~ +1.0 cover the breadth of the ripple's ring
 | |
| 
 | |
| #if RAIN_RIPPLE_DETAIL > 0
 | |
| // normal mapped ripples
 | |
|   if(ringfollower < -1.0 || ringfollower > 1.0)
 | |
|     return vec4(0.0);
 | |
| 
 | |
|   if(d > 1.0) // normalize center direction vector, but not for near-center ripples
 | |
|     toCenter /= d;
 | |
| 
 | |
|   float height = blip(ringfollower*2.0+0.5); // brighten up outer edge of ring; for fake specularity
 | |
|   float range_limit = blip(min(0.0, ringfollower));
 | |
|   float energy = 1.0-phase;
 | |
| 
 | |
|   vec2 normal2d = -toCenter*blipDerivative(ringfollower)*5.0;
 | |
|   vec3 normal = vec3(normal2d, 0.5);
 | |
|   vec4 ret = vec4(normal, height);
 | |
|   ret.xyw *= energy*energy;
 | |
|   // do energy adjustment here rather than later, so that we can use the w component for fake specularity
 | |
|   ret.xyz = normalize(ret.xyz) * energy*range_limit;
 | |
|   ret.z *= range_limit;
 | |
|   return ret;
 | |
| #else
 | |
| // ring-only ripples
 | |
|   if(ringfollower < -1.0 || ringfollower > 0.5)
 | |
|     return vec4(0.0);
 | |
| 
 | |
|   float energy = 1.0-phase;
 | |
|   float height = blip(ringfollower*2.0+0.5)*energy*energy; // fake specularity
 | |
| 
 | |
|   return vec4(0.0, 0.0, 0.0, height);
 | |
| #endif
 | |
| }
 | |
| vec4 rain(vec2 uv, float time)
 | |
| {
 | |
|   uv *= RAIN_RIPPLE_GAPS;
 | |
|   vec2 f_part = fract(uv);
 | |
|   vec2 i_part = floor(uv);
 | |
|   float adjusted_time = time * 1.2 + randPhase(i_part);
 | |
| #if RAIN_RIPPLE_DETAIL > 0
 | |
|   vec4 a = circle(f_part, i_part, adjusted_time);
 | |
|   vec4 b = circle(f_part, i_part, adjusted_time - RAIN_RING_TIME_OFFSET);
 | |
|   vec4 c = circle(f_part, i_part, adjusted_time - RAIN_RING_TIME_OFFSET*2.0);
 | |
|   vec4 d = circle(f_part, i_part, adjusted_time - RAIN_RING_TIME_OFFSET*3.0);
 | |
|   vec4 ret;
 | |
|   ret.xy = a.xy - b.xy/2.0 + c.xy/4.0 - d.xy/8.0;
 | |
|   // z should always point up
 | |
|   ret.z  = a.z  + b.z /2.0 + c.z /4.0 + d.z /8.0;
 | |
|   //ret.xyz *= 1.5;
 | |
|   // fake specularity looks weird if we use every single ring, also if the inner rings are too bright 
 | |
|   ret.w  = (a.w + c.w /8.0)*1.5;
 | |
|   return ret;
 | |
| #else
 | |
|   return circle(f_part, i_part, adjusted_time) * 1.5;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| vec2 complex_mult(vec2 a, vec2 b)
 | |
| {
 | |
|     return vec2(a.x*b.x - a.y*b.y, a.x*b.y + a.y*b.x);
 | |
| }
 | |
| vec4 rainCombined(vec2 uv, float time) // returns ripple normal in xyz and fake specularity in w
 | |
| {
 | |
|   return
 | |
|     rain(uv, time)
 | |
|   + rain(complex_mult(uv, vec2(0.4, 0.7)) + vec2(1.2, 3.0),time)
 | |
|     #if RAIN_RIPPLE_DETAIL == 2
 | |
|       + rain(uv * 0.75 + vec2( 3.7,18.9),time)
 | |
|       + rain(uv * 0.9  + vec2( 5.7,30.1),time)
 | |
|       + rain(uv * 1.0  + vec2(10.5 ,5.7),time)
 | |
|     #endif
 | |
|   ;
 | |
| }
 | |
| 
 | |
| #endif
 |