1
0
Fork 0
mirror of https://github.com/OpenMW/openmw.git synced 2025-01-19 20:23:54 +00:00
openmw/components/terrain/buffercache.cpp
2022-09-22 21:35:26 +03:00

259 lines
9.9 KiB
C++

#include "buffercache.hpp"
#include <cassert>
#include <osg/PrimitiveSet>
#include "defs.hpp"
namespace
{
template <typename IndexArrayType>
osg::ref_ptr<IndexArrayType> createIndexBuffer(unsigned int flags, unsigned int verts)
{
// LOD level n means every 2^n-th vertex is kept, but we currently handle LOD elsewhere.
size_t lodLevel = 0; //(flags >> (4*4));
size_t lodDeltas[4];
for (int i = 0; i < 4; ++i)
lodDeltas[i] = (flags >> (4 * i)) & (0xf);
bool anyDeltas = (lodDeltas[Terrain::North] || lodDeltas[Terrain::South] || lodDeltas[Terrain::West]
|| lodDeltas[Terrain::East]);
size_t increment = static_cast<size_t>(1) << lodLevel;
assert(increment < verts);
osg::ref_ptr<IndexArrayType> indices(new IndexArrayType(osg::PrimitiveSet::TRIANGLES));
indices->reserve((verts - 1) * (verts - 1) * 2 * 3 / increment);
size_t rowStart = 0, colStart = 0, rowEnd = verts - 1, colEnd = verts - 1;
// If any edge needs stitching we'll skip all edges at this point,
// mainly because stitching one edge would have an effect on corners and on the adjacent edges
if (anyDeltas)
{
colStart += increment;
colEnd -= increment;
rowEnd -= increment;
rowStart += increment;
}
for (size_t row = rowStart; row < rowEnd; row += increment)
{
for (size_t col = colStart; col < colEnd; col += increment)
{
// diamond pattern
if ((row + col % 2) % 2 == 1)
{
indices->push_back(verts * (col + increment) + row);
indices->push_back(verts * (col + increment) + row + increment);
indices->push_back(verts * col + row + increment);
indices->push_back(verts * col + row);
indices->push_back(verts * (col + increment) + row);
indices->push_back(verts * (col) + row + increment);
}
else
{
indices->push_back(verts * col + row);
indices->push_back(verts * (col + increment) + row + increment);
indices->push_back(verts * col + row + increment);
indices->push_back(verts * col + row);
indices->push_back(verts * (col + increment) + row);
indices->push_back(verts * (col + increment) + row + increment);
}
}
}
size_t innerStep = increment;
if (anyDeltas)
{
// Now configure LOD transitions at the edges - this is pretty tedious,
// and some very long and boring code, but it works great
// South
size_t row = 0;
size_t outerStep = static_cast<size_t>(1) << (lodDeltas[Terrain::South] + lodLevel);
for (size_t col = 0; col < verts - 1; col += outerStep)
{
indices->push_back(verts * col + row);
indices->push_back(verts * (col + outerStep) + row);
// Make sure not to touch the right edge
if (col + outerStep == verts - 1)
indices->push_back(verts * (col + outerStep - innerStep) + row + innerStep);
else
indices->push_back(verts * (col + outerStep) + row + innerStep);
for (size_t i = 0; i < outerStep; i += innerStep)
{
// Make sure not to touch the left or right edges
if (col + i == 0 || col + i == verts - 1 - innerStep)
continue;
indices->push_back(verts * (col) + row);
indices->push_back(verts * (col + i + innerStep) + row + innerStep);
indices->push_back(verts * (col + i) + row + innerStep);
}
}
// North
row = verts - 1;
outerStep = size_t(1) << (lodDeltas[Terrain::North] + lodLevel);
for (size_t col = 0; col < verts - 1; col += outerStep)
{
indices->push_back(verts * (col + outerStep) + row);
indices->push_back(verts * col + row);
// Make sure not to touch the left edge
if (col == 0)
indices->push_back(verts * (col + innerStep) + row - innerStep);
else
indices->push_back(verts * col + row - innerStep);
for (size_t i = 0; i < outerStep; i += innerStep)
{
// Make sure not to touch the left or right edges
if (col + i == 0 || col + i == verts - 1 - innerStep)
continue;
indices->push_back(verts * (col + i) + row - innerStep);
indices->push_back(verts * (col + i + innerStep) + row - innerStep);
indices->push_back(verts * (col + outerStep) + row);
}
}
// West
size_t col = 0;
outerStep = size_t(1) << (lodDeltas[Terrain::West] + lodLevel);
for (row = 0; row < verts - 1; row += outerStep)
{
indices->push_back(verts * col + row + outerStep);
indices->push_back(verts * col + row);
// Make sure not to touch the top edge
if (row + outerStep == verts - 1)
indices->push_back(verts * (col + innerStep) + row + outerStep - innerStep);
else
indices->push_back(verts * (col + innerStep) + row + outerStep);
for (size_t i = 0; i < outerStep; i += innerStep)
{
// Make sure not to touch the top or bottom edges
if (row + i == 0 || row + i == verts - 1 - innerStep)
continue;
indices->push_back(verts * col + row);
indices->push_back(verts * (col + innerStep) + row + i);
indices->push_back(verts * (col + innerStep) + row + i + innerStep);
}
}
// East
col = verts - 1;
outerStep = size_t(1) << (lodDeltas[Terrain::East] + lodLevel);
for (row = 0; row < verts - 1; row += outerStep)
{
indices->push_back(verts * col + row);
indices->push_back(verts * col + row + outerStep);
// Make sure not to touch the bottom edge
if (row == 0)
indices->push_back(verts * (col - innerStep) + row + innerStep);
else
indices->push_back(verts * (col - innerStep) + row);
for (size_t i = 0; i < outerStep; i += innerStep)
{
// Make sure not to touch the top or bottom edges
if (row + i == 0 || row + i == verts - 1 - innerStep)
continue;
indices->push_back(verts * col + row + outerStep);
indices->push_back(verts * (col - innerStep) + row + i + innerStep);
indices->push_back(verts * (col - innerStep) + row + i);
}
}
}
return indices;
}
}
namespace Terrain
{
osg::ref_ptr<osg::Vec2Array> BufferCache::getUVBuffer(unsigned int numVerts)
{
std::lock_guard<std::mutex> lock(mUvBufferMutex);
if (mUvBufferMap.find(numVerts) != mUvBufferMap.end())
{
return mUvBufferMap[numVerts];
}
int vertexCount = numVerts * numVerts;
osg::ref_ptr<osg::Vec2Array> uvs(new osg::Vec2Array(osg::Array::BIND_PER_VERTEX));
uvs->reserve(vertexCount);
for (unsigned int col = 0; col < numVerts; ++col)
{
for (unsigned int row = 0; row < numVerts; ++row)
{
uvs->push_back(osg::Vec2f(
col / static_cast<float>(numVerts - 1), ((numVerts - 1) - row) / static_cast<float>(numVerts - 1)));
}
}
// Assign a VBO here to enable state sharing between different Geometries.
uvs->setVertexBufferObject(new osg::VertexBufferObject);
mUvBufferMap[numVerts] = uvs;
return uvs;
}
osg::ref_ptr<osg::DrawElements> BufferCache::getIndexBuffer(unsigned int numVerts, unsigned int flags)
{
std::pair<int, int> id = std::make_pair(numVerts, flags);
std::lock_guard<std::mutex> lock(mIndexBufferMutex);
if (mIndexBufferMap.find(id) != mIndexBufferMap.end())
{
return mIndexBufferMap[id];
}
osg::ref_ptr<osg::DrawElements> buffer;
if (numVerts * numVerts <= (0xffffu))
buffer = createIndexBuffer<osg::DrawElementsUShort>(flags, numVerts);
else
buffer = createIndexBuffer<osg::DrawElementsUInt>(flags, numVerts);
// Assign a EBO here to enable state sharing between different Geometries.
buffer->setElementBufferObject(new osg::ElementBufferObject);
mIndexBufferMap[id] = buffer;
return buffer;
}
void BufferCache::clearCache()
{
{
std::lock_guard<std::mutex> lock(mIndexBufferMutex);
mIndexBufferMap.clear();
}
{
std::lock_guard<std::mutex> lock(mUvBufferMutex);
mUvBufferMap.clear();
}
}
void BufferCache::releaseGLObjects(osg::State* state)
{
{
std::lock_guard<std::mutex> lock(mIndexBufferMutex);
for (const auto& [_, indexbuffer] : mIndexBufferMap)
indexbuffer->releaseGLObjects(state);
}
{
std::lock_guard<std::mutex> lock(mUvBufferMutex);
for (const auto& [_, uvbuffer] : mUvBufferMap)
uvbuffer->releaseGLObjects(state);
}
}
}