1
0
Fork 0
mirror of https://github.com/OpenMW/openmw.git synced 2025-01-22 12:53:52 +00:00
openmw/libs/openengine/bullet/physic.cpp
Chris Robinson 386ac56bda Remove the NIF loader and code to manually transform the vertices
This currently breaks just about everything. They should come back as it's all
reimplemented, though.
2012-07-12 20:12:18 -07:00

571 lines
20 KiB
C++

#include "physic.hpp"
#include <btBulletDynamicsCommon.h>
#include <btBulletCollisionCommon.h>
#include <BulletCollision/CollisionShapes/btHeightfieldTerrainShape.h>
#include <components/nifbullet/bullet_nif_loader.hpp>
#include "CMotionState.h"
#include "OgreRoot.h"
#include "btKinematicCharacterController.h"
#include "BtOgrePG.h"
#include "BtOgreGP.h"
#include "BtOgreExtras.h"
#include <boost/lexical_cast.hpp>
#define BIT(x) (1<<(x))
namespace OEngine {
namespace Physic
{
enum collisiontypes {
COL_NOTHING = 0, //<Collide with nothing
COL_WORLD = BIT(0), //<Collide with world objects
COL_ACTOR_INTERNAL = BIT(1), //<Collide internal capsule
COL_ACTOR_EXTERNAL = BIT(2), //<collide with external capsule
COL_RAYCASTING = BIT(3)
};
PhysicActor::PhysicActor(std::string name)
{
mName = name;
// The capsule is at the origin
btTransform transform;
transform.setIdentity();
// External capsule
externalGhostObject = new PairCachingGhostObject(name);
externalGhostObject->setWorldTransform( transform );
btScalar externalCapsuleHeight = 120;
btScalar externalCapsuleWidth = 19;
externalCollisionShape = new btCapsuleShapeZ( externalCapsuleWidth, externalCapsuleHeight );
externalCollisionShape->setMargin( 0.1 );
externalGhostObject->setCollisionShape( externalCollisionShape );
externalGhostObject->setCollisionFlags( btCollisionObject::CF_CHARACTER_OBJECT );
// Internal capsule
internalGhostObject = new PairCachingGhostObject(name);
internalGhostObject->setWorldTransform( transform );
//internalGhostObject->getBroadphaseHandle()->s
btScalar internalCapsuleHeight = 110;
btScalar internalCapsuleWidth = 17;
internalCollisionShape = new btCapsuleShapeZ( internalCapsuleWidth, internalCapsuleHeight );
internalCollisionShape->setMargin( 0.1 );
internalGhostObject->setCollisionShape( internalCollisionShape );
internalGhostObject->setCollisionFlags( btCollisionObject::CF_CHARACTER_OBJECT );
mCharacter = new btKinematicCharacterController( externalGhostObject,internalGhostObject,btScalar( 40 ),1,4,20,9.8,0.2 );
mCharacter->setUpAxis(btKinematicCharacterController::Z_AXIS);
mCharacter->setUseGhostSweepTest(false);
mCharacter->mCollision = false;
setGravity(0);
mTranslation = btVector3(0,0,70);
}
PhysicActor::~PhysicActor()
{
delete mCharacter;
delete internalGhostObject;
delete internalCollisionShape;
delete externalGhostObject;
delete externalCollisionShape;
}
void PhysicActor::setGravity(float gravity)
{
mCharacter->setGravity(gravity);
//mCharacter->
}
void PhysicActor::enableCollisions(bool collision)
{
mCharacter->mCollision = collision;
}
void PhysicActor::setVerticalVelocity(float z)
{
mCharacter->setVerticalVelocity(z);
}
bool PhysicActor::getCollisionMode()
{
return mCharacter->mCollision;
}
void PhysicActor::setWalkDirection(const btVector3& mvt)
{
mCharacter->setWalkDirection( mvt );
}
void PhysicActor::Rotate(const btQuaternion& quat)
{
externalGhostObject->getWorldTransform().setRotation( externalGhostObject->getWorldTransform().getRotation() * quat );
internalGhostObject->getWorldTransform().setRotation( internalGhostObject->getWorldTransform().getRotation() * quat );
}
void PhysicActor::setRotation(const btQuaternion& quat)
{
externalGhostObject->getWorldTransform().setRotation( quat );
internalGhostObject->getWorldTransform().setRotation( quat );
}
btVector3 PhysicActor::getPosition(void)
{
return internalGhostObject->getWorldTransform().getOrigin() -mTranslation;
}
btQuaternion PhysicActor::getRotation(void)
{
return internalGhostObject->getWorldTransform().getRotation();
}
void PhysicActor::setPosition(const btVector3& pos)
{
internalGhostObject->getWorldTransform().setOrigin(pos+mTranslation);
externalGhostObject->getWorldTransform().setOrigin(pos+mTranslation);
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
RigidBody::RigidBody(btRigidBody::btRigidBodyConstructionInfo& CI,std::string name)
: btRigidBody(CI)
, mName(name)
{
}
RigidBody::~RigidBody()
{
delete getMotionState();
}
///////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////
PhysicEngine::PhysicEngine(BulletShapeLoader* shapeLoader) :
mDebugActive(0)
{
// Set up the collision configuration and dispatcher
collisionConfiguration = new btDefaultCollisionConfiguration();
dispatcher = new btCollisionDispatcher(collisionConfiguration);
// The actual physics solver
solver = new btSequentialImpulseConstraintSolver;
//btOverlappingPairCache* pairCache = new btSortedOverlappingPairCache();
pairCache = new btSortedOverlappingPairCache();
//pairCache->setInternalGhostPairCallback( new btGhostPairCallback() );
broadphase = new btDbvtBroadphase();
// The world.
dynamicsWorld = new btDiscreteDynamicsWorld(dispatcher,broadphase,solver,collisionConfiguration);
dynamicsWorld->setGravity(btVector3(0,0,-10));
if(BulletShapeManager::getSingletonPtr() == NULL)
{
new BulletShapeManager();
}
//TODO:singleton?
mShapeLoader = shapeLoader;
isDebugCreated = false;
mDebugDrawer = NULL;
}
void PhysicEngine::createDebugRendering()
{
if(!isDebugCreated)
{
Ogre::SceneManagerEnumerator::SceneManagerIterator iter = Ogre::Root::getSingleton().getSceneManagerIterator();
iter.begin();
Ogre::SceneManager* scn = iter.getNext();
Ogre::SceneNode* node = scn->getRootSceneNode()->createChildSceneNode();
node->pitch(Ogre::Degree(-90));
mDebugDrawer = new BtOgre::DebugDrawer(node, dynamicsWorld);
dynamicsWorld->setDebugDrawer(mDebugDrawer);
isDebugCreated = true;
dynamicsWorld->debugDrawWorld();
}
}
void PhysicEngine::setDebugRenderingMode(int mode)
{
if(!isDebugCreated)
{
createDebugRendering();
}
mDebugDrawer->setDebugMode(mode);
mDebugActive = mode;
}
bool PhysicEngine::toggleDebugRendering()
{
setDebugRenderingMode(!mDebugActive);
return mDebugActive;
}
PhysicEngine::~PhysicEngine()
{
HeightFieldContainer::iterator hf_it = mHeightFieldMap.begin();
for (; hf_it != mHeightFieldMap.end(); ++hf_it)
{
dynamicsWorld->removeRigidBody(hf_it->second.mBody);
delete hf_it->second.mShape;
delete hf_it->second.mBody;
}
RigidBodyContainer::iterator rb_it = RigidBodyMap.begin();
for (; rb_it != RigidBodyMap.end(); ++rb_it)
{
if (rb_it->second != NULL)
{
dynamicsWorld->removeRigidBody(rb_it->second);
delete rb_it->second;
rb_it->second = NULL;
}
}
PhysicActorContainer::iterator pa_it = PhysicActorMap.begin();
for (; pa_it != PhysicActorMap.end(); ++pa_it)
{
if (pa_it->second != NULL)
{
dynamicsWorld->removeCollisionObject(pa_it->second->externalGhostObject);
dynamicsWorld->removeCollisionObject(pa_it->second->internalGhostObject);
dynamicsWorld->removeAction(pa_it->second->mCharacter);
delete pa_it->second;
pa_it->second = NULL;
}
}
delete mDebugDrawer;
delete dynamicsWorld;
delete solver;
delete collisionConfiguration;
delete dispatcher;
delete broadphase;
delete pairCache;
delete mShapeLoader;
}
void PhysicEngine::addHeightField(float* heights,
int x, int y, float yoffset,
float triSize, float sqrtVerts)
{
const std::string name = "HeightField_"
+ boost::lexical_cast<std::string>(x) + "_"
+ boost::lexical_cast<std::string>(y);
// find the minimum and maximum heights (needed for bullet)
float minh;
float maxh;
for (int i=0; i<sqrtVerts*sqrtVerts; ++i)
{
float h = heights[i];
if (i==0)
{
minh = h;
maxh = h;
}
if (h>maxh) maxh = h;
if (h<minh) minh = h;
}
btHeightfieldTerrainShape* hfShape = new btHeightfieldTerrainShape(
sqrtVerts, sqrtVerts, heights, 1,
minh, maxh, 2,
PHY_FLOAT,true);
hfShape->setUseDiamondSubdivision(true);
btVector3 scl(triSize, triSize, 1);
hfShape->setLocalScaling(scl);
CMotionState* newMotionState = new CMotionState(this,name);
btRigidBody::btRigidBodyConstructionInfo CI = btRigidBody::btRigidBodyConstructionInfo(0,newMotionState,hfShape);
RigidBody* body = new RigidBody(CI,name);
body->collide = true;
body->getWorldTransform().setOrigin(btVector3( (x+0.5)*triSize*(sqrtVerts-1), (y+0.5)*triSize*(sqrtVerts-1), (maxh+minh)/2.f));
HeightField hf;
hf.mBody = body;
hf.mShape = hfShape;
mHeightFieldMap [name] = hf;
dynamicsWorld->addRigidBody(body,COL_WORLD,COL_WORLD|COL_ACTOR_INTERNAL|COL_ACTOR_EXTERNAL);
}
void PhysicEngine::removeHeightField(int x, int y)
{
const std::string name = "HeightField_"
+ boost::lexical_cast<std::string>(x) + "_"
+ boost::lexical_cast<std::string>(y);
HeightField hf = mHeightFieldMap [name];
dynamicsWorld->removeRigidBody(hf.mBody);
delete hf.mShape;
delete hf.mBody;
mHeightFieldMap.erase(name);
}
RigidBody* PhysicEngine::createRigidBody(std::string mesh,std::string name,float scale)
{
char uniqueID[8];
sprintf( uniqueID, "%07.3f", scale );
std::string sid = uniqueID;
std::string outputstring = mesh + uniqueID;
//std::cout << "The string" << outputstring << "\n";
//get the shape from the .nif
mShapeLoader->load(outputstring,"General");
BulletShapeManager::getSingletonPtr()->load(outputstring,"General");
BulletShapePtr shape = BulletShapeManager::getSingleton().getByName(outputstring,"General");
shape->Shape->setLocalScaling( btVector3(scale,scale,scale));
//btScaledBvhTriangleMeshShape* scaled = new btScaledBvhTriangleMeshShape(dynamic_cast<btBvhTriangleMeshShape*> (shape->Shape), btVector3(scale,scale,scale));
//create the motionState
CMotionState* newMotionState = new CMotionState(this,name);
//create the real body
btRigidBody::btRigidBodyConstructionInfo CI = btRigidBody::btRigidBodyConstructionInfo(0,newMotionState,shape->Shape);
RigidBody* body = new RigidBody(CI,name);
body->collide = shape->collide;
return body;
}
void PhysicEngine::addRigidBody(RigidBody* body)
{
if(body)
{
if(body->collide)
{
dynamicsWorld->addRigidBody(body,COL_WORLD,COL_WORLD|COL_ACTOR_INTERNAL|COL_ACTOR_EXTERNAL);
}
else
{
dynamicsWorld->addRigidBody(body,COL_RAYCASTING,COL_RAYCASTING|COL_WORLD);
}
body->setActivationState(DISABLE_DEACTIVATION);
RigidBody* oldBody = RigidBodyMap[body->mName];
if (oldBody != NULL)
{
dynamicsWorld->removeRigidBody(oldBody);
delete oldBody;
}
RigidBodyMap[body->mName] = body;
}
}
void PhysicEngine::removeRigidBody(std::string name)
{
RigidBodyContainer::iterator it = RigidBodyMap.find(name);
if (it != RigidBodyMap.end() )
{
RigidBody* body = it->second;
if(body != NULL)
{
// broadphase->getOverlappingPairCache()->removeOverlappingPairsContainingProxy(body->getBroadphaseProxy(),dispatcher);
/*PhysicActorContainer::iterator it2 = PhysicActorMap.begin();
for(;it2!=PhysicActorMap.end();it++)
{
it2->second->internalGhostObject->getOverlappingPairCache()->removeOverlappingPairsContainingProxy(body->getBroadphaseProxy(),dispatcher);
it2->second->externalGhostObject->getOverlappingPairCache()->removeOverlappingPairsContainingProxy(body->getBroadphaseProxy(),dispatcher);
}*/
dynamicsWorld->removeRigidBody(body);
}
}
}
void PhysicEngine::deleteRigidBody(std::string name)
{
RigidBodyContainer::iterator it = RigidBodyMap.find(name);
if (it != RigidBodyMap.end() )
{
RigidBody* body = it->second;
//btScaledBvhTriangleMeshShape* scaled = dynamic_cast<btScaledBvhTriangleMeshShape*> (body->getCollisionShape());
if(body != NULL)
{
delete body;
}
/*if(scaled != NULL)
{
delete scaled;
}*/
RigidBodyMap.erase(it);
}
}
RigidBody* PhysicEngine::getRigidBody(std::string name)
{
RigidBodyContainer::iterator it = RigidBodyMap.find(name);
if (it != RigidBodyMap.end() )
{
RigidBody* body = RigidBodyMap[name];
return body;
}
else
{
return 0;
}
}
void PhysicEngine::stepSimulation(double deltaT)
{
dynamicsWorld->stepSimulation(deltaT,10, 1/60.0);
if(isDebugCreated)
{
mDebugDrawer->step();
}
}
void PhysicEngine::addCharacter(std::string name)
{
// Remove character with given name, so we don't make memory
// leak when character would be added twice
removeCharacter(name);
PhysicActor* newActor = new PhysicActor(name);
dynamicsWorld->addCollisionObject( newActor->externalGhostObject, COL_ACTOR_EXTERNAL, COL_WORLD |COL_ACTOR_EXTERNAL );
dynamicsWorld->addCollisionObject( newActor->internalGhostObject, COL_ACTOR_INTERNAL, COL_WORLD |COL_ACTOR_INTERNAL );
dynamicsWorld->addAction( newActor->mCharacter );
PhysicActorMap[name] = newActor;
}
void PhysicEngine::removeCharacter(std::string name)
{
//std::cout << "remove";
PhysicActorContainer::iterator it = PhysicActorMap.find(name);
if (it != PhysicActorMap.end() )
{
PhysicActor* act = it->second;
if(act != NULL)
{
/*broadphase->getOverlappingPairCache()->removeOverlappingPairsContainingProxy(act->externalGhostObject->getBroadphaseHandle(),dispatcher);
broadphase->getOverlappingPairCache()->removeOverlappingPairsContainingProxy(act->internalGhostObject->getBroadphaseHandle(),dispatcher);
PhysicActorContainer::iterator it2 = PhysicActorMap.begin();
for(;it2!=PhysicActorMap.end();it++)
{
it->second->internalGhostObject->getOverlappingPairCache()->removeOverlappingPairsContainingProxy(act->externalGhostObject->getBroadphaseHandle(),dispatcher);
it->second->externalGhostObject->getOverlappingPairCache()->removeOverlappingPairsContainingProxy(act->externalGhostObject->getBroadphaseHandle(),dispatcher);
it->second->internalGhostObject->getOverlappingPairCache()->removeOverlappingPairsContainingProxy(act->internalGhostObject->getBroadphaseHandle(),dispatcher);
it->second->externalGhostObject->getOverlappingPairCache()->removeOverlappingPairsContainingProxy(act->internalGhostObject->getBroadphaseHandle(),dispatcher);
}*/
//act->externalGhostObject->
dynamicsWorld->removeCollisionObject(act->externalGhostObject);
dynamicsWorld->removeCollisionObject(act->internalGhostObject);
dynamicsWorld->removeAction(act->mCharacter);
delete act;
}
PhysicActorMap.erase(it);
}
//std::cout << "ok";
}
PhysicActor* PhysicEngine::getCharacter(std::string name)
{
PhysicActorContainer::iterator it = PhysicActorMap.find(name);
if (it != PhysicActorMap.end() )
{
PhysicActor* act = PhysicActorMap[name];
return act;
}
else
{
return 0;
}
}
void PhysicEngine::emptyEventLists(void)
{
}
std::pair<std::string,float> PhysicEngine::rayTest(btVector3& from,btVector3& to)
{
std::string name = "";
float d = -1;
float d1 = 10000.;
btCollisionWorld::ClosestRayResultCallback resultCallback1(from, to);
resultCallback1.m_collisionFilterMask = COL_WORLD|COL_RAYCASTING;
dynamicsWorld->rayTest(from, to, resultCallback1);
if (resultCallback1.hasHit())
{
name = static_cast<const RigidBody&>(*resultCallback1.m_collisionObject).mName;
d1 = resultCallback1.m_closestHitFraction;
d = d1;
}
btCollisionWorld::ClosestRayResultCallback resultCallback2(from, to);
resultCallback2.m_collisionFilterMask = COL_ACTOR_INTERNAL|COL_ACTOR_EXTERNAL;
dynamicsWorld->rayTest(from, to, resultCallback2);
float d2 = 10000.;
if (resultCallback2.hasHit())
{
d2 = resultCallback1.m_closestHitFraction;
if(d2<=d1)
{
name = static_cast<const PairCachingGhostObject&>(*resultCallback2.m_collisionObject).mName;
d = d2;
}
}
return std::pair<std::string,float>(name,d);
}
std::vector< std::pair<float, std::string> > PhysicEngine::rayTest2(btVector3& from, btVector3& to)
{
MyRayResultCallback resultCallback1;
resultCallback1.m_collisionFilterMask = COL_WORLD|COL_RAYCASTING;
dynamicsWorld->rayTest(from, to, resultCallback1);
std::vector< std::pair<float, const btCollisionObject*> > results = resultCallback1.results;
MyRayResultCallback resultCallback2;
resultCallback2.m_collisionFilterMask = COL_ACTOR_INTERNAL|COL_ACTOR_EXTERNAL;
dynamicsWorld->rayTest(from, to, resultCallback2);
std::vector< std::pair<float, const btCollisionObject*> > actorResults = resultCallback2.results;
std::vector< std::pair<float, std::string> > results2;
for (std::vector< std::pair<float, const btCollisionObject*> >::iterator it=results.begin();
it != results.end(); ++it)
{
results2.push_back( std::make_pair( (*it).first, static_cast<const RigidBody&>(*(*it).second).mName ) );
}
for (std::vector< std::pair<float, const btCollisionObject*> >::iterator it=actorResults.begin();
it != actorResults.end(); ++it)
{
results2.push_back( std::make_pair( (*it).first, static_cast<const PairCachingGhostObject&>(*(*it).second).mName ) );
}
std::sort(results2.begin(), results2.end(), MyRayResultCallback::cmp);
return results2;
}
}};