mirror of
				https://github.com/OpenMW/openmw.git
				synced 2025-10-31 22:56:40 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			26674 lines
		
	
	
	
		
			897 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			26674 lines
		
	
	
	
		
			897 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // The MIT License (MIT)
 | |
| 
 | |
| // Copyright (c) 2013-2020 Rapptz, ThePhD and contributors
 | |
| 
 | |
| // Permission is hereby granted, free of charge, to any person obtaining a copy of
 | |
| // this software and associated documentation files (the "Software"), to deal in
 | |
| // the Software without restriction, including without limitation the rights to
 | |
| // use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
 | |
| // the Software, and to permit persons to whom the Software is furnished to do so,
 | |
| // subject to the following conditions:
 | |
| 
 | |
| // The above copyright notice and this permission notice shall be included in all
 | |
| // copies or substantial portions of the Software.
 | |
| 
 | |
| // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
| // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
 | |
| // FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
 | |
| // COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
 | |
| // IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 | |
| // CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 | |
| 
 | |
| // This file was generated with a script.
 | |
| // Generated 2020-10-03 21:34:24.496436 UTC
 | |
| // This header was generated with sol v3.2.1 (revision 48eea7b5)
 | |
| // https://github.com/ThePhD/sol2
 | |
| 
 | |
| #ifndef SOL_SINGLE_INCLUDE_HPP
 | |
| #define SOL_SINGLE_INCLUDE_HPP
 | |
| 
 | |
| // beginning of sol/sol.hpp
 | |
| 
 | |
| #ifndef SOL_HPP
 | |
| #define SOL_HPP
 | |
| 
 | |
| // beginning of sol/version.hpp
 | |
| 
 | |
| #include <sol/config.hpp>
 | |
| 
 | |
| #include <cstdint>
 | |
| 
 | |
| #define SOL_VERSION_MAJOR 3
 | |
| #define SOL_VERSION_MINOR 5
 | |
| #define SOL_VERSION_PATCH 0
 | |
| #define SOL_VERSION_STRING "3.5.0"
 | |
| #define SOL_VERSION ((SOL_VERSION_MAJOR * 100000) + (SOL_VERSION_MINOR * 100) + (SOL_VERSION_PATCH))
 | |
| 
 | |
| #define SOL_IS_ON(OP_SYMBOL) ((3 OP_SYMBOL 3) != 0)
 | |
| #define SOL_IS_OFF(OP_SYMBOL) ((3 OP_SYMBOL 3) == 0)
 | |
| #define SOL_IS_DEFAULT_ON(OP_SYMBOL) ((3 OP_SYMBOL 3) > 3)
 | |
| #define SOL_IS_DEFAULT_OFF(OP_SYMBOL) ((3 OP_SYMBOL 3 OP_SYMBOL 3) < 0)
 | |
| 
 | |
| #define SOL_ON          |
 | |
| #define SOL_OFF         ^
 | |
| #define SOL_DEFAULT_ON  +
 | |
| #define SOL_DEFAULT_OFF -
 | |
| 
 | |
| #if defined(_MSC_VER)
 | |
| 	#define SOL_COMPILER_CLANG_I_ SOL_OFF
 | |
| 	#define SOL_COMPILER_GCC_I_   SOL_OFF
 | |
| 	#define SOL_COMPILER_EDG_I_   SOL_OFF
 | |
| 	#define SOL_COMPILER_VCXX_I_  SOL_ON
 | |
| #elif defined(__clang__)
 | |
| 	#define SOL_COMPILER_CLANG_I_ SOL_ON
 | |
| 	#define SOL_COMPILER_GCC_I_   SOL_OFF
 | |
| 	#define SOL_COMPILER_EDG_I_   SOL_OFF
 | |
| 	#define SOL_COMPILER_VCXX_I_  SOL_OFF
 | |
| #elif defined(__GNUC__)
 | |
| 	#define SOL_COMPILER_CLANG_I_ SOL_OFF
 | |
| 	#define SOL_COMPILER_GCC_I_   SOL_ON
 | |
| 	#define SOL_COMPILER_EDG_I_   SOL_OFF
 | |
| 	#define SOL_COMPILER_VCXX_I_  SOL_OFF
 | |
| #else
 | |
| 	#define SOL_COMPILER_CLANG_I_ SOL_OFF
 | |
| 	#define SOL_COMPILER_GCC_I_   SOL_OFF
 | |
| 	#define SOL_COMPILER_EDG_I_   SOL_OFF
 | |
| 	#define SOL_COMPILER_VCXX_I_  SOL_OFF
 | |
| #endif
 | |
| 
 | |
| #if defined(__MINGW32__)
 | |
| 	#define SOL_COMPILER_FRONTEND_MINGW_I_ SOL_ON
 | |
| #else
 | |
| 	#define SOL_COMPILER_FRONTEND_MINGW_I_ SOL_OFF
 | |
| #endif
 | |
| 
 | |
| #if SIZE_MAX <= 0xFFFFULL
 | |
| 	#define SOL_PLATFORM_X16_I_ SOL_ON
 | |
| 	#define SOL_PLATFORM_X86_I_ SOL_OFF
 | |
| 	#define SOL_PLATFORM_X64_I_ SOL_OFF
 | |
| #elif SIZE_MAX <= 0xFFFFFFFFULL
 | |
| 	#define SOL_PLATFORM_X16_I_ SOL_OFF
 | |
| 	#define SOL_PLATFORM_X86_I_ SOL_ON
 | |
| 	#define SOL_PLATFORM_X64_I_ SOL_OFF
 | |
| #else
 | |
| 	#define SOL_PLATFORM_X16_I_ SOL_OFF
 | |
| 	#define SOL_PLATFORM_X86_I_ SOL_OFF
 | |
| 	#define SOL_PLATFORM_X64_I_ SOL_ON
 | |
| #endif
 | |
| 
 | |
| #define SOL_PLATFORM_ARM32_I_ SOL_OFF
 | |
| #define SOL_PLATFORM_ARM64_I_ SOL_OFF
 | |
| 
 | |
| #if defined(_WIN32)
 | |
| 	#define SOL_PLATFORM_WINDOWS_I_ SOL_ON
 | |
| #else
 | |
| 	#define SOL_PLATFORM_WINDOWS_I_ SOL_OFF
 | |
| #endif
 | |
| #if defined(__APPLE__)
 | |
| 	#define SOL_PLATFORM_APPLE_I_ SOL_ON
 | |
| #else
 | |
| 	#define SOL_PLATFORM_APPLE_I_ SOL_OFF
 | |
| #endif
 | |
| #if defined(__unix__)
 | |
| 	#define SOL_PLATFORM_UNIXLIKE_I_ SOL_ON
 | |
| #else
 | |
| 	#define SOL_PLATFORM_UNIXLIKE_I_ SOL_OFF
 | |
| #endif
 | |
| #if defined(__linux__)
 | |
| 	#define SOL_PLATFORM_LINUXLIKE_I_ SOL_ON
 | |
| #else
 | |
| 	#define SOL_PLATFORM_LINUXLIKE_I_ SOL_OFF
 | |
| #endif
 | |
| 
 | |
| #define SOL_PLATFORM_APPLE_IPHONE_I_ SOL_OFF
 | |
| #define SOL_PLATFORM_BSDLIKE_I_      SOL_OFF
 | |
| 
 | |
| #if defined(SOL_IN_DEBUG_DETECTED)
 | |
| 	#if SOL_IN_DEBUG_DETECTED != 0
 | |
| 		#define SOL_DEBUG_BUILD_I_ SOL_ON
 | |
| 	#else
 | |
| 		#define SOL_DEBUG_BUILD_I_ SOL_OFF
 | |
| 	#endif
 | |
| #elif !defined(NDEBUG)
 | |
| 	#if SOL_IS_ON(SOL_COMPILER_VCXX_I_) && defined(_DEBUG)
 | |
| 		#define SOL_DEBUG_BUILD_I_ SOL_ON
 | |
| 	#elif (SOL_IS_ON(SOL_COMPILER_CLANG_I_) || SOL_IS_ON(SOL_COMPILER_GCC_I_)) && !defined(__OPTIMIZE__)
 | |
| 		#define SOL_DEBUG_BUILD_I_ SOL_ON
 | |
| 	#else
 | |
| 		#define SOL_DEBUG_BUILD_I_ SOL_OFF
 | |
| 	#endif
 | |
| #else
 | |
| 	#define SOL_DEBUG_BUILD_I_ SOL_DEFAULT_OFF
 | |
| #endif // We are in a debug mode of some sort
 | |
| 
 | |
| #if defined(SOL_NO_EXCEPTIONS)
 | |
| 	#if (SOL_NO_EXCEPTIONS != 0)
 | |
| 		#define SOL_EXCEPTIONS_I_ SOL_OFF
 | |
| 	#else
 | |
| 		#define SOL_EXCEPTIONS_I_ SOL_ON
 | |
| 	#endif
 | |
| #elif SOL_IS_ON(SOL_COMPILER_VCXX_I_)
 | |
| 	#if !defined(_CPPUNWIND)
 | |
| 		#define SOL_EXCEPTIONS_I_ SOL_OFF
 | |
| 	#else
 | |
| 		#define SOL_EXCEPTIONS_I_ SOL_ON
 | |
| 	#endif
 | |
| #elif SOL_IS_ON(SOL_COMPILER_CLANG_I_) || SOL_IS_ON(SOL_COMPILER_GCC_I_)
 | |
| 	#if !defined(__EXCEPTIONS)
 | |
| 		#define SOL_EXCEPTIONS_I_ SOL_OFF
 | |
| 	#else
 | |
| 		#define SOL_EXCEPTIONS_I_ SOL_ON
 | |
| 	#endif
 | |
| #else
 | |
| 	#define SOL_EXCEPTIONS_I_ SOL_DEFAULT_ON
 | |
| #endif
 | |
| 
 | |
| #if defined(SOL_NO_RTTI)
 | |
| 	#if (SOL_NO_RTTI != 0)
 | |
| 		#define SOL_RTTI_I_ SOL_OFF
 | |
| 	#else
 | |
| 		#define SOL_RTTI_I_ SOL_ON
 | |
| 	#endif
 | |
| #elif SOL_IS_ON(SOL_COMPILER_VCXX_I_)
 | |
| 	#if !defined(_CPPRTTI)
 | |
| 		#define SOL_RTTI_I_ SOL_OFF
 | |
| 	#else
 | |
| 		#define SOL_RTTI_I_ SOL_ON
 | |
| 	#endif
 | |
| #elif SOL_IS_ON(SOL_COMPILER_CLANG_I_) || SOL_IS_ON(SOL_COMPILER_GCC_I_)
 | |
| 	#if !defined(__GXX_RTTI)
 | |
| 		#define SOL_RTTI_I_ SOL_OFF
 | |
| 	#else
 | |
| 		#define SOL_RTTI_I_ SOL_ON
 | |
| 	#endif
 | |
| #else
 | |
| 	#define SOL_RTTI_I_ SOL_DEFAULT_ON
 | |
| #endif
 | |
| 
 | |
| #if defined(SOL_NO_THREAD_LOCAL) && (SOL_NO_THREAD_LOCAL != 0)
 | |
| 	#define SOL_USE_THREAD_LOCAL_I_ SOL_OFF
 | |
| #else
 | |
| 	#define SOL_USE_THREAD_LOCAL_I_ SOL_DEFAULT_ON
 | |
| #endif // thread_local keyword is bjorked on some platforms
 | |
| 
 | |
| #if defined(SOL_ALL_SAFETIES_ON) && (SOL_ALL_SAFETIES_ON != 0)
 | |
| 	#define SOL_ALL_SAFETIES_ON_I_ SOL_ON
 | |
| #else
 | |
| 	#define SOL_ALL_SAFETIES_ON_I_ SOL_DEFAULT_OFF
 | |
| #endif
 | |
| 
 | |
| #if defined(SOL_SAFE_GETTER) && (SOL_SAFE_GETTER != 0)
 | |
| 	#define SOL_SAFE_GETTER_I_ SOL_ON
 | |
| #else
 | |
| 	#if SOL_IS_ON(SOL_ALL_SAFETIES_ON_I_)
 | |
| 		#define SOL_SAFE_GETTER_I_ SOL_ON
 | |
| 	#elif SOL_IS_ON(SOL_DEBUG_BUILD_I_)
 | |
| 		#define SOL_SAFE_GETTER_I_ SOL_DEFAULT_ON
 | |
| 	#else
 | |
| 		#define SOL_SAFE_GETTER_I_ SOL_DEFAULT_OFF
 | |
| 	#endif
 | |
| #endif
 | |
| 
 | |
| #if defined(SOL_SAFE_USERTYPE) && (SOL_SAFE_USERTYPE != 0)
 | |
| 	#define SOL_SAFE_USERTYPE_I_ SOL_ON
 | |
| #else
 | |
| 	#if SOL_IS_ON(SOL_ALL_SAFETIES_ON_I_)
 | |
| 		#define SOL_SAFE_USERTYPE_I_ SOL_ON
 | |
| 	#elif SOL_IS_ON(SOL_DEBUG_BUILD_I_)
 | |
| 		#define SOL_SAFE_USERTYPE_I_ SOL_DEFAULT_ON
 | |
| 	#else
 | |
| 		#define SOL_SAFE_USERTYPE_I_ SOL_DEFAULT_OFF
 | |
| 	#endif
 | |
| #endif
 | |
| 
 | |
| #if defined(SOL_SAFE_REFERENCES) && (SOL_SAFE_REFERENCES != 0)
 | |
| 	#define SOL_SAFE_REFERENCES_I_ SOL_ON
 | |
| #else
 | |
| 	#if SOL_IS_ON(SOL_ALL_SAFETIES_ON_I_)
 | |
| 		#define SOL_SAFE_REFERENCES_I_ SOL_ON
 | |
| 	#elif SOL_IS_ON(SOL_DEBUG_BUILD_I_)
 | |
| 		#define SOL_SAFE_REFERENCES_I_ SOL_DEFAULT_ON
 | |
| 	#else
 | |
| 		#define SOL_SAFE_REFERENCES_I_ SOL_DEFAULT_OFF
 | |
| 	#endif
 | |
| #endif
 | |
| 
 | |
| #if (defined(SOL_SAFE_FUNCTIONS) && (SOL_SAFE_FUNCTIONS != 0)) \
 | |
|     || (defined(SOL_SAFE_FUNCTION_OBJECTS) && (SOL_SAFE_FUNCTION_OBJECTS != 0))
 | |
| 	#define SOL_SAFE_FUNCTION_OBJECTS_I_ SOL_ON
 | |
| #else
 | |
| 	#if SOL_IS_ON(SOL_ALL_SAFETIES_ON_I_)
 | |
| 		#define SOL_SAFE_FUNCTION_OBJECTS_I_ SOL_ON
 | |
| 	#elif SOL_IS_ON(SOL_DEBUG_BUILD_I_)
 | |
| 		#define SOL_SAFE_FUNCTION_OBJECTS_I_ SOL_DEFAULT_ON
 | |
| 	#else
 | |
| 		#define SOL_SAFE_FUNCTION_OBJECTS_I_ SOL_DEFAULT_OFF
 | |
| 	#endif
 | |
| #endif
 | |
| 
 | |
| #if defined(SOL_SAFE_FUNCTION_CALLS) && (SOL_SAFE_FUNCTION_CALLS != 0)
 | |
| 	#define SOL_SAFE_FUNCTION_CALLS_I_ SOL_ON
 | |
| #else
 | |
| 	#if SOL_IS_ON(SOL_ALL_SAFETIES_ON_I_)
 | |
| 		#define SOL_SAFE_FUNCTION_CALLS_I_ SOL_ON
 | |
| 	#elif SOL_IS_ON(SOL_DEBUG_BUILD_I_)
 | |
| 		#define SOL_SAFE_FUNCTION_CALLS_I_ SOL_DEFAULT_ON
 | |
| 	#else
 | |
| 		#define SOL_SAFE_FUNCTION_CALLS_I_ SOL_DEFAULT_OFF
 | |
| 	#endif
 | |
| #endif
 | |
| 
 | |
| #if defined(SOL_SAFE_PROXIES) && (SOL_SAFE_PROXIES != 0)
 | |
| 	#define SOL_SAFE_PROXIES_I_ SOL_ON
 | |
| #else
 | |
| 	#if SOL_IS_ON(SOL_ALL_SAFETIES_ON_I_)
 | |
| 		#define SOL_SAFE_PROXIES_I_ SOL_ON
 | |
| 	#elif SOL_IS_ON(SOL_DEBUG_BUILD_I_)
 | |
| 		#define SOL_SAFE_PROXIES_I_ SOL_DEFAULT_ON
 | |
| 	#else
 | |
| 		#define SOL_SAFE_PROXIES_I_ SOL_DEFAULT_OFF
 | |
| 	#endif
 | |
| #endif
 | |
| 
 | |
| #if defined(SOL_SAFE_NUMERICS) && (SOL_SAFE_NUMERICS != 0)
 | |
| 	#define SOL_SAFE_NUMERICS_I_ SOL_ON
 | |
| #else
 | |
| 	#if SOL_IS_ON(SOL_ALL_SAFETIES_ON_I_)
 | |
| 		#define SOL_SAFE_NUMERICS_I_ SOL_ON
 | |
| 	#elif SOL_IS_ON(SOL_DEBUG_BUILD_I_)
 | |
| 		#define SOL_SAFE_NUMERICS_I_ SOL_DEFAULT_ON
 | |
| 	#else
 | |
| 		#define SOL_SAFE_NUMERICS_I_ SOL_DEFAULT_OFF
 | |
| 	#endif
 | |
| #endif
 | |
| 
 | |
| #if defined(SOL_SAFE_STACK_CHECK) && (SOL_SAFE_STACK_CHECK != 0)
 | |
| 	#define SOL_SAFE_STACK_CHECK_I_ SOL_ON
 | |
| #else
 | |
| 	#if SOL_IS_ON(SOL_ALL_SAFETIES_ON_I_)
 | |
| 		#define SOL_SAFE_STACK_CHECK_I_ SOL_ON
 | |
| 	#elif SOL_IS_ON(SOL_DEBUG_BUILD_I_)
 | |
| 		#define SOL_SAFE_STACK_CHECK_I_ SOL_DEFAULT_ON
 | |
| 	#else
 | |
| 		#define SOL_SAFE_STACK_CHECK_I_ SOL_DEFAULT_OFF
 | |
| 	#endif
 | |
| #endif
 | |
| 
 | |
| #if (defined(SOL_NO_CHECK_NUMBER_PRECISION) && (SOL_NO_CHECK_NUMBER_PRECISION != 0)) \
 | |
|     || (defined(SOL_NO_CHECKING_NUMBER_PRECISION) && (SOL_NO_CHECKING_NUMBER_PRECISION != 0))
 | |
| 	#define SOL_NUMBER_PRECISION_CHECKS_I_ SOL_OFF
 | |
| #else
 | |
| 	#if SOL_IS_ON(SOL_ALL_SAFETIES_ON_I_)
 | |
| 		#define SOL_NUMBER_PRECISION_CHECKS_I_ SOL_ON
 | |
| 	#elif SOL_IS_ON(SOL_SAFE_NUMERICS_I_)
 | |
| 		#define SOL_NUMBER_PRECISION_CHECKS_I_ SOL_ON
 | |
| 	#elif SOL_IS_ON(SOL_DEBUG_BUILD_I_)
 | |
| 		#define SOL_NUMBER_PRECISION_CHECKS_I_ SOL_DEFAULT_ON
 | |
| 	#else
 | |
| 		#define SOL_NUMBER_PRECISION_CHECKS_I_ SOL_DEFAULT_OFF
 | |
| 	#endif
 | |
| #endif
 | |
| 
 | |
| #if defined(SOL_STRINGS_ARE_NUMBERS)
 | |
| 	#if (SOL_STRINGS_ARE_NUMBERS != 0)
 | |
| 		#define SOL_STRINGS_ARE_NUMBERS_I_ SOL_ON
 | |
| 	#else
 | |
| 		#define SOL_STRINGS_ARE_NUMBERS_I_ SOL_OFF
 | |
| 	#endif
 | |
| #else
 | |
| 	#define SOL_STRINGS_ARE_NUMBERS_I_ SOL_DEFAULT_OFF
 | |
| #endif
 | |
| 
 | |
| #if defined(SOL_ENABLE_INTEROP) && (SOL_ENABLE_INTEROP != 0) \
 | |
|     || defined(SOL_USE_INTEROP) && (SOL_USE_INTEROP != 0)
 | |
| 	#define SOL_USE_INTEROP_I_ SOL_ON
 | |
| #else
 | |
| 	#define SOL_USE_INTEROP_I_ SOL_DEFAULT_OFF
 | |
| #endif
 | |
| 
 | |
| #if defined(SOL_NO_NIL)
 | |
| 	#if (SOL_NO_NIL != 0)
 | |
| 		#define SOL_NIL_I_ SOL_OFF
 | |
| 	#else
 | |
| 		#define SOL_NIL_I_ SOL_ON
 | |
| 	#endif
 | |
| #elif defined(__MAC_OS_X_VERSION_MAX_ALLOWED) || defined(__OBJC__) || defined(nil)
 | |
| 	#define SOL_NIL_I_ SOL_DEFAULT_OFF
 | |
| #else
 | |
| 	#define SOL_NIL_I_ SOL_DEFAULT_ON
 | |
| #endif
 | |
| 
 | |
| #if defined(SOL_USERTYPE_TYPE_BINDING_INFO)
 | |
| 	#if (SOL_USERTYPE_TYPE_BINDING_INFO != 0)
 | |
| 		#define SOL_USERTYPE_TYPE_BINDING_INFO_I_ SOL_ON
 | |
| 	#else
 | |
| 		#define SOL_USERTYPE_TYPE_BINDING_INFO_I_ SOL_OFF
 | |
| 	#endif
 | |
| #else
 | |
| 	#define SOL_USERTYPE_TYPE_BINDING_INFO_I_ SOL_DEFAULT_ON
 | |
| #endif // We should generate a my_type.__type table with lots of class information for usertypes
 | |
| 
 | |
| #if defined(SOL_AUTOMAGICAL_TYPES_BY_DEFAULT)
 | |
| 	#if (SOL_AUTOMAGICAL_TYPES_BY_DEFAULT != 0)
 | |
| 		#define SOL_DEFAULT_AUTOMAGICAL_USERTYPES_I_ SOL_ON
 | |
| 	#else
 | |
| 		#define SOL_DEFAULT_AUTOMAGICAL_USERTYPES_I_ SOL_OFF
 | |
| 	#endif
 | |
| #elif defined(SOL_DEFAULT_AUTOMAGICAL_USERTYPES)
 | |
| 	#if (SOL_DEFAULT_AUTOMAGICAL_USERTYPES != 0)
 | |
| 		#define SOL_DEFAULT_AUTOMAGICAL_USERTYPES_I_ SOL_ON
 | |
| 	#else
 | |
| 		#define SOL_DEFAULT_AUTOMAGICAL_USERTYPES_I_ SOL_OFF
 | |
| 	#endif
 | |
| #else
 | |
| 	#define SOL_DEFAULT_AUTOMAGICAL_USERTYPES_I_ SOL_DEFAULT_ON
 | |
| #endif // make is_automagical on/off by default
 | |
| 
 | |
| #if defined(SOL_STD_VARIANT)
 | |
| 	#if (SOL_STD_VARIANT != 0)
 | |
| 		#define SOL_STD_VARIANT_I_ SOL_ON
 | |
| 	#else
 | |
| 		#define SOL_STD_VARIANT_I_ SOL_OFF
 | |
| 	#endif
 | |
| #else
 | |
| 	#if SOL_IS_ON(SOL_COMPILER_CLANG_I_) && SOL_IS_ON(SOL_PLATFORM_APPLE_I_)
 | |
| 		#if defined(__has_include)
 | |
| 			#if __has_include(<variant>)
 | |
| 				#define SOL_STD_VARIANT_I_ SOL_ON
 | |
| 			#else
 | |
| 				#define SOL_STD_VARIANT_I_ SOL_OFF
 | |
| 			#endif
 | |
| 		#else
 | |
| 			#define SOL_STD_VARIANT_I_ SOL_OFF
 | |
| 		#endif
 | |
| 	#else
 | |
| 		#define SOL_STD_VARIANT_I_ SOL_DEFAULT_ON
 | |
| 	#endif
 | |
| #endif // make is_automagical on/off by default
 | |
| 
 | |
| #if defined(SOL_NOEXCEPT_FUNCTION_TYPE)
 | |
| 	#if (SOL_NOEXCEPT_FUNCTION_TYPE != 0)
 | |
| 		#define SOL_USE_NOEXCEPT_FUNCTION_TYPE_I_ SOL_ON
 | |
| 	#else
 | |
| 		#define SOL_USE_NOEXCEPT_FUNCTION_TYPE_I_ SOL_OFF
 | |
| 	#endif
 | |
| #else
 | |
| 	#if defined(__cpp_noexcept_function_type)
 | |
| 		#define SOL_USE_NOEXCEPT_FUNCTION_TYPE_I_ SOL_ON
 | |
| 	#elif SOL_IS_ON(SOL_COMPILER_VCXX_I_) && (defined(_MSVC_LANG) && (_MSVC_LANG < 201403L))
 | |
| 		// There is a bug in the VC++ compiler??
 | |
| 		// on /std:c++latest under x86 conditions (VS 15.5.2),
 | |
| 		// compiler errors are tossed for noexcept markings being on function types
 | |
| 		// that are identical in every other way to their non-noexcept marked types function types...
 | |
| 		// VS 2019: There is absolutely a bug.
 | |
| 		#define SOL_USE_NOEXCEPT_FUNCTION_TYPE_I_ SOL_OFF
 | |
| 	#else
 | |
| 		#define SOL_USE_NOEXCEPT_FUNCTION_TYPE_I_ SOL_DEFAULT_ON
 | |
| 	#endif
 | |
| #endif // noexcept is part of a function's type
 | |
| 
 | |
| #if defined(SOL_STACK_STRING_OPTIMIZATION_SIZE) && SOL_STACK_STRING_OPTIMIZATION_SIZE > 0
 | |
| 	#define SOL_OPTIMIZATION_STRING_CONVERSION_STACK_SIZE_I_ SOL_STACK_STRING_OPTIMIZATION_SIZE
 | |
| #else
 | |
| 	#define SOL_OPTIMIZATION_STRING_CONVERSION_STACK_SIZE_I_ 1024
 | |
| #endif
 | |
| 
 | |
| #if defined(SOL_ID_SIZE) && SOL_ID_SIZE > 0
 | |
| 	#define SOL_ID_SIZE_I_ SOL_ID_SIZE
 | |
| #else
 | |
| 	#define SOL_ID_SIZE_I_ 512
 | |
| #endif
 | |
| 
 | |
| #if defined(LUA_IDSIZE) && LUA_IDSIZE > 0
 | |
| 	#define SOL_FILE_ID_SIZE_I_ LUA_IDSIZE
 | |
| #elif defined(SOL_ID_SIZE) && SOL_ID_SIZE > 0
 | |
| 	#define SOL_FILE_ID_SIZE_I_ SOL_FILE_ID_SIZE
 | |
| #else
 | |
| 	#define SOL_FILE_ID_SIZE_I_ 2048
 | |
| #endif
 | |
| 
 | |
| #if defined(SOL_PRINT_ERRORS)
 | |
| 	#if (SOL_PRINT_ERRORS != 0)
 | |
| 		#define SOL_PRINT_ERRORS_I_ SOL_ON
 | |
| 	#else
 | |
| 		#define SOL_PRINT_ERRORS_I_ SOL_OFF
 | |
| 	#endif
 | |
| #else
 | |
| 	#if SOL_IS_ON(SOL_ALL_SAFETIES_ON_I_)
 | |
| 		#define SOL_PRINT_ERRORS_I_ SOL_ON
 | |
| 	#elif SOL_IS_ON(SOL_DEBUG_BUILD_I_)
 | |
| 		#define SOL_PRINT_ERRORS_I_ SOL_DEFAULT_ON
 | |
| 	#else
 | |
| 		#define SOL_PRINT_ERRORS_I_ SOL_OFF
 | |
| 	#endif
 | |
| #endif
 | |
| 
 | |
| #if defined(SOL_DEFAULT_PASS_ON_ERROR) && (SOL_DEFAULT_PASS_ON_ERROR != 0)
 | |
| 	#define SOL_DEFAULT_PASS_ON_ERROR_I_ SOL_ON
 | |
| #else
 | |
| 	#if SOL_IS_ON(SOL_ALL_SAFETIES_ON_I_)
 | |
| 		#define SOL_DEFAULT_PASS_ON_ERROR_I_ SOL_ON
 | |
| 	#elif SOL_IS_ON(SOL_DEBUG_BUILD_I_)
 | |
| 		#define SOL_DEFAULT_PASS_ON_ERROR_I_ SOL_DEFAULT_ON
 | |
| 	#else
 | |
| 		#define SOL_DEFAULT_PASS_ON_ERROR_I_ SOL_OFF
 | |
| 	#endif
 | |
| #endif
 | |
| 
 | |
| #if defined(SOL_USING_CXX_LUA)
 | |
| 	#if (SOL_USING_CXX_LUA != 0)
 | |
| 		#define SOL_USE_CXX_LUA_I_ SOL_ON
 | |
| 	#else
 | |
| 		#define SOL_USE_CXX_LUA_I_ SOL_OFF
 | |
| 	#endif
 | |
| #elif defined(SOL_USE_CXX_LUA)
 | |
| 	#if (SOL_USE_CXX_LUA != 0)
 | |
| 		#define SOL_USE_CXX_LUA_I_ SOL_ON
 | |
| 	#else
 | |
| 		#define SOL_USE_CXX_LUA_I_ SOL_OFF
 | |
| 	#endif
 | |
| #else
 | |
| 	#define SOL_USE_CXX_LUA_I_ SOL_OFF
 | |
| #endif
 | |
| 
 | |
| #if defined(SOL_USING_CXX_LUAJIT)
 | |
| 	#if (SOL_USING_CXX_LUA != 0)
 | |
| 		#define SOL_USE_CXX_LUAJIT_I_ SOL_ON
 | |
| 	#else
 | |
| 		#define SOL_USE_CXX_LUAJIT_I_ SOL_OFF
 | |
| 	#endif
 | |
| #elif defined(SOL_USE_CXX_LUAJIT)
 | |
| 	#if (SOL_USE_CXX_LUA != 0)
 | |
| 		#define SOL_USE_CXX_LUAJIT_I_ SOL_ON
 | |
| 	#else
 | |
| 		#define SOL_USE_CXX_LUAJIT_I_ SOL_OFF
 | |
| 	#endif
 | |
| #else
 | |
| 	#define SOL_USE_CXX_LUAJIT_I_ SOL_OFF
 | |
| #endif
 | |
| 
 | |
| #if defined(SOL_NO_LUA_HPP)
 | |
| 	#if (SOL_NO_LUA_HPP != 0)
 | |
| 		#define SOL_USE_LUA_HPP_I_ SOL_OFF
 | |
| 	#else
 | |
| 		#define SOL_USE_LUA_HPP_I_ SOL_ON
 | |
| 	#endif
 | |
| #elif defined(SOL_USING_CXX_LUA)
 | |
| 	#define SOL_USE_LUA_HPP_I_ SOL_OFF
 | |
| #elif defined(__has_include)
 | |
| 	#if __has_include(<lua.hpp>)
 | |
| 		#define SOL_USE_LUA_HPP_I_ SOL_ON
 | |
| 	#else
 | |
| 		#define SOL_USE_LUA_HPP_I_ SOL_OFF
 | |
| 	#endif
 | |
| #else
 | |
| 	#define SOL_USE_LUA_HPP_I_ SOL_DEFAULT_ON
 | |
| #endif
 | |
| 
 | |
| #if defined(SOL_CONTAINERS_START)
 | |
| 	#define SOL_CONTAINER_START_INDEX_I_ SOL_CONTAINERS_START
 | |
| #elif defined(SOL_CONTAINERS_START_INDEX)
 | |
| 	#define SOL_CONTAINER_START_INDEX_I_ SOL_CONTAINERS_START_INDEX
 | |
| #elif defined(SOL_CONTAINER_START_INDEX)
 | |
| 	#define SOL_CONTAINER_START_INDEX_I_ SOL_CONTAINER_START_INDEX
 | |
| #else
 | |
| 	#define SOL_CONTAINER_START_INDEX_I_ 1
 | |
| #endif
 | |
| 
 | |
| #if defined (SOL_NO_MEMORY_ALIGNMENT)
 | |
| 	#if (SOL_NO_MEMORY_ALIGNMENT != 0)
 | |
| 		#define SOL_ALIGN_MEMORY_I_ SOL_OFF
 | |
| 	#else
 | |
| 		#define SOL_ALIGN_MEMORY_I_ SOL_ON
 | |
| 	#endif
 | |
| #else
 | |
| 	#define SOL_ALIGN_MEMORY_I_ SOL_DEFAULT_ON
 | |
| #endif
 | |
| 
 | |
| #if defined(SOL_USE_BOOST)
 | |
| 	#if (SOL_USE_BOOST != 0)
 | |
| 		#define SOL_USE_BOOST_I_ SOL_ON
 | |
| 	#else
 | |
| 		#define SOL_USE_BOOST_I_ SOL_OFF
 | |
| 	#endif
 | |
| #else
 | |
| 		#define SOL_USE_BOOST_I_ SOL_OFF
 | |
| #endif
 | |
| 
 | |
| #if defined(SOL_USE_UNSAFE_BASE_LOOKUP)
 | |
| 	#if (SOL_USE_UNSAFE_BASE_LOOKUP != 0)
 | |
| 		#define SOL_USE_UNSAFE_BASE_LOOKUP_I_ SOL_ON
 | |
| 	#else
 | |
| 		#define SOL_USE_UNSAFE_BASE_LOOKUP_I_ SOL_OFF
 | |
| 	#endif
 | |
| #else
 | |
| 	#define SOL_USE_UNSAFE_BASE_LOOKUP_I_ SOL_OFF
 | |
| #endif
 | |
| 
 | |
| #if defined(SOL_INSIDE_UNREAL)
 | |
| 	#if (SOL_INSIDE_UNREAL != 0)
 | |
| 		#define SOL_INSIDE_UNREAL_ENGINE_I_ SOL_ON
 | |
| 	#else
 | |
| 		#define SOL_INSIDE_UNREAL_ENGINE_I_ SOL_OFF
 | |
| 	#endif
 | |
| #else
 | |
| 	#if defined(UE_BUILD_DEBUG) || defined(UE_BUILD_DEVELOPMENT) || defined(UE_BUILD_TEST) || defined(UE_BUILD_SHIPPING) || defined(UE_SERVER)
 | |
| 		#define SOL_INSIDE_UNREAL_ENGINE_I_ SOL_ON
 | |
| 	#else
 | |
| 		#define SOL_INSIDE_UNREAL_ENGINE_I_ SOL_DEFAULT_OFF
 | |
| 	#endif
 | |
| #endif
 | |
| 
 | |
| #if defined(SOL_NO_COMPAT)
 | |
| 	#if (SOL_NO_COMPAT != 0)
 | |
| 		#define SOL_USE_COMPATIBILITY_LAYER_I_ SOL_OFF
 | |
| 	#else
 | |
| 		#define SOL_USE_COMPATIBILITY_LAYER_I_ SOL_ON
 | |
| 	#endif
 | |
| #else
 | |
| 	#define SOL_USE_COMPATIBILITY_LAYER_I_ SOL_DEFAULT_ON
 | |
| #endif
 | |
| 
 | |
| #if defined(SOL_GET_FUNCTION_POINTER_UNSAFE)
 | |
| 	#if (SOL_GET_FUNCTION_POINTER_UNSAFE != 0)
 | |
| 		#define SOL_GET_FUNCTION_POINTER_UNSAFE_I_ SOL_ON
 | |
| 	#else
 | |
| 		#define SOL_GET_FUNCTION_POINTER_UNSAFE_I_ SOL_OFF
 | |
| 	#endif
 | |
| #else
 | |
| 	#define SOL_GET_FUNCTION_POINTER_UNSAFE_I_ SOL_DEFAULT_OFF
 | |
| #endif
 | |
| 
 | |
| #if SOL_IS_ON(SOL_COMPILER_FRONTEND_MINGW_I_) && defined(__GNUC__) && (__GNUC__ < 6)
 | |
| 	// MinGW is off its rocker in some places...
 | |
| 	#define SOL_MINGW_CCTYPE_IS_POISONED_I_ SOL_ON
 | |
| #else
 | |
| 	#define SOL_MINGW_CCTYPE_IS_POISONED_I_ SOL_DEFAULT_OFF
 | |
| #endif
 | |
| 
 | |
| // end of sol/version.hpp
 | |
| 
 | |
| #if SOL_IS_ON(SOL_INSIDE_UNREAL_ENGINE_I_)
 | |
| #ifdef check
 | |
| #pragma push_macro("check")
 | |
| #undef check
 | |
| #endif
 | |
| #endif // Unreal Engine 4 Bullshit
 | |
| 
 | |
| #if SOL_IS_ON(SOL_COMPILER_GCC_I_)
 | |
| #pragma GCC diagnostic push
 | |
| #pragma GCC diagnostic ignored "-Wshadow"
 | |
| #pragma GCC diagnostic ignored "-Wconversion"
 | |
| #if __GNUC__ > 6
 | |
| #pragma GCC diagnostic ignored "-Wnoexcept-type"
 | |
| #endif
 | |
| #elif SOL_IS_ON(SOL_COMPILER_CLANG_I_)
 | |
| #elif SOL_IS_ON(SOL_COMPILER_VCXX_I_)
 | |
| #pragma warning(push)
 | |
| #pragma warning(disable : 4505) // unreferenced local function has been removed GEE THANKS
 | |
| #endif                          // clang++ vs. g++ vs. VC++
 | |
| 
 | |
| // beginning of sol/forward.hpp
 | |
| 
 | |
| #ifndef SOL_FORWARD_HPP
 | |
| #define SOL_FORWARD_HPP
 | |
| 
 | |
| #include <utility>
 | |
| #include <type_traits>
 | |
| #include <string_view>
 | |
| 
 | |
| #if SOL_IS_ON(SOL_USE_CXX_LUA_I_) || SOL_IS_ON(SOL_USE_CXX_LUAJIT_I_)
 | |
| struct lua_State;
 | |
| #else
 | |
| extern "C" {
 | |
| struct lua_State;
 | |
| }
 | |
| #endif // C++ Mangling for Lua vs. Not
 | |
| 
 | |
| namespace sol {
 | |
| 
 | |
| 	enum class type;
 | |
| 
 | |
| 	class stateless_reference;
 | |
| 	template <bool b>
 | |
| 	class basic_reference;
 | |
| 	using reference = basic_reference<false>;
 | |
| 	using main_reference = basic_reference<true>;
 | |
| 	class stateless_stack_reference;
 | |
| 	class stack_reference;
 | |
| 
 | |
| 	template <typename A>
 | |
| 	class basic_bytecode;
 | |
| 
 | |
| 	struct lua_value;
 | |
| 
 | |
| 	struct proxy_base_tag;
 | |
| 	template <typename>
 | |
| 	struct proxy_base;
 | |
| 	template <typename, typename>
 | |
| 	struct table_proxy;
 | |
| 
 | |
| 	template <bool, typename>
 | |
| 	class basic_table_core;
 | |
| 	template <bool b>
 | |
| 	using table_core = basic_table_core<b, reference>;
 | |
| 	template <bool b>
 | |
| 	using main_table_core = basic_table_core<b, main_reference>;
 | |
| 	template <bool b>
 | |
| 	using stack_table_core = basic_table_core<b, stack_reference>;
 | |
| 	template <typename base_type>
 | |
| 	using basic_table = basic_table_core<false, base_type>;
 | |
| 	using table = table_core<false>;
 | |
| 	using global_table = table_core<true>;
 | |
| 	using main_table = main_table_core<false>;
 | |
| 	using main_global_table = main_table_core<true>;
 | |
| 	using stack_table = stack_table_core<false>;
 | |
| 	using stack_global_table = stack_table_core<true>;
 | |
| 
 | |
| 	template <typename>
 | |
| 	struct basic_lua_table;
 | |
| 	using lua_table = basic_lua_table<reference>;
 | |
| 	using stack_lua_table = basic_lua_table<stack_reference>;
 | |
| 
 | |
| 	template <typename T, typename base_type>
 | |
| 	class basic_usertype;
 | |
| 	template <typename T>
 | |
| 	using usertype = basic_usertype<T, reference>;
 | |
| 	template <typename T>
 | |
| 	using stack_usertype = basic_usertype<T, stack_reference>;
 | |
| 
 | |
| 	template <typename base_type>
 | |
| 	class basic_metatable;
 | |
| 	using metatable = basic_metatable<reference>;
 | |
| 	using stack_metatable = basic_metatable<stack_reference>;
 | |
| 
 | |
| 	template <typename base_t>
 | |
| 	struct basic_environment;
 | |
| 	using environment = basic_environment<reference>;
 | |
| 	using main_environment = basic_environment<main_reference>;
 | |
| 	using stack_environment = basic_environment<stack_reference>;
 | |
| 
 | |
| 	template <typename T, bool>
 | |
| 	class basic_function;
 | |
| 	template <typename T, bool, typename H>
 | |
| 	class basic_protected_function;
 | |
| 	using unsafe_function = basic_function<reference, false>;
 | |
| 	using safe_function = basic_protected_function<reference, false, reference>;
 | |
| 	using main_unsafe_function = basic_function<main_reference, false>;
 | |
| 	using main_safe_function = basic_protected_function<main_reference, false, reference>;
 | |
| 	using stack_unsafe_function = basic_function<stack_reference, false>;
 | |
| 	using stack_safe_function = basic_protected_function<stack_reference, false, reference>;
 | |
| 	using stack_aligned_unsafe_function = basic_function<stack_reference, true>;
 | |
| 	using stack_aligned_safe_function = basic_protected_function<stack_reference, true, reference>;
 | |
| 	using protected_function = safe_function;
 | |
| 	using main_protected_function = main_safe_function;
 | |
| 	using stack_protected_function = stack_safe_function;
 | |
| 	using stack_aligned_protected_function = stack_aligned_safe_function;
 | |
| #if SOL_IS_ON(SOL_SAFE_FUNCTION_OBJECTS_I_)
 | |
| 	using function = protected_function;
 | |
| 	using main_function = main_protected_function;
 | |
| 	using stack_function = stack_protected_function;
 | |
| 	using stack_aligned_function = stack_aligned_safe_function;
 | |
| #else
 | |
| 	using function = unsafe_function;
 | |
| 	using main_function = main_unsafe_function;
 | |
| 	using stack_function = stack_unsafe_function;
 | |
| 	using stack_aligned_function = stack_aligned_unsafe_function;
 | |
| #endif
 | |
| 	using stack_aligned_stack_handler_function = basic_protected_function<stack_reference, true, stack_reference>;
 | |
| 
 | |
| 	struct unsafe_function_result;
 | |
| 	struct protected_function_result;
 | |
| 	using safe_function_result = protected_function_result;
 | |
| #if SOL_IS_ON(SOL_SAFE_FUNCTION_OBJECTS_I_)
 | |
| 	using function_result = safe_function_result;
 | |
| #else
 | |
| 	using function_result = unsafe_function_result;
 | |
| #endif
 | |
| 
 | |
| 	template <typename base_t>
 | |
| 	class basic_object_base;
 | |
| 	template <typename base_t>
 | |
| 	class basic_object;
 | |
| 	template <typename base_t>
 | |
| 	class basic_userdata;
 | |
| 	template <typename base_t>
 | |
| 	class basic_lightuserdata;
 | |
| 	template <typename base_t>
 | |
| 	class basic_coroutine;
 | |
| 	template <typename base_t>
 | |
| 	class basic_thread;
 | |
| 
 | |
| 	using object = basic_object<reference>;
 | |
| 	using userdata = basic_userdata<reference>;
 | |
| 	using lightuserdata = basic_lightuserdata<reference>;
 | |
| 	using thread = basic_thread<reference>;
 | |
| 	using coroutine = basic_coroutine<reference>;
 | |
| 	using main_object = basic_object<main_reference>;
 | |
| 	using main_userdata = basic_userdata<main_reference>;
 | |
| 	using main_lightuserdata = basic_lightuserdata<main_reference>;
 | |
| 	using main_coroutine = basic_coroutine<main_reference>;
 | |
| 	using stack_object = basic_object<stack_reference>;
 | |
| 	using stack_userdata = basic_userdata<stack_reference>;
 | |
| 	using stack_lightuserdata = basic_lightuserdata<stack_reference>;
 | |
| 	using stack_thread = basic_thread<stack_reference>;
 | |
| 	using stack_coroutine = basic_coroutine<stack_reference>;
 | |
| 
 | |
| 	struct stack_proxy_base;
 | |
| 	struct stack_proxy;
 | |
| 	struct variadic_args;
 | |
| 	struct variadic_results;
 | |
| 	struct stack_count;
 | |
| 	struct this_state;
 | |
| 	struct this_main_state;
 | |
| 	struct this_environment;
 | |
| 
 | |
| 	class state_view;
 | |
| 	class state;
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct as_table_t;
 | |
| 	template <typename T>
 | |
| 	struct as_container_t;
 | |
| 	template <typename T>
 | |
| 	struct nested;
 | |
| 	template <typename T>
 | |
| 	struct light;
 | |
| 	template <typename T>
 | |
| 	struct user;
 | |
| 	template <typename T>
 | |
| 	struct as_args_t;
 | |
| 	template <typename T>
 | |
| 	struct protect_t;
 | |
| 	template <typename F, typename... Policies>
 | |
| 	struct policy_wrapper;
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct usertype_traits;
 | |
| 	template <typename T>
 | |
| 	struct unique_usertype_traits;
 | |
| 
 | |
| 	template <typename... Args>
 | |
| 	struct types {
 | |
| 		typedef std::make_index_sequence<sizeof...(Args)> indices;
 | |
| 		static constexpr std::size_t size() {
 | |
| 			return sizeof...(Args);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct derive : std::false_type {
 | |
| 		typedef types<> type;
 | |
| 	};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct base : std::false_type {
 | |
| 		typedef types<> type;
 | |
| 	};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct weak_derive {
 | |
| 		static bool value;
 | |
| 	};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	bool weak_derive<T>::value = false;
 | |
| 
 | |
| 	namespace stack {
 | |
| 		struct record;
 | |
| 	}
 | |
| 
 | |
| #if SOL_IS_OFF(SOL_USE_BOOST_I_)
 | |
| 	template <class T>
 | |
| 	class optional;
 | |
| 
 | |
| 	template <class T>
 | |
| 	class optional<T&>;
 | |
| #endif
 | |
| 
 | |
| 	using check_handler_type = int(lua_State*, int, type, type, const char*);
 | |
| 
 | |
| } // namespace sol
 | |
| 
 | |
| #define SOL_BASE_CLASSES(T, ...)                       \
 | |
| 	namespace sol {                                   \
 | |
| 		template <>                                  \
 | |
| 		struct base<T> : std::true_type {            \
 | |
| 			typedef ::sol::types<__VA_ARGS__> type; \
 | |
| 		};                                           \
 | |
| 	}                                                 \
 | |
| 	void a_sol3_detail_function_decl_please_no_collide()
 | |
| #define SOL_DERIVED_CLASSES(T, ...)                    \
 | |
| 	namespace sol {                                   \
 | |
| 		template <>                                  \
 | |
| 		struct derive<T> : std::true_type {          \
 | |
| 			typedef ::sol::types<__VA_ARGS__> type; \
 | |
| 		};                                           \
 | |
| 	}                                                 \
 | |
| 	void a_sol3_detail_function_decl_please_no_collide()
 | |
| 
 | |
| #endif // SOL_FORWARD_HPP
 | |
| // end of sol/forward.hpp
 | |
| 
 | |
| // beginning of sol/forward_detail.hpp
 | |
| 
 | |
| #ifndef SOL_FORWARD_DETAIL_HPP
 | |
| #define SOL_FORWARD_DETAIL_HPP
 | |
| 
 | |
| // beginning of sol/traits.hpp
 | |
| 
 | |
| // beginning of sol/tuple.hpp
 | |
| 
 | |
| // beginning of sol/base_traits.hpp
 | |
| 
 | |
| #include <type_traits>
 | |
| 
 | |
| namespace sol {
 | |
| 	namespace detail {
 | |
| 		struct unchecked_t {};
 | |
| 		const unchecked_t unchecked = unchecked_t{};
 | |
| 	} // namespace detail
 | |
| 
 | |
| 	namespace meta {
 | |
| 		using sfinae_yes_t = std::true_type;
 | |
| 		using sfinae_no_t = std::false_type;
 | |
| 
 | |
| 		template <typename T>
 | |
| 		using void_t = void;
 | |
| 
 | |
| 		template <typename T>
 | |
| 		using unqualified = std::remove_cv<std::remove_reference_t<T>>;
 | |
| 
 | |
| 		template <typename T>
 | |
| 		using unqualified_t = typename unqualified<T>::type;
 | |
| 
 | |
| 		namespace meta_detail {
 | |
| 			template <typename T>
 | |
| 			struct unqualified_non_alias : unqualified<T> {};
 | |
| 
 | |
| 			template <template <class...> class Test, class, class... Args>
 | |
| 			struct is_detected : std::false_type {};
 | |
| 
 | |
| 			template <template <class...> class Test, class... Args>
 | |
| 			struct is_detected<Test, void_t<Test<Args...>>, Args...> : std::true_type {};
 | |
| 		} // namespace meta_detail
 | |
| 
 | |
| 		template <template <class...> class Trait, class... Args>
 | |
| 		using is_detected = typename meta_detail::is_detected<Trait, void, Args...>::type;
 | |
| 
 | |
| 		template <template <class...> class Trait, class... Args>
 | |
| 		constexpr inline bool is_detected_v = is_detected<Trait, Args...>::value;
 | |
| 
 | |
| 		template <std::size_t I>
 | |
| 		using index_value = std::integral_constant<std::size_t, I>;
 | |
| 
 | |
| 		template <bool>
 | |
| 		struct conditional {
 | |
| 			template <typename T, typename U>
 | |
| 			using type = T;
 | |
| 		};
 | |
| 
 | |
| 		template <>
 | |
| 		struct conditional<false> {
 | |
| 			template <typename T, typename U>
 | |
| 			using type = U;
 | |
| 		};
 | |
| 
 | |
| 		template <bool B, typename T, typename U>
 | |
| 		using conditional_t = typename conditional<B>::template type<T, U>;
 | |
| 
 | |
| 		namespace meta_detail {
 | |
| 			template <typename T, template <typename...> class Templ>
 | |
| 			struct is_specialization_of : std::false_type {};
 | |
| 			template <typename... T, template <typename...> class Templ>
 | |
| 			struct is_specialization_of<Templ<T...>, Templ> : std::true_type {};
 | |
| 		} // namespace meta_detail
 | |
| 
 | |
| 		template <typename T, template <typename...> class Templ>
 | |
| 		using is_specialization_of = meta_detail::is_specialization_of<std::remove_cv_t<T>, Templ>;
 | |
| 
 | |
| 		template <typename T, template <typename...> class Templ>
 | |
| 		inline constexpr bool is_specialization_of_v = is_specialization_of<std::remove_cv_t<T>, Templ>::value;
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct identity {
 | |
| 			typedef T type;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T>
 | |
| 		using identity_t = typename identity<T>::type;
 | |
| 
 | |
| 		template <typename T>
 | |
| 		using is_builtin_type = std::integral_constant<bool, std::is_arithmetic<T>::value || std::is_pointer<T>::value || std::is_array<T>::value>;
 | |
| 
 | |
| 	} // namespace meta
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/base_traits.hpp
 | |
| 
 | |
| #include <tuple>
 | |
| #include <cstddef>
 | |
| 
 | |
| namespace sol {
 | |
| 	namespace detail {
 | |
| 		using swallow = std::initializer_list<int>;
 | |
| 	} // namespace detail
 | |
| 
 | |
| 	namespace meta {
 | |
| 		template <typename T>
 | |
| 		using is_tuple = is_specialization_of<T, std::tuple>;
 | |
| 
 | |
| 		template <typename T>
 | |
| 		constexpr inline bool is_tuple_v = is_tuple<T>::value;
 | |
| 
 | |
| 		namespace detail {
 | |
| 			template <typename... Args>
 | |
| 			struct tuple_types_ { typedef types<Args...> type; };
 | |
| 
 | |
| 			template <typename... Args>
 | |
| 			struct tuple_types_<std::tuple<Args...>> { typedef types<Args...> type; };
 | |
| 		} // namespace detail
 | |
| 
 | |
| 		template <typename... Args>
 | |
| 		using tuple_types = typename detail::tuple_types_<Args...>::type;
 | |
| 
 | |
| 		template <typename Arg>
 | |
| 		struct pop_front_type;
 | |
| 
 | |
| 		template <typename Arg>
 | |
| 		using pop_front_type_t = typename pop_front_type<Arg>::type;
 | |
| 
 | |
| 		template <typename... Args>
 | |
| 		struct pop_front_type<types<Args...>> {
 | |
| 			typedef void front_type;
 | |
| 			typedef types<Args...> type;
 | |
| 		};
 | |
| 
 | |
| 		template <typename Arg, typename... Args>
 | |
| 		struct pop_front_type<types<Arg, Args...>> {
 | |
| 			typedef Arg front_type;
 | |
| 			typedef types<Args...> type;
 | |
| 		};
 | |
| 
 | |
| 		template <std::size_t N, typename Tuple>
 | |
| 		using tuple_element = std::tuple_element<N, std::remove_reference_t<Tuple>>;
 | |
| 
 | |
| 		template <std::size_t N, typename Tuple>
 | |
| 		using tuple_element_t = std::tuple_element_t<N, std::remove_reference_t<Tuple>>;
 | |
| 
 | |
| 		template <std::size_t N, typename Tuple>
 | |
| 		using unqualified_tuple_element = unqualified<tuple_element_t<N, Tuple>>;
 | |
| 
 | |
| 		template <std::size_t N, typename Tuple>
 | |
| 		using unqualified_tuple_element_t = unqualified_t<tuple_element_t<N, Tuple>>;
 | |
| 
 | |
| 	} // namespace meta
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/tuple.hpp
 | |
| 
 | |
| // beginning of sol/bind_traits.hpp
 | |
| 
 | |
| namespace sol { namespace meta {
 | |
| 	namespace meta_detail {
 | |
| 
 | |
| 		template <class F>
 | |
| 		struct check_deducible_signature {
 | |
| 			struct nat {};
 | |
| 			template <class G>
 | |
| 			static auto test(int) -> decltype(&G::operator(), void());
 | |
| 			template <class>
 | |
| 			static auto test(...) -> nat;
 | |
| 
 | |
| 			using type = std::is_void<decltype(test<F>(0))>;
 | |
| 		};
 | |
| 	} // namespace meta_detail
 | |
| 
 | |
| 	template <class F>
 | |
| 	struct has_deducible_signature : meta_detail::check_deducible_signature<F>::type {};
 | |
| 
 | |
| 	namespace meta_detail {
 | |
| 
 | |
| 		template <std::size_t I, typename T>
 | |
| 		struct void_tuple_element : meta::tuple_element<I, T> {};
 | |
| 
 | |
| 		template <std::size_t I>
 | |
| 		struct void_tuple_element<I, std::tuple<>> {
 | |
| 			typedef void type;
 | |
| 		};
 | |
| 
 | |
| 		template <std::size_t I, typename T>
 | |
| 		using void_tuple_element_t = typename void_tuple_element<I, T>::type;
 | |
| 
 | |
| 		template <bool it_is_noexcept, bool has_c_variadic, typename T, typename R, typename... Args>
 | |
| 		struct basic_traits {
 | |
| 		private:
 | |
| 			using first_type = meta::conditional_t<std::is_void<T>::value, int, T>&;
 | |
| 
 | |
| 		public:
 | |
| 			inline static constexpr const bool is_noexcept = it_is_noexcept;
 | |
| 			inline static constexpr bool is_member_function = std::is_void<T>::value;
 | |
| 			inline static constexpr bool has_c_var_arg = has_c_variadic;
 | |
| 			inline static constexpr std::size_t arity = sizeof...(Args);
 | |
| 			inline static constexpr std::size_t free_arity = sizeof...(Args) + static_cast<std::size_t>(!std::is_void<T>::value);
 | |
| 			typedef types<Args...> args_list;
 | |
| 			typedef std::tuple<Args...> args_tuple;
 | |
| 			typedef T object_type;
 | |
| 			typedef R return_type;
 | |
| 			typedef tuple_types<R> returns_list;
 | |
| 			typedef R(function_type)(Args...);
 | |
| 			typedef meta::conditional_t<std::is_void<T>::value, args_list, types<first_type, Args...>> free_args_list;
 | |
| 			typedef meta::conditional_t<std::is_void<T>::value, R(Args...), R(first_type, Args...)> free_function_type;
 | |
| 			typedef meta::conditional_t<std::is_void<T>::value, R (*)(Args...), R (*)(first_type, Args...)> free_function_pointer_type;
 | |
| 			typedef std::remove_pointer_t<free_function_pointer_type> signature_type;
 | |
| 			template <std::size_t i>
 | |
| 			using arg_at = void_tuple_element_t<i, args_tuple>;
 | |
| 		};
 | |
| 
 | |
| 		template <typename Signature, bool b = has_deducible_signature<Signature>::value>
 | |
| 		struct fx_traits : basic_traits<false, false, void, void> {};
 | |
| 
 | |
| 		// Free Functions
 | |
| 		template <typename R, typename... Args>
 | |
| 		struct fx_traits<R(Args...), false> : basic_traits<false, false, void, R, Args...> {
 | |
| 			typedef R (*function_pointer_type)(Args...);
 | |
| 		};
 | |
| 
 | |
| 		template <typename R, typename... Args>
 | |
| 		struct fx_traits<R (*)(Args...), false> : basic_traits<false, false, void, R, Args...> {
 | |
| 			typedef R (*function_pointer_type)(Args...);
 | |
| 		};
 | |
| 
 | |
| 		template <typename R, typename... Args>
 | |
| 		struct fx_traits<R(Args..., ...), false> : basic_traits<false, true, void, R, Args...> {
 | |
| 			typedef R (*function_pointer_type)(Args..., ...);
 | |
| 		};
 | |
| 
 | |
| 		template <typename R, typename... Args>
 | |
| 		struct fx_traits<R (*)(Args..., ...), false> : basic_traits<false, true, void, R, Args...> {
 | |
| 			typedef R (*function_pointer_type)(Args..., ...);
 | |
| 		};
 | |
| 
 | |
| 		// Member Functions
 | |
| 		/* C-Style Variadics */
 | |
| 		template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (T::*)(Args...), false> : basic_traits<false, false, T, R, Args...> {
 | |
| 			typedef R (T::*function_pointer_type)(Args...);
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (T::*)(Args..., ...), false> : basic_traits<false, true, T, R, Args...> {
 | |
| 			typedef R (T::*function_pointer_type)(Args..., ...);
 | |
| 		};
 | |
| 
 | |
| 		/* Const Volatile */
 | |
| 		template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (T::*)(Args...) const, false> : basic_traits<false, false, T, R, Args...> {
 | |
| 			typedef R (T::*function_pointer_type)(Args...) const;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (T::*)(Args..., ...) const, false> : basic_traits<false, true, T, R, Args...> {
 | |
| 			typedef R (T::*function_pointer_type)(Args..., ...) const;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (T::*)(Args...) const volatile, false> : basic_traits<false, false, T, R, Args...> {
 | |
| 			typedef R (T::*function_pointer_type)(Args...) const volatile;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (T::*)(Args..., ...) const volatile, false> : basic_traits<false, true, T, R, Args...> {
 | |
| 			typedef R (T::*function_pointer_type)(Args..., ...) const volatile;
 | |
| 		};
 | |
| 
 | |
| 		/* Member Function Qualifiers */
 | |
| 		template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (T::*)(Args...)&, false> : basic_traits<false, false, T, R, Args...> {
 | |
| 			typedef R (T::*function_pointer_type)(Args...) &;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (T::*)(Args..., ...)&, false> : basic_traits<false, true, T, R, Args...> {
 | |
| 			typedef R (T::*function_pointer_type)(Args..., ...) &;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (T::*)(Args...) const&, false> : basic_traits<false, false, T, R, Args...> {
 | |
| 			typedef R (T::*function_pointer_type)(Args...) const&;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (T::*)(Args..., ...) const&, false> : basic_traits<false, true, T, R, Args...> {
 | |
| 			typedef R (T::*function_pointer_type)(Args..., ...) const&;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (T::*)(Args...) const volatile&, false> : basic_traits<false, false, T, R, Args...> {
 | |
| 			typedef R (T::*function_pointer_type)(Args...) const volatile&;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (T::*)(Args..., ...) const volatile&, false> : basic_traits<false, true, T, R, Args...> {
 | |
| 			typedef R (T::*function_pointer_type)(Args..., ...) const volatile&;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (T::*)(Args...)&&, false> : basic_traits<false, false, T, R, Args...> {
 | |
| 			typedef R (T::*function_pointer_type)(Args...) &&;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (T::*)(Args..., ...)&&, false> : basic_traits<false, true, T, R, Args...> {
 | |
| 			typedef R (T::*function_pointer_type)(Args..., ...) &&;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (T::*)(Args...) const&&, false> : basic_traits<false, false, T, R, Args...> {
 | |
| 			typedef R (T::*function_pointer_type)(Args...) const&&;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (T::*)(Args..., ...) const&&, false> : basic_traits<false, true, T, R, Args...> {
 | |
| 			typedef R (T::*function_pointer_type)(Args..., ...) const&&;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (T::*)(Args...) const volatile&&, false> : basic_traits<false, false, T, R, Args...> {
 | |
| 			typedef R (T::*function_pointer_type)(Args...) const volatile&&;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (T::*)(Args..., ...) const volatile&&, false> : basic_traits<false, true, T, R, Args...> {
 | |
| 			typedef R (T::*function_pointer_type)(Args..., ...) const volatile&&;
 | |
| 		};
 | |
| 
 | |
| #if SOL_IS_ON(SOL_USE_NOEXCEPT_FUNCTION_TYPE_I_)
 | |
| 
 | |
| 		template <typename R, typename... Args>
 | |
| 		struct fx_traits<R(Args...) noexcept, false> : basic_traits<true, false, void, R, Args...> {
 | |
| 			typedef R (*function_pointer_type)(Args...) noexcept;
 | |
| 		};
 | |
| 
 | |
| 		template <typename R, typename... Args>
 | |
| 		struct fx_traits<R (*)(Args...) noexcept, false> : basic_traits<true, false, void, R, Args...> {
 | |
| 			typedef R (*function_pointer_type)(Args...) noexcept;
 | |
| 		};
 | |
| 
 | |
| 		template <typename R, typename... Args>
 | |
| 		struct fx_traits<R(Args..., ...) noexcept, false> : basic_traits<true, true, void, R, Args...> {
 | |
| 			typedef R (*function_pointer_type)(Args..., ...) noexcept;
 | |
| 		};
 | |
| 
 | |
| 		template <typename R, typename... Args>
 | |
| 		struct fx_traits<R (*)(Args..., ...) noexcept, false> : basic_traits<true, true, void, R, Args...> {
 | |
| 			typedef R (*function_pointer_type)(Args..., ...) noexcept;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (T::*)(Args...) noexcept, false> : basic_traits<true, false, T, R, Args...> {
 | |
| 			typedef R (T::*function_pointer_type)(Args...) noexcept;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (T::*)(Args..., ...) noexcept, false> : basic_traits<true, true, T, R, Args...> {
 | |
| 			typedef R (T::*function_pointer_type)(Args..., ...) noexcept;
 | |
| 		};
 | |
| 
 | |
| 		/* Const Volatile */
 | |
| 		template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (T::*)(Args...) const noexcept, false> : basic_traits<true, false, T, R, Args...> {
 | |
| 			typedef R (T::*function_pointer_type)(Args...) const noexcept;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (T::*)(Args..., ...) const noexcept, false> : basic_traits<true, true, T, R, Args...> {
 | |
| 			typedef R (T::*function_pointer_type)(Args..., ...) const noexcept;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (T::*)(Args...) const volatile noexcept, false> : basic_traits<true, false, T, R, Args...> {
 | |
| 			typedef R (T::*function_pointer_type)(Args...) const volatile noexcept;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (T::*)(Args..., ...) const volatile noexcept, false> : basic_traits<true, true, T, R, Args...> {
 | |
| 			typedef R (T::*function_pointer_type)(Args..., ...) const volatile noexcept;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (T::*)(Args...) & noexcept, false> : basic_traits<true, false, T, R, Args...> {
 | |
| 			typedef R (T::*function_pointer_type)(Args...) & noexcept;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (T::*)(Args..., ...) & noexcept, false> : basic_traits<true, true, T, R, Args...> {
 | |
| 			typedef R (T::*function_pointer_type)(Args..., ...) & noexcept;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (T::*)(Args...) const& noexcept, false> : basic_traits<true, false, T, R, Args...> {
 | |
| 			typedef R (T::*function_pointer_type)(Args...) const& noexcept;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (T::*)(Args..., ...) const& noexcept, false> : basic_traits<true, true, T, R, Args...> {
 | |
| 			typedef R (T::*function_pointer_type)(Args..., ...) const& noexcept;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (T::*)(Args...) const volatile& noexcept, false> : basic_traits<true, false, T, R, Args...> {
 | |
| 			typedef R (T::*function_pointer_type)(Args...) const volatile& noexcept;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (T::*)(Args..., ...) const volatile& noexcept, false> : basic_traits<true, true, T, R, Args...> {
 | |
| 			typedef R (T::*function_pointer_type)(Args..., ...) const volatile& noexcept;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (T::*)(Args...) && noexcept, false> : basic_traits<true, false, T, R, Args...> {
 | |
| 			typedef R (T::*function_pointer_type)(Args...) && noexcept;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (T::*)(Args..., ...) && noexcept, false> : basic_traits<true, true, T, R, Args...> {
 | |
| 			typedef R (T::*function_pointer_type)(Args..., ...) && noexcept;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (T::*)(Args...) const&& noexcept, false> : basic_traits<true, false, T, R, Args...> {
 | |
| 			typedef R (T::*function_pointer_type)(Args...) const&& noexcept;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (T::*)(Args..., ...) const&& noexcept, false> : basic_traits<true, true, T, R, Args...> {
 | |
| 			typedef R (T::*function_pointer_type)(Args..., ...) const&& noexcept;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (T::*)(Args...) const volatile&& noexcept, false> : basic_traits<true, false, T, R, Args...> {
 | |
| 			typedef R (T::*function_pointer_type)(Args...) const volatile&& noexcept;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (T::*)(Args..., ...) const volatile&& noexcept, false> : basic_traits<true, true, T, R, Args...> {
 | |
| 			typedef R (T::*function_pointer_type)(Args..., ...) const volatile&& noexcept;
 | |
| 		};
 | |
| 
 | |
| #endif // noexcept is part of a function's type
 | |
| 
 | |
| #if SOL_IS_ON(SOL_COMPILER_VCXX_I_) && SOL_IS_ON(SOL_PLATFORM_X86_I_)
 | |
| 		template <typename R, typename... Args>
 | |
| 		struct fx_traits<R __stdcall(Args...), false> : basic_traits<false, false, void, R, Args...> {
 | |
| 			typedef R(__stdcall* function_pointer_type)(Args...);
 | |
| 		};
 | |
| 
 | |
| 		template <typename R, typename... Args>
 | |
| 		struct fx_traits<R(__stdcall*)(Args...), false> : basic_traits<false, false, void, R, Args...> {
 | |
| 			typedef R(__stdcall* function_pointer_type)(Args...);
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (__stdcall T::*)(Args...), false> : basic_traits<false, false, T, R, Args...> {
 | |
| 			typedef R (__stdcall T::*function_pointer_type)(Args...);
 | |
| 		};
 | |
| 
 | |
| 		/* Const Volatile */
 | |
| 		template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (__stdcall T::*)(Args...) const, false> : basic_traits<false, false, T, R, Args...> {
 | |
| 			typedef R (__stdcall T::*function_pointer_type)(Args...) const;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (__stdcall T::*)(Args...) const volatile, false> : basic_traits<false, false, T, R, Args...> {
 | |
| 			typedef R (__stdcall T::*function_pointer_type)(Args...) const volatile;
 | |
| 		};
 | |
| 
 | |
| 		/* Member Function Qualifiers */
 | |
| 		template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (__stdcall T::*)(Args...)&, false> : basic_traits<false, false, T, R, Args...> {
 | |
| 			typedef R (__stdcall T::*function_pointer_type)(Args...) &;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (__stdcall T::*)(Args...) const&, false> : basic_traits<false, false, T, R, Args...> {
 | |
| 			typedef R (__stdcall T::*function_pointer_type)(Args...) const&;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (__stdcall T::*)(Args...) const volatile&, false> : basic_traits<false, false, T, R, Args...> {
 | |
| 			typedef R (__stdcall T::*function_pointer_type)(Args...) const volatile&;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (__stdcall T::*)(Args...)&&, false> : basic_traits<false, false, T, R, Args...> {
 | |
| 			typedef R (__stdcall T::*function_pointer_type)(Args...) &&;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (__stdcall T::*)(Args...) const&&, false> : basic_traits<false, false, T, R, Args...> {
 | |
| 			typedef R (__stdcall T::*function_pointer_type)(Args...) const&&;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (__stdcall T::*)(Args...) const volatile&&, false> : basic_traits<false, false, T, R, Args...> {
 | |
| 			typedef R (__stdcall T::*function_pointer_type)(Args...) const volatile&&;
 | |
| 		};
 | |
| 
 | |
| #if SOL_IS_ON(SOL_USE_NOEXCEPT_FUNCTION_TYPE_I_)
 | |
| 
 | |
| 		template <typename R, typename... Args>
 | |
| 		struct fx_traits<R __stdcall(Args...) noexcept, false> : basic_traits<true, false, void, R, Args...> {
 | |
| 			typedef R(__stdcall* function_pointer_type)(Args...) noexcept;
 | |
| 		};
 | |
| 
 | |
| 		template <typename R, typename... Args>
 | |
| 		struct fx_traits<R(__stdcall*)(Args...) noexcept, false> : basic_traits<true, false, void, R, Args...> {
 | |
| 			typedef R(__stdcall* function_pointer_type)(Args...) noexcept;
 | |
| 		};
 | |
| 
 | |
| 		/* __stdcall cannot be applied to functions with varargs*/
 | |
| 		/*template <typename R, typename... Args>
 | |
| 		struct fx_traits<__stdcall R(Args..., ...) noexcept, false> : basic_traits<true, true, void, R, Args...> {
 | |
| 			typedef R(__stdcall* function_pointer_type)(Args..., ...) noexcept;
 | |
| 		};
 | |
| 
 | |
| 		template <typename R, typename... Args>
 | |
| 		struct fx_traits<R (__stdcall *)(Args..., ...) noexcept, false> : basic_traits<true, true, void, R, Args...> {
 | |
| 			typedef R(__stdcall* function_pointer_type)(Args..., ...) noexcept;
 | |
| 		};*/
 | |
| 
 | |
| 		template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (__stdcall T::*)(Args...) noexcept, false> : basic_traits<true, false, T, R, Args...> {
 | |
| 			typedef R (__stdcall T::*function_pointer_type)(Args...) noexcept;
 | |
| 		};
 | |
| 
 | |
| 		/* __stdcall does not work with varargs */
 | |
| 		/*template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (__stdcall T::*)(Args..., ...) noexcept, false> : basic_traits<true, true, T, R, Args...> {
 | |
| 			typedef R (__stdcall T::*function_pointer_type)(Args..., ...) noexcept;
 | |
| 		};*/
 | |
| 
 | |
| 		/* Const Volatile */
 | |
| 		template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (__stdcall T::*)(Args...) const noexcept, false> : basic_traits<true, false, T, R, Args...> {
 | |
| 			typedef R (__stdcall T::*function_pointer_type)(Args...) const noexcept;
 | |
| 		};
 | |
| 
 | |
| 		/* __stdcall does not work with varargs */
 | |
| 		/*template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (__stdcall T::*)(Args..., ...) const noexcept, false> : basic_traits<true, true, T, R, Args...> {
 | |
| 			typedef R (__stdcall T::*function_pointer_type)(Args..., ...) const noexcept;
 | |
| 		};*/
 | |
| 
 | |
| 		template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (__stdcall T::*)(Args...) const volatile noexcept, false> : basic_traits<true, false, T, R, Args...> {
 | |
| 			typedef R (__stdcall T::*function_pointer_type)(Args...) const volatile noexcept;
 | |
| 		};
 | |
| 
 | |
| 		/* __stdcall does not work with varargs */
 | |
| 		/*template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (__stdcall T::*)(Args..., ...) const volatile noexcept, false> : basic_traits<true, true, T, R, Args...> {
 | |
| 			typedef R (__stdcall T::*function_pointer_type)(Args..., ...) const volatile noexcept;
 | |
| 		};*/
 | |
| 
 | |
| 		template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (__stdcall T::*)(Args...) & noexcept, false> : basic_traits<true, false, T, R, Args...> {
 | |
| 			typedef R (__stdcall T::*function_pointer_type)(Args...) & noexcept;
 | |
| 		};
 | |
| 
 | |
| 		/* __stdcall does not work with varargs */
 | |
| 		/*template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (__stdcall T::*)(Args..., ...) & noexcept, false> : basic_traits<true, true, T, R, Args...> {
 | |
| 			typedef R (__stdcall T::*function_pointer_type)(Args..., ...) & noexcept;
 | |
| 		};*/
 | |
| 
 | |
| 		template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (__stdcall T::*)(Args...) const& noexcept, false> : basic_traits<true, false, T, R, Args...> {
 | |
| 			typedef R (__stdcall T::*function_pointer_type)(Args...) const& noexcept;
 | |
| 		};
 | |
| 
 | |
| 		/* __stdcall does not work with varargs */
 | |
| 		/*template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (__stdcall T::*)(Args..., ...) const& noexcept, false> : basic_traits<true, true, T, R, Args...> {
 | |
| 			typedef R (__stdcall T::*function_pointer_type)(Args..., ...) const& noexcept;
 | |
| 		};*/
 | |
| 
 | |
| 		template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (__stdcall T::*)(Args...) const volatile& noexcept, false> : basic_traits<true, false, T, R, Args...> {
 | |
| 			typedef R (__stdcall T::*function_pointer_type)(Args...) const volatile& noexcept;
 | |
| 		};
 | |
| 
 | |
| 		/* __stdcall does not work with varargs */
 | |
| 		/*template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (__stdcall T::*)(Args..., ...) const volatile& noexcept, false> : basic_traits<true, true, T, R, Args...> {
 | |
| 			typedef R (__stdcall T::*function_pointer_type)(Args..., ...) const volatile& noexcept;
 | |
| 		};*/
 | |
| 
 | |
| 		template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (__stdcall T::*)(Args...) && noexcept, false> : basic_traits<true, false, T, R, Args...> {
 | |
| 			typedef R (__stdcall T::*function_pointer_type)(Args...) && noexcept;
 | |
| 		};
 | |
| 
 | |
| 		/* __stdcall does not work with varargs */
 | |
| 		/*template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (__stdcall T::*)(Args..., ...) && noexcept, false> : basic_traits<true, true, T, R, Args...> {
 | |
| 			typedef R (__stdcall T::*function_pointer_type)(Args..., ...) && noexcept;
 | |
| 		};*/
 | |
| 
 | |
| 		template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (__stdcall T::*)(Args...) const&& noexcept, false> : basic_traits<true, false, T, R, Args...> {
 | |
| 			typedef R (__stdcall T::*function_pointer_type)(Args...) const&& noexcept;
 | |
| 		};
 | |
| 
 | |
| 		/* __stdcall does not work with varargs */
 | |
| 		/*template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (__stdcall T::*)(Args..., ...) const&& noexcept, false> : basic_traits<true, true, T, R, Args...> {
 | |
| 			typedef R (__stdcall T::*function_pointer_type)(Args..., ...) const&& noexcept;
 | |
| 		};*/
 | |
| 
 | |
| 		template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (__stdcall T::*)(Args...) const volatile&& noexcept, false> : basic_traits<true, false, T, R, Args...> {
 | |
| 			typedef R (__stdcall T::*function_pointer_type)(Args...) const volatile&& noexcept;
 | |
| 		};
 | |
| 
 | |
| 		/* __stdcall does not work with varargs */
 | |
| 		/*template <typename T, typename R, typename... Args>
 | |
| 		struct fx_traits<R (__stdcall T::*)(Args..., ...) const volatile&& noexcept, false> : basic_traits<true, true, T, R, Args...> {
 | |
| 			typedef R (__stdcall T::*function_pointer_type)(Args..., ...) const volatile&& noexcept;
 | |
| 		};*/
 | |
| #endif // noexcept is part of a function's type
 | |
| #endif // __stdcall x86 VC++ bug
 | |
| 
 | |
| 		template <typename Signature>
 | |
| 		struct fx_traits<Signature, true>
 | |
| 		: public fx_traits<typename fx_traits<decltype(&Signature::operator())>::function_type, false> {};
 | |
| 
 | |
| 		template <typename Signature, bool b = std::is_member_object_pointer<Signature>::value>
 | |
| 		struct callable_traits
 | |
| 		: public fx_traits<std::decay_t<Signature>> {};
 | |
| 
 | |
| 		template <typename R, typename T>
 | |
| 		struct callable_traits<R(T::*), true> {
 | |
| 			typedef meta::conditional_t<std::is_array_v<R>, std::add_lvalue_reference_t<R>, R> return_type;
 | |
| 			typedef return_type Arg;
 | |
| 			typedef T object_type;
 | |
| 			using signature_type = R(T::*);
 | |
| 			inline static constexpr bool is_noexcept = false;
 | |
| 			inline static constexpr bool is_member_function = false;
 | |
| 			inline static constexpr std::size_t arity = 1;
 | |
| 			inline static constexpr std::size_t free_arity = 2;
 | |
| 			typedef std::tuple<Arg> args_tuple;
 | |
| 			typedef types<Arg> args_list;
 | |
| 			typedef types<T, Arg> free_args_list;
 | |
| 			typedef meta::tuple_types<return_type> returns_list;
 | |
| 			typedef return_type(function_type)(T&, return_type);
 | |
| 			typedef return_type (*function_pointer_type)(T&, Arg);
 | |
| 			typedef return_type (*free_function_pointer_type)(T&, Arg);
 | |
| 			template <std::size_t i>
 | |
| 			using arg_at = void_tuple_element_t<i, args_tuple>;
 | |
| 		};
 | |
| 
 | |
| 	} // namespace meta_detail
 | |
| 
 | |
| 	template <typename Signature>
 | |
| 	struct bind_traits : meta_detail::callable_traits<Signature> {};
 | |
| 
 | |
| 	template <typename Signature>
 | |
| 	using function_args_t = typename bind_traits<Signature>::args_list;
 | |
| 
 | |
| 	template <typename Signature>
 | |
| 	using function_signature_t = typename bind_traits<Signature>::signature_type;
 | |
| 
 | |
| 	template <typename Signature>
 | |
| 	using function_return_t = typename bind_traits<Signature>::return_type;
 | |
| }} // namespace sol::meta
 | |
| 
 | |
| // end of sol/bind_traits.hpp
 | |
| 
 | |
| // beginning of sol/pointer_like.hpp
 | |
| 
 | |
| #include <utility>
 | |
| #include <type_traits>
 | |
| 
 | |
| namespace sol {
 | |
| 
 | |
| 	namespace meta {
 | |
| 		namespace meta_detail {
 | |
| 			template <typename T>
 | |
| 			using is_dereferenceable_test = decltype(*std::declval<T>());
 | |
| 
 | |
| 			template <typename T>
 | |
| 			using is_explicitly_dereferenceable_test = decltype(std::declval<T>().operator*());
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		using is_pointer_like = std::integral_constant<bool, !std::is_array_v<T> && (std::is_pointer_v<T> || is_detected_v<meta_detail::is_explicitly_dereferenceable_test, T>)>;
 | |
| 
 | |
| 		template <typename T>
 | |
| 		constexpr inline bool is_pointer_like_v = is_pointer_like<T>::value;
 | |
| 	} // namespace meta
 | |
| 
 | |
| 	namespace detail {
 | |
| 
 | |
| 		template <typename T>
 | |
| 		auto unwrap(T&& item) -> decltype(std::forward<T>(item)) {
 | |
| 			return std::forward<T>(item);
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		T& unwrap(std::reference_wrapper<T> arg) {
 | |
| 			return arg.get();
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		inline decltype(auto) deref(T&& item) {
 | |
| 			using Tu = meta::unqualified_t<T>;
 | |
| 			if constexpr (meta::is_pointer_like_v<Tu>) {
 | |
| 				return *std::forward<T>(item);
 | |
| 			}
 | |
| 			else {
 | |
| 				return std::forward<T>(item);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		inline decltype(auto) deref_move_only(T&& item) {
 | |
| 			using Tu = meta::unqualified_t<T>;
 | |
| 			if constexpr (meta::is_pointer_like_v<Tu> && !std::is_pointer_v<Tu> && !std::is_copy_constructible_v<Tu>) {
 | |
| 				return *std::forward<T>(item);
 | |
| 			}
 | |
| 			else {
 | |
| 				return std::forward<T>(item);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		inline T* ptr(T& val) {
 | |
| 			return std::addressof(val);
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		inline T* ptr(std::reference_wrapper<T> val) {
 | |
| 			return std::addressof(val.get());
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		inline T* ptr(T* val) {
 | |
| 			return val;
 | |
| 		}
 | |
| 	} // namespace detail
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/pointer_like.hpp
 | |
| 
 | |
| // beginning of sol/string_view.hpp
 | |
| 
 | |
| #include <cstddef>
 | |
| #include <string>
 | |
| #include <string_view>
 | |
| #include <functional>
 | |
| 
 | |
| namespace sol {
 | |
| 	template <typename C, typename T = std::char_traits<C>>
 | |
| 	using basic_string_view = std::basic_string_view<C, T>;
 | |
| 
 | |
| 	typedef std::string_view string_view;
 | |
| 	typedef std::wstring_view wstring_view;
 | |
| 	typedef std::u16string_view u16string_view;
 | |
| 	typedef std::u32string_view u32string_view;
 | |
| 	typedef std::hash<std::string_view> string_view_hash;
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/string_view.hpp
 | |
| 
 | |
| #include <type_traits>
 | |
| #include <cstdint>
 | |
| #include <memory>
 | |
| #include <functional>
 | |
| #include <array>
 | |
| #include <iterator>
 | |
| #include <iosfwd>
 | |
| #if SOL_IS_ON(SOL_STD_VARIANT_I_)
 | |
| #include <variant>
 | |
| #endif // variant is weird on XCode, thanks XCode
 | |
| 
 | |
| namespace sol { namespace meta {
 | |
| 	template <typename T>
 | |
| 	struct unwrapped {
 | |
| 		typedef T type;
 | |
| 	};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct unwrapped<std::reference_wrapper<T>> {
 | |
| 		typedef T type;
 | |
| 	};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	using unwrapped_t = typename unwrapped<T>::type;
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct unwrap_unqualified : unwrapped<unqualified_t<T>> {};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	using unwrap_unqualified_t = typename unwrap_unqualified<T>::type;
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct remove_member_pointer;
 | |
| 
 | |
| 	template <typename R, typename T>
 | |
| 	struct remove_member_pointer<R T::*> {
 | |
| 		typedef R type;
 | |
| 	};
 | |
| 
 | |
| 	template <typename R, typename T>
 | |
| 	struct remove_member_pointer<R T::*const> {
 | |
| 		typedef R type;
 | |
| 	};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	using remove_member_pointer_t = remove_member_pointer<T>;
 | |
| 
 | |
| 	template <typename T, typename...>
 | |
| 	struct all_same : std::true_type {};
 | |
| 
 | |
| 	template <typename T, typename U, typename... Args>
 | |
| 	struct all_same<T, U, Args...> : std::integral_constant<bool, std::is_same<T, U>::value && all_same<T, Args...>::value> {};
 | |
| 
 | |
| 	template <typename T, typename...>
 | |
| 	struct any_same : std::false_type {};
 | |
| 
 | |
| 	template <typename T, typename U, typename... Args>
 | |
| 	struct any_same<T, U, Args...> : std::integral_constant<bool, std::is_same<T, U>::value || any_same<T, Args...>::value> {};
 | |
| 
 | |
| 	template <typename T, typename... Args>
 | |
| 	constexpr inline bool any_same_v = any_same<T, Args...>::value;
 | |
| 
 | |
| 	template <bool B>
 | |
| 	using boolean = std::integral_constant<bool, B>;
 | |
| 
 | |
| 	template <bool B>
 | |
| 	constexpr inline bool boolean_v = boolean<B>::value;
 | |
| 
 | |
| 	template <typename T>
 | |
| 	using neg = boolean<!T::value>;
 | |
| 
 | |
| 	template <typename T>
 | |
| 	constexpr inline bool neg_v = neg<T>::value;
 | |
| 
 | |
| 	template <typename... Args>
 | |
| 	struct all : boolean<true> {};
 | |
| 
 | |
| 	template <typename T, typename... Args>
 | |
| 	struct all<T, Args...> : std::conditional_t<T::value, all<Args...>, boolean<false>> {};
 | |
| 
 | |
| 	template <typename... Args>
 | |
| 	struct any : boolean<false> {};
 | |
| 
 | |
| 	template <typename T, typename... Args>
 | |
| 	struct any<T, Args...> : std::conditional_t<T::value, boolean<true>, any<Args...>> {};
 | |
| 
 | |
| 	template <typename T, typename... Args>
 | |
| 	constexpr inline bool all_v = all<T, Args...>::value;
 | |
| 
 | |
| 	template <typename T, typename... Args>
 | |
| 	constexpr inline bool any_v = any<T, Args...>::value;
 | |
| 
 | |
| 	enum class enable_t { _ };
 | |
| 
 | |
| 	constexpr const auto enabler = enable_t::_;
 | |
| 
 | |
| 	template <bool value, typename T = void>
 | |
| 	using disable_if_t = std::enable_if_t<!value, T>;
 | |
| 
 | |
| 	template <typename... Args>
 | |
| 	using enable = std::enable_if_t<all<Args...>::value, enable_t>;
 | |
| 
 | |
| 	template <typename... Args>
 | |
| 	using disable = std::enable_if_t<neg<all<Args...>>::value, enable_t>;
 | |
| 
 | |
| 	template <typename... Args>
 | |
| 	using enable_any = std::enable_if_t<any<Args...>::value, enable_t>;
 | |
| 
 | |
| 	template <typename... Args>
 | |
| 	using disable_any = std::enable_if_t<neg<any<Args...>>::value, enable_t>;
 | |
| 
 | |
| 	template <typename V, typename... Vs>
 | |
| 	struct find_in_pack_v : boolean<false> {};
 | |
| 
 | |
| 	template <typename V, typename Vs1, typename... Vs>
 | |
| 	struct find_in_pack_v<V, Vs1, Vs...> : any<boolean<(V::value == Vs1::value)>, find_in_pack_v<V, Vs...>> {};
 | |
| 
 | |
| 	namespace meta_detail {
 | |
| 		template <std::size_t I, typename T, typename... Args>
 | |
| 		struct index_in_pack : std::integral_constant<std::size_t, SIZE_MAX> {};
 | |
| 
 | |
| 		template <std::size_t I, typename T, typename T1, typename... Args>
 | |
| 		struct index_in_pack<I, T, T1, Args...>
 | |
| 		: conditional_t<std::is_same<T, T1>::value, std::integral_constant<std::ptrdiff_t, I>, index_in_pack<I + 1, T, Args...>> {};
 | |
| 	} // namespace meta_detail
 | |
| 
 | |
| 	template <typename T, typename... Args>
 | |
| 	struct index_in_pack : meta_detail::index_in_pack<0, T, Args...> {};
 | |
| 
 | |
| 	template <typename T, typename List>
 | |
| 	struct index_in : meta_detail::index_in_pack<0, T, List> {};
 | |
| 
 | |
| 	template <typename T, typename... Args>
 | |
| 	struct index_in<T, types<Args...>> : meta_detail::index_in_pack<0, T, Args...> {};
 | |
| 
 | |
| 	template <std::size_t I, typename... Args>
 | |
| 	struct at_in_pack {};
 | |
| 
 | |
| 	template <std::size_t I, typename... Args>
 | |
| 	using at_in_pack_t = typename at_in_pack<I, Args...>::type;
 | |
| 
 | |
| 	template <std::size_t I, typename Arg, typename... Args>
 | |
| 	struct at_in_pack<I, Arg, Args...> : std::conditional<I == 0, Arg, at_in_pack_t<I - 1, Args...>> {};
 | |
| 
 | |
| 	template <typename Arg, typename... Args>
 | |
| 	struct at_in_pack<0, Arg, Args...> {
 | |
| 		typedef Arg type;
 | |
| 	};
 | |
| 
 | |
| 	namespace meta_detail {
 | |
| 		template <typename, typename TI>
 | |
| 		using on_even = meta::boolean<(TI::value % 2) == 0>;
 | |
| 
 | |
| 		template <typename, typename TI>
 | |
| 		using on_odd = meta::boolean<(TI::value % 2) == 1>;
 | |
| 
 | |
| 		template <typename, typename>
 | |
| 		using on_always = std::true_type;
 | |
| 
 | |
| 		template <template <typename...> class When, std::size_t Limit, std::size_t I, template <typename...> class Pred, typename... Ts>
 | |
| 		struct count_when_for_pack : std::integral_constant<std::size_t, 0> {};
 | |
| 		template <template <typename...> class When, std::size_t Limit, std::size_t I, template <typename...> class Pred, typename T, typename... Ts>
 | |
| 			          struct count_when_for_pack<When, Limit, I, Pred, T, Ts...> : conditional_t < sizeof...(Ts)
 | |
| 			     == 0
 | |
| 			|| Limit<2, std::integral_constant<std::size_t, I + static_cast<std::size_t>(Limit != 0 && Pred<T>::value)>,
 | |
| 			     count_when_for_pack<When, Limit - static_cast<std::size_t>(When<T, std::integral_constant<std::size_t, I>>::value),
 | |
| 			          I + static_cast<std::size_t>(When<T, std::integral_constant<std::size_t, I>>::value&& Pred<T>::value), Pred, Ts...>> {};
 | |
| 	} // namespace meta_detail
 | |
| 
 | |
| 	template <template <typename...> class Pred, typename... Ts>
 | |
| 	struct count_for_pack : meta_detail::count_when_for_pack<meta_detail::on_always, sizeof...(Ts), 0, Pred, Ts...> {};
 | |
| 
 | |
| 	template <template <typename...> class Pred, typename... Ts>
 | |
| 	inline constexpr std::size_t count_for_pack_v = count_for_pack<Pred, Ts...>::value;
 | |
| 
 | |
| 	template <template <typename...> class Pred, typename List>
 | |
| 	struct count_for;
 | |
| 
 | |
| 	template <template <typename...> class Pred, typename... Args>
 | |
| 	struct count_for<Pred, types<Args...>> : count_for_pack<Pred, Args...> {};
 | |
| 
 | |
| 	template <std::size_t Limit, template <typename...> class Pred, typename... Ts>
 | |
| 	struct count_for_to_pack : meta_detail::count_when_for_pack<meta_detail::on_always, Limit, 0, Pred, Ts...> {};
 | |
| 
 | |
| 	template <std::size_t Limit, template <typename...> class Pred, typename... Ts>
 | |
| 	inline constexpr std::size_t count_for_to_pack_v = count_for_to_pack<Limit, Pred, Ts...>::value;
 | |
| 
 | |
| 	template <template <typename...> class When, std::size_t Limit, template <typename...> class Pred, typename... Ts>
 | |
| 	struct count_when_for_to_pack : meta_detail::count_when_for_pack<When, Limit, 0, Pred, Ts...> {};
 | |
| 
 | |
| 	template <template <typename...> class When, std::size_t Limit, template <typename...> class Pred, typename... Ts>
 | |
| 	inline constexpr std::size_t count_when_for_to_pack_v = count_when_for_to_pack<When, Limit, Pred, Ts...>::value;
 | |
| 
 | |
| 	template <template <typename...> class Pred, typename... Ts>
 | |
| 	using count_even_for_pack = count_when_for_to_pack<meta_detail::on_even, sizeof...(Ts), Pred, Ts...>;
 | |
| 
 | |
| 	template <template <typename...> class Pred, typename... Ts>
 | |
| 	inline constexpr std::size_t count_even_for_pack_v = count_even_for_pack<Pred, Ts...>::value;
 | |
| 
 | |
| 	template <template <typename...> class Pred, typename... Ts>
 | |
| 	using count_odd_for_pack = count_when_for_to_pack<meta_detail::on_odd, sizeof...(Ts), Pred, Ts...>;
 | |
| 
 | |
| 	template <template <typename...> class Pred, typename... Ts>
 | |
| 	inline constexpr std::size_t count_odd_for_pack_v = count_odd_for_pack<Pred, Ts...>::value;
 | |
| 
 | |
| 	template <typename... Args>
 | |
| 	struct return_type {
 | |
| 		typedef std::tuple<Args...> type;
 | |
| 	};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct return_type<T> {
 | |
| 		typedef T type;
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct return_type<> {
 | |
| 		typedef void type;
 | |
| 	};
 | |
| 
 | |
| 	template <typename... Args>
 | |
| 	using return_type_t = typename return_type<Args...>::type;
 | |
| 
 | |
| 	namespace meta_detail {
 | |
| 		template <typename>
 | |
| 		struct always_true : std::true_type {};
 | |
| 		struct is_invokable_tester {
 | |
| 			template <typename Fun, typename... Args>
 | |
| 			static always_true<decltype(std::declval<Fun>()(std::declval<Args>()...))> test(int);
 | |
| 			template <typename...>
 | |
| 			static std::false_type test(...);
 | |
| 		};
 | |
| 	} // namespace meta_detail
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct is_invokable;
 | |
| 	template <typename Fun, typename... Args>
 | |
| 	struct is_invokable<Fun(Args...)> : decltype(meta_detail::is_invokable_tester::test<Fun, Args...>(0)) {};
 | |
| 
 | |
| 	namespace meta_detail {
 | |
| 
 | |
| 		template <typename T, typename = void>
 | |
| 		struct is_callable : std::is_function<std::remove_pointer_t<T>> {};
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct is_callable<T,
 | |
| 			std::enable_if_t<std::is_final<unqualified_t<T>>::value && std::is_class<unqualified_t<T>>::value
 | |
| 			     && std::is_same<decltype(void(&T::operator())), void>::value>> {};
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct is_callable<T,
 | |
| 			std::enable_if_t<!std::is_final<unqualified_t<T>>::value && std::is_class<unqualified_t<T>>::value
 | |
| 			     && std::is_destructible<unqualified_t<T>>::value>> {
 | |
| 			struct F {
 | |
| 				void operator()() {};
 | |
| 			};
 | |
| 			struct Derived : T, F {};
 | |
| 			template <typename U, U>
 | |
| 			struct Check;
 | |
| 
 | |
| 			template <typename V>
 | |
| 			static sfinae_no_t test(Check<void (F::*)(), &V::operator()>*);
 | |
| 
 | |
| 			template <typename>
 | |
| 			static sfinae_yes_t test(...);
 | |
| 
 | |
| 			static constexpr bool value = std::is_same_v<decltype(test<Derived>(0)), sfinae_yes_t>;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct is_callable<T,
 | |
| 			std::enable_if_t<!std::is_final<unqualified_t<T>>::value && std::is_class<unqualified_t<T>>::value
 | |
| 			     && !std::is_destructible<unqualified_t<T>>::value>> {
 | |
| 			struct F {
 | |
| 				void operator()() {};
 | |
| 			};
 | |
| 			struct Derived : T, F {
 | |
| 				~Derived() = delete;
 | |
| 			};
 | |
| 			template <typename U, U>
 | |
| 			struct Check;
 | |
| 
 | |
| 			template <typename V>
 | |
| 			static sfinae_no_t test(Check<void (F::*)(), &V::operator()>*);
 | |
| 
 | |
| 			template <typename>
 | |
| 			static sfinae_yes_t test(...);
 | |
| 
 | |
| 			static constexpr bool value = std::is_same_v<decltype(test<Derived>(0)), sfinae_yes_t>;
 | |
| 		};
 | |
| 
 | |
| 		struct has_begin_end_impl {
 | |
| 			template <typename T, typename U = unqualified_t<T>, typename B = decltype(std::declval<U&>().begin()),
 | |
| 				typename E = decltype(std::declval<U&>().end())>
 | |
| 			static std::true_type test(int);
 | |
| 
 | |
| 			template <typename...>
 | |
| 			static std::false_type test(...);
 | |
| 		};
 | |
| 
 | |
| 		struct has_key_type_impl {
 | |
| 			template <typename T, typename U = unqualified_t<T>, typename V = typename U::key_type>
 | |
| 			static std::true_type test(int);
 | |
| 
 | |
| 			template <typename...>
 | |
| 			static std::false_type test(...);
 | |
| 		};
 | |
| 
 | |
| 		struct has_key_comp_impl {
 | |
| 			template <typename T, typename V = decltype(std::declval<unqualified_t<T>>().key_comp())>
 | |
| 			static std::true_type test(int);
 | |
| 
 | |
| 			template <typename...>
 | |
| 			static std::false_type test(...);
 | |
| 		};
 | |
| 
 | |
| 		struct has_load_factor_impl {
 | |
| 			template <typename T, typename V = decltype(std::declval<unqualified_t<T>>().load_factor())>
 | |
| 			static std::true_type test(int);
 | |
| 
 | |
| 			template <typename...>
 | |
| 			static std::false_type test(...);
 | |
| 		};
 | |
| 
 | |
| 		struct has_mapped_type_impl {
 | |
| 			template <typename T, typename V = typename unqualified_t<T>::mapped_type>
 | |
| 			static std::true_type test(int);
 | |
| 
 | |
| 			template <typename...>
 | |
| 			static std::false_type test(...);
 | |
| 		};
 | |
| 
 | |
| 		struct has_value_type_impl {
 | |
| 			template <typename T, typename V = typename unqualified_t<T>::value_type>
 | |
| 			static std::true_type test(int);
 | |
| 
 | |
| 			template <typename...>
 | |
| 			static std::false_type test(...);
 | |
| 		};
 | |
| 
 | |
| 		struct has_iterator_impl {
 | |
| 			template <typename T, typename V = typename unqualified_t<T>::iterator>
 | |
| 			static std::true_type test(int);
 | |
| 
 | |
| 			template <typename...>
 | |
| 			static std::false_type test(...);
 | |
| 		};
 | |
| 
 | |
| 		struct has_key_value_pair_impl {
 | |
| 			template <typename T, typename U = unqualified_t<T>, typename V = typename U::value_type, typename F = decltype(std::declval<V&>().first),
 | |
| 				typename S = decltype(std::declval<V&>().second)>
 | |
| 			static std::true_type test(int);
 | |
| 
 | |
| 			template <typename...>
 | |
| 			static std::false_type test(...);
 | |
| 		};
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct has_push_back_test {
 | |
| 		private:
 | |
| 			template <typename C>
 | |
| 			static sfinae_yes_t test(decltype(std::declval<C>().push_back(std::declval<std::add_rvalue_reference_t<typename C::value_type>>()))*);
 | |
| 			template <typename C>
 | |
| 			static sfinae_no_t test(...);
 | |
| 
 | |
| 		public:
 | |
| 			static constexpr bool value = std::is_same_v<decltype(test<T>(0)), sfinae_yes_t>;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct has_insert_test {
 | |
| 		private:
 | |
| 			template <typename C>
 | |
| 			static sfinae_yes_t test(decltype(std::declval<C>().insert(std::declval<std::add_rvalue_reference_t<typename C::const_iterator>>(),
 | |
| 				std::declval<std::add_rvalue_reference_t<typename C::value_type>>()))*);
 | |
| 			template <typename C>
 | |
| 			static sfinae_no_t test(...);
 | |
| 
 | |
| 		public:
 | |
| 			static constexpr bool value = std::is_same_v<decltype(test<T>(0)), sfinae_yes_t>;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct has_insert_after_test {
 | |
| 		private:
 | |
| 			template <typename C>
 | |
| 			static sfinae_yes_t test(decltype(std::declval<C>().insert_after(std::declval<std::add_rvalue_reference_t<typename C::const_iterator>>(),
 | |
| 				std::declval<std::add_rvalue_reference_t<typename C::value_type>>()))*);
 | |
| 			template <typename C>
 | |
| 			static sfinae_no_t test(...);
 | |
| 
 | |
| 		public:
 | |
| 			static constexpr bool value = std::is_same_v<decltype(test<T>(0)), sfinae_yes_t>;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct has_size_test {
 | |
| 		private:
 | |
| 			template <typename C>
 | |
| 			static sfinae_yes_t test(decltype(std::declval<C>().size())*);
 | |
| 			template <typename C>
 | |
| 			static sfinae_no_t test(...);
 | |
| 
 | |
| 		public:
 | |
| 			static constexpr bool value = std::is_same_v<decltype(test<T>(0)), sfinae_yes_t>;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct has_max_size_test {
 | |
| 		private:
 | |
| 			template <typename C>
 | |
| 			static sfinae_yes_t test(decltype(std::declval<C>().max_size())*);
 | |
| 			template <typename C>
 | |
| 			static sfinae_no_t test(...);
 | |
| 
 | |
| 		public:
 | |
| 			static constexpr bool value = std::is_same_v<decltype(test<T>(0)), sfinae_yes_t>;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct has_to_string_test {
 | |
| 		private:
 | |
| 			template <typename C>
 | |
| 			static sfinae_yes_t test(decltype(std::declval<C>().to_string())*);
 | |
| 			template <typename C>
 | |
| 			static sfinae_no_t test(...);
 | |
| 
 | |
| 		public:
 | |
| 			static constexpr bool value = std::is_same_v<decltype(test<T>(0)), sfinae_yes_t>;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename U, typename = void>
 | |
| 		class supports_op_less_test : public std::false_type {};
 | |
| 		template <typename T, typename U>
 | |
| 		class supports_op_less_test<T, U, void_t<decltype(std::declval<T&>() < std::declval<U&>())>>
 | |
| 		: public std::integral_constant<bool,
 | |
| 			  !is_specialization_of_v<unqualified_t<T>, std::variant> && !is_specialization_of_v<unqualified_t<U>, std::variant>> {};
 | |
| 
 | |
| 		template <typename T, typename U, typename = void>
 | |
| 		class supports_op_equal_test : public std::false_type {};
 | |
| 		template <typename T, typename U>
 | |
| 		class supports_op_equal_test<T, U, void_t<decltype(std::declval<T&>() == std::declval<U&>())>>
 | |
| 		: public std::integral_constant<bool,
 | |
| 			  !is_specialization_of_v<unqualified_t<T>, std::variant> && !is_specialization_of_v<unqualified_t<U>, std::variant>> {};
 | |
| 
 | |
| 		template <typename T, typename U, typename = void>
 | |
| 		class supports_op_less_equal_test : public std::false_type {};
 | |
| 		template <typename T, typename U>
 | |
| 		class supports_op_less_equal_test<T, U, void_t<decltype(std::declval<T&>() <= std::declval<U&>())>>
 | |
| 		: public std::integral_constant<bool,
 | |
| 			  !is_specialization_of_v<unqualified_t<T>, std::variant> && !is_specialization_of_v<unqualified_t<U>, std::variant>> {};
 | |
| 
 | |
| 		template <typename T, typename U, typename = void>
 | |
| 		class supports_op_left_shift_test : public std::false_type {};
 | |
| 		template <typename T, typename U>
 | |
| 		class supports_op_left_shift_test<T, U, void_t<decltype(std::declval<T&>() << std::declval<U&>())>> : public std::true_type {};
 | |
| 
 | |
| 		template <typename T, typename = void>
 | |
| 		class supports_adl_to_string_test : public std::false_type {};
 | |
| 		template <typename T>
 | |
| 		class supports_adl_to_string_test<T, void_t<decltype(to_string(std::declval<const T&>()))>> : public std::true_type {};
 | |
| 
 | |
| 		template <typename T, bool b>
 | |
| 		struct is_matched_lookup_impl : std::false_type {};
 | |
| 		template <typename T>
 | |
| 		struct is_matched_lookup_impl<T, true> : std::is_same<typename T::key_type, typename T::value_type> {};
 | |
| 
 | |
| 		template <typename T>
 | |
| 		using non_void_t = meta::conditional_t<std::is_void_v<T>, ::sol::detail::unchecked_t, T>;
 | |
| 	} // namespace meta_detail
 | |
| 
 | |
| 	template <typename T, typename U = T>
 | |
| 	class supports_op_less : public meta_detail::supports_op_less_test<T, U> {};
 | |
| 
 | |
| 	template <typename T, typename U = T>
 | |
| 	class supports_op_equal : public meta_detail::supports_op_equal_test<T, U> {};
 | |
| 
 | |
| 	template <typename T, typename U = T>
 | |
| 	class supports_op_less_equal : public meta_detail::supports_op_less_equal_test<T, U> {};
 | |
| 
 | |
| 	template <typename T, typename U = T>
 | |
| 	class supports_op_left_shift : public meta_detail::supports_op_left_shift_test<T, U> {};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	class supports_adl_to_string : public meta_detail::supports_adl_to_string_test<T> {};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	class supports_to_string_member : public meta::boolean<meta_detail::has_to_string_test<meta_detail::non_void_t<T>>::value> {};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	using is_callable = boolean<meta_detail::is_callable<T>::value>;
 | |
| 
 | |
| 	template <typename T>
 | |
| 	constexpr inline bool is_callable_v = is_callable<T>::value;
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct has_begin_end : decltype(meta_detail::has_begin_end_impl::test<T>(0)) {};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	constexpr inline bool has_begin_end_v = has_begin_end<T>::value;
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct has_key_value_pair : decltype(meta_detail::has_key_value_pair_impl::test<T>(0)) {};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct has_key_type : decltype(meta_detail::has_key_type_impl::test<T>(0)) {};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct has_key_comp : decltype(meta_detail::has_key_comp_impl::test<T>(0)) {};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct has_load_factor : decltype(meta_detail::has_load_factor_impl::test<T>(0)) {};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct has_mapped_type : decltype(meta_detail::has_mapped_type_impl::test<T>(0)) {};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct has_iterator : decltype(meta_detail::has_iterator_impl::test<T>(0)) {};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct has_value_type : decltype(meta_detail::has_value_type_impl::test<T>(0)) {};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	using has_push_back = meta::boolean<meta_detail::has_push_back_test<T>::value>;
 | |
| 
 | |
| 	template <typename T>
 | |
| 	using has_max_size = meta::boolean<meta_detail::has_max_size_test<T>::value>;
 | |
| 
 | |
| 	template <typename T>
 | |
| 	using has_insert = meta::boolean<meta_detail::has_insert_test<T>::value>;
 | |
| 
 | |
| 	template <typename T>
 | |
| 	using has_insert_after = meta::boolean<meta_detail::has_insert_after_test<T>::value>;
 | |
| 
 | |
| 	template <typename T>
 | |
| 	using has_size = meta::boolean<meta_detail::has_size_test<T>::value>;
 | |
| 
 | |
| 	template <typename T>
 | |
| 	using is_associative = meta::all<has_key_type<T>, has_key_value_pair<T>, has_mapped_type<T>>;
 | |
| 
 | |
| 	template <typename T>
 | |
| 	using is_lookup = meta::all<has_key_type<T>, has_value_type<T>>;
 | |
| 
 | |
| 	template <typename T>
 | |
| 	using is_ordered = meta::all<has_key_comp<T>, meta::neg<has_load_factor<T>>>;
 | |
| 
 | |
| 	template <typename T>
 | |
| 	using is_matched_lookup = meta_detail::is_matched_lookup_impl<T, is_lookup<T>::value>;
 | |
| 
 | |
| 	template <typename T>
 | |
| 	using is_initializer_list = meta::is_specialization_of<T, std::initializer_list>;
 | |
| 
 | |
| 	template <typename T>
 | |
| 	constexpr inline bool is_initializer_list_v = is_initializer_list<T>::value;
 | |
| 
 | |
| 	template <typename T, typename CharT = char>
 | |
| 	using is_string_literal_array_of = boolean<std::is_array_v<T> && std::is_same_v<std::remove_all_extents_t<T>, CharT>>;
 | |
| 
 | |
| 	template <typename T, typename CharT = char>
 | |
| 	constexpr inline bool is_string_literal_array_of_v = is_string_literal_array_of<T, CharT>::value;
 | |
| 
 | |
| 	template <typename T>
 | |
| 	using is_string_literal_array = boolean<std::is_array_v<T> && any_same_v<std::remove_all_extents_t<T>, char, char16_t, char32_t, wchar_t>>;
 | |
| 
 | |
| 	template <typename T>
 | |
| 	constexpr inline bool is_string_literal_array_v = is_string_literal_array<T>::value;
 | |
| 
 | |
| 	template <typename T, typename CharT>
 | |
| 	struct is_string_of : std::false_type {};
 | |
| 
 | |
| 	template <typename CharT, typename CharTargetT, typename TraitsT, typename AllocT>
 | |
| 	struct is_string_of<std::basic_string<CharT, TraitsT, AllocT>, CharTargetT> : std::is_same<CharT, CharTargetT> {};
 | |
| 
 | |
| 	template <typename T, typename CharT>
 | |
| 	constexpr inline bool is_string_of_v = is_string_of<T, CharT>::value;
 | |
| 
 | |
| 	template <typename T, typename CharT>
 | |
| 	struct is_string_view_of : std::false_type {};
 | |
| 
 | |
| 	template <typename CharT, typename CharTargetT, typename TraitsT>
 | |
| 	struct is_string_view_of<std::basic_string_view<CharT, TraitsT>, CharTargetT> : std::is_same<CharT, CharTargetT> {};
 | |
| 
 | |
| 	template <typename T, typename CharT>
 | |
| 	constexpr inline bool is_string_view_of_v = is_string_view_of<T, CharT>::value;
 | |
| 
 | |
| 	template <typename T>
 | |
| 	using is_string_like
 | |
| 		= meta::boolean<is_specialization_of_v<T, std::basic_string> || is_specialization_of_v<T, std::basic_string_view> || is_string_literal_array_v<T>>;
 | |
| 
 | |
| 	template <typename T>
 | |
| 	constexpr inline bool is_string_like_v = is_string_like<T>::value;
 | |
| 
 | |
| 	template <typename T, typename CharT = char>
 | |
| 	using is_string_constructible = meta::boolean<
 | |
| 		is_string_literal_array_of_v<T,
 | |
| 		     CharT> || std::is_same_v<T, const CharT*> || std::is_same_v<T, CharT> || is_string_of_v<T, CharT> || std::is_same_v<T, std::initializer_list<CharT>> || is_string_view_of_v<T, CharT>>;
 | |
| 
 | |
| 	template <typename T, typename CharT = char>
 | |
| 	constexpr inline bool is_string_constructible_v = is_string_constructible<T, CharT>::value;
 | |
| 
 | |
| 	template <typename T>
 | |
| 	using is_string_like_or_constructible = meta::boolean<is_string_like_v<T> || is_string_constructible_v<T>>;
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct is_pair : std::false_type {};
 | |
| 
 | |
| 	template <typename T1, typename T2>
 | |
| 	struct is_pair<std::pair<T1, T2>> : std::true_type {};
 | |
| 
 | |
| 	template <typename T, typename Char>
 | |
| 	using is_c_str_of = any<std::is_same<T, const Char*>, std::is_same<T, Char const* const>, std::is_same<T, Char*>, is_string_of<T, Char>,
 | |
| 		is_string_literal_array_of<T, Char>>;
 | |
| 
 | |
| 	template <typename T, typename Char>
 | |
| 	constexpr inline bool is_c_str_of_v = is_c_str_of<T, Char>::value;
 | |
| 
 | |
| 	template <typename T>
 | |
| 	using is_c_str = is_c_str_of<T, char>;
 | |
| 
 | |
| 	template <typename T>
 | |
| 	constexpr inline bool is_c_str_v = is_c_str<T>::value;
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct is_move_only : all<neg<std::is_reference<T>>, neg<std::is_copy_constructible<unqualified_t<T>>>, std::is_move_constructible<unqualified_t<T>>> {};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	using is_not_move_only = neg<is_move_only<T>>;
 | |
| 
 | |
| 	namespace meta_detail {
 | |
| 		template <typename T>
 | |
| 		decltype(auto) force_tuple(T&& x) {
 | |
| 			if constexpr (meta::is_specialization_of_v<meta::unqualified_t<T>, std::tuple>) {
 | |
| 				return std::forward<T>(x);
 | |
| 			}
 | |
| 			else {
 | |
| 				return std::tuple<T>(std::forward<T>(x));
 | |
| 			}
 | |
| 		}
 | |
| 	} // namespace meta_detail
 | |
| 
 | |
| 	template <typename... X>
 | |
| 	decltype(auto) tuplefy(X&&... x) {
 | |
| 		return std::tuple_cat(meta_detail::force_tuple(std::forward<X>(x))...);
 | |
| 	}
 | |
| 
 | |
| 	template <typename T, typename = void>
 | |
| 	struct iterator_tag {
 | |
| 		using type = std::input_iterator_tag;
 | |
| 	};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct iterator_tag<T, conditional_t<false, typename std::iterator_traits<T>::iterator_category, void>> {
 | |
| 		using type = typename std::iterator_traits<T>::iterator_category;
 | |
| 	};
 | |
| 
 | |
| }} // namespace sol::meta
 | |
| 
 | |
| // end of sol/traits.hpp
 | |
| 
 | |
| namespace sol {
 | |
| 	namespace detail {
 | |
| 		const bool default_safe_function_calls =
 | |
| #if SOL_IS_ON(SOL_SAFE_FUNCTION_CALLS_I_)
 | |
| 		     true;
 | |
| #else
 | |
| 		     false;
 | |
| #endif
 | |
| 	} // namespace detail
 | |
| 
 | |
| 	namespace meta { namespace meta_detail {
 | |
| 	}} // namespace meta::meta_detail
 | |
| 
 | |
| 	namespace stack { namespace stack_detail {
 | |
| 		using undefined_method_func = void (*)(stack_reference);
 | |
| 
 | |
| 		template <typename T>
 | |
| 		void set_undefined_methods_on(stack_reference);
 | |
| 
 | |
| 		struct undefined_metatable;
 | |
| 	}} // namespace stack::stack_detail
 | |
| } // namespace sol
 | |
| 
 | |
| #endif // SOL_FORWARD_DETAIL_HPP
 | |
| // end of sol/forward_detail.hpp
 | |
| 
 | |
| // beginning of sol/bytecode.hpp
 | |
| 
 | |
| // beginning of sol/compatibility.hpp
 | |
| 
 | |
| // beginning of sol/compatibility/lua_version.hpp
 | |
| 
 | |
| #if SOL_IS_ON(SOL_USE_CXX_LUA_I_)
 | |
| 	#include <lua.h>
 | |
| 	#include <lualib.h>
 | |
| 	#include <lauxlib.h>
 | |
| #elif SOL_IS_ON(SOL_USE_LUA_HPP_I_)
 | |
| 	#include <lua.hpp>
 | |
| #else
 | |
| 	extern "C" {
 | |
| 		#include <lua.h>
 | |
| 		#include <lauxlib.h>
 | |
| 		#include <lualib.h>
 | |
| 	}
 | |
| #endif // C++ Mangling for Lua vs. Not
 | |
| 
 | |
| #if defined(SOL_LUAJIT)
 | |
| 	#if (SOL_LUAJIT != 0)
 | |
| 		#define SOL_USE_LUAJIT_I_ SOL_ON
 | |
| 	#else
 | |
| 		#define SOL_USE_LUAJIT_I_ SOL_OFF
 | |
| 	#endif
 | |
| #elif defined(LUAJIT_VERSION)
 | |
| 	#define SOL_USE_LUAJIT_I_ SOL_OFF
 | |
| #else
 | |
| 	#define SOL_USE_LUAJIT_I_ SOL_DEFAULT_OFF
 | |
| #endif // luajit
 | |
| 
 | |
| #if SOL_IS_ON(SOL_USE_CXX_LUAJIT_I_)
 | |
| 	#include <luajit.h>
 | |
| #elif SOL_IS_ON(SOL_USE_LUAJIT_I_)
 | |
| 	extern "C" {
 | |
| 		#include <luajit.h>
 | |
| 	}
 | |
| #endif // C++ LuaJIT ... whatever that means
 | |
| 
 | |
| #if defined(SOL_LUAJIT_VERSION)
 | |
| 	#define SOL_LUAJIT_VERSION_I_ SOL_LUAJIT_VERSION
 | |
| #elif SOL_IS_ON(SOL_USE_LUAJIT_I_)
 | |
| 	#define SOL_LUAJIT_VERSION_I_ LUAJIT_VERSION_NUM
 | |
| #else
 | |
| 	#define SOL_LUAJIT_VERSION_I_ 0
 | |
| #endif
 | |
| 
 | |
| #if defined(MOONJIT_VERSION)
 | |
| 	#define SOL_USE_MOONJIT_I_ SOL_ON
 | |
| #else
 | |
| 	#define SOL_USE_MOONJIT_I_ SOL_OFF
 | |
| #endif
 | |
| 
 | |
| #if !defined(SOL_LUA_VERSION)
 | |
| 	#if defined(LUA_VERSION_NUM) && LUA_VERSION_NUM >= 502
 | |
| 		#define SOL_LUA_VERSION LUA_VERSION_NUM
 | |
| 	#elif defined(LUA_VERSION_NUM) && LUA_VERSION_NUM == 501
 | |
| 		#define SOL_LUA_VERSION LUA_VERSION_NUM
 | |
| 	#elif !defined(LUA_VERSION_NUM) || !(LUA_VERSION_NUM)
 | |
| 		// Definitely 5.0
 | |
| 		#define SOL_LUA_VERSION 500
 | |
| 	#else
 | |
| 		// ??? Not sure, assume latest?
 | |
| 		#define SOL_LUA_VERSION 504
 | |
| 	#endif // Lua Version 503, 502, 501 || luajit, 500
 | |
| #endif // SOL_LUA_VERSION
 | |
| 
 | |
| #if defined(SOL_LUA_VERSION)
 | |
| 	#define SOL_LUA_VESION_I_ SOL_LUA_VERSION
 | |
| #else
 | |
| 	#define SOL_LUA_VESION_I_ 504
 | |
| #endif
 | |
| 
 | |
| #if defined(SOL_EXCEPTIONS_ALWAYS_UNSAFE)
 | |
| 	#if (SOL_EXCEPTIONS_ALWAYS_UNSAFE != 0)
 | |
| 		#define SOL_PROPAGATE_EXCEPTIONS_I_ SOL_OFF
 | |
| 	#else
 | |
| 		#define SOL_PROPAGATE_EXCEPTIONS_I_ SOL_ON
 | |
| 	#endif
 | |
| #elif defined(SOL_EXCEPTIONS_SAFE_PROPAGATION)
 | |
| 	#if (SOL_EXCEPTIONS_SAFE_PROPAGATION != 0)
 | |
| 		#define SOL_PROPAGATE_EXCEPTIONS_I_ SOL_ON
 | |
| 	#else
 | |
| 		#define SOL_PROPAGATE_EXCEPTIONS_I_ SOL_OFF
 | |
| 	#endif
 | |
| #elif SOL_LUAJIT_VERSION_I_ >= 20100
 | |
| 	// LuaJIT 2.1.0-beta3 and better have exception support locked in for all platforms (mostly)
 | |
| 	#define SOL_PROPAGATE_EXCEPTIONS_I_ SOL_DEFAULT_ON
 | |
| #elif SOL_LUAJIT_VERSION_I_ >= 20000
 | |
| 	// LuaJIT 2.0.x have exception support only on x64 builds
 | |
| 	#if SOL_IS_ON(SOL_PLATFORM_X64_I_)
 | |
| 		#define SOL_PROPAGATE_EXCEPTIONS_I_ SOL_DEFAULT_ON
 | |
| 	#else
 | |
| 		#define SOL_PROPAGATE_EXCEPTIONS_I_ SOL_OFF
 | |
| 	#endif
 | |
| #else
 | |
| 	// otherwise, there is no exception safety for
 | |
| 	// shoving exceptions through Lua and errors should
 | |
| 	// always be serialized
 | |
| 	#define SOL_PROPAGATE_EXCEPTIONS_I_ SOL_DEFAULT_OFF
 | |
| #endif // LuaJIT beta 02.01.00 have better exception handling on all platforms since beta3
 | |
| 
 | |
| #if defined(SOL_LUAJIT_USE_EXCEPTION_TRAMPOLINE)
 | |
| 	#if (SOL_LUAJIT_USE_EXCEPTION_TRAMPOLINE != 0)
 | |
| 		#define SOL_USE_LUAJIT_EXCEPTION_TRAMPOLINE_I_ SOL_ON
 | |
| 	#else
 | |
| 		#define SOL_USE_LUAJIT_EXCEPTION_TRAMPOLINE_I_ SOL_OFF
 | |
| 	#endif
 | |
| #else
 | |
| 	#if SOL_IS_OFF(SOL_PROPAGATE_EXCEPTIONS_I_) && SOL_IS_ON(SOL_USE_LUAJIT_I_)
 | |
| 		#define SOL_USE_LUAJIT_EXCEPTION_TRAMPOLINE_I_ SOL_ON
 | |
| 	#else
 | |
| 		#define SOL_USE_LUAJIT_EXCEPTION_TRAMPOLINE_I_ SOL_DEFAULT_OFF
 | |
| 	#endif
 | |
| #endif
 | |
| 
 | |
| #if defined(SOL_LUAL_STREAM_HAS_CLOSE_FUNCTION)
 | |
| 	#if (SOL_LUAL_STREAM_HAS_CLOSE_FUNCTION != 0)
 | |
| 		#define SOL_LUAL_STREAM_USE_CLOSE_FUNCTION_I_ SOL_ON
 | |
| 	#else
 | |
| 		#define SOL_LUAL_STREAM_USE_CLOSE_FUNCTION_I_ SOL_OFF
 | |
| 	#endif
 | |
| #else
 | |
| 	#if SOL_IS_OFF(SOL_USE_LUAJIT_I_) && (SOL_LUA_VERSION > 501)
 | |
| 		#define SOL_LUAL_STREAM_USE_CLOSE_FUNCTION_I_ SOL_ON
 | |
| 	#else
 | |
| 		#define SOL_LUAL_STREAM_USE_CLOSE_FUNCTION_I_ SOL_DEFAULT_OFF
 | |
| 	#endif
 | |
| #endif
 | |
| 
 | |
| // end of sol/compatibility/lua_version.hpp
 | |
| 
 | |
| #if SOL_IS_ON(SOL_USE_COMPATIBILITY_LAYER_I_)
 | |
| 
 | |
| #if SOL_IS_ON(SOL_USE_CXX_LUA_I_) || SOL_IS_ON(SOL_USE_CXX_LUAJIT_I_)
 | |
| #ifndef COMPAT53_LUA_CPP
 | |
| #define COMPAT53_LUA_CPP 1
 | |
| #endif // Build Lua Compat layer as C++
 | |
| #endif
 | |
| #ifndef COMPAT53_INCLUDE_SOURCE
 | |
| #define COMPAT53_INCLUDE_SOURCE 1
 | |
| #endif // Build Compat Layer Inline
 | |
| 
 | |
| // beginning of sol/compatibility/compat-5.3.h
 | |
| 
 | |
| #ifndef KEPLER_PROJECT_COMPAT53_H_
 | |
| #define KEPLER_PROJECT_COMPAT53_H_
 | |
| 
 | |
| #include <stddef.h>
 | |
| #include <limits.h>
 | |
| #include <string.h>
 | |
| #if defined(__cplusplus) && !defined(COMPAT53_LUA_CPP)
 | |
| extern "C" {
 | |
| #endif
 | |
| #include <lua.h>
 | |
| #include <lauxlib.h>
 | |
| #include <lualib.h>
 | |
| #if defined(__cplusplus) && !defined(COMPAT53_LUA_CPP)
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef COMPAT53_PREFIX
 | |
| /* we chose this name because many other lua bindings / libs have
 | |
| * their own compatibility layer, and that use the compat53 declaration
 | |
| * frequently, causing all kinds of linker / compiler issues
 | |
| */
 | |
| #  define COMPAT53_PREFIX kp_compat53
 | |
| #endif // COMPAT53_PREFIX
 | |
| 
 | |
| #ifndef COMPAT53_API
 | |
| #  if defined(COMPAT53_INCLUDE_SOURCE) && COMPAT53_INCLUDE_SOURCE
 | |
| #    if defined(__GNUC__) || defined(__clang__)
 | |
| #      define COMPAT53_API __attribute__((__unused__)) static inline 
 | |
| #    else
 | |
| #      define COMPAT53_API static inline 
 | |
| #    endif /* Clang/GCC */
 | |
| #  else /* COMPAT53_INCLUDE_SOURCE */
 | |
| /* we are not including source, so everything is extern */
 | |
| #      define COMPAT53_API extern
 | |
| #  endif /* COMPAT53_INCLUDE_SOURCE */
 | |
| #endif /* COMPAT53_PREFIX */
 | |
| 
 | |
| #define COMPAT53_CONCAT_HELPER(a, b) a##b
 | |
| #define COMPAT53_CONCAT(a, b) COMPAT53_CONCAT_HELPER(a, b)
 | |
| 
 | |
| /* declarations for Lua 5.1 */
 | |
| #if defined(LUA_VERSION_NUM) && LUA_VERSION_NUM == 501
 | |
| 
 | |
| /* XXX not implemented:
 | |
| * lua_arith (new operators)
 | |
| * lua_upvalueid
 | |
| * lua_upvaluejoin
 | |
| * lua_version
 | |
| * lua_yieldk
 | |
| */
 | |
| 
 | |
| #ifndef LUA_OK
 | |
| #  define LUA_OK 0
 | |
| #endif
 | |
| #ifndef LUA_OPADD
 | |
| #  define LUA_OPADD 0
 | |
| #endif
 | |
| #ifndef LUA_OPSUB
 | |
| #  define LUA_OPSUB 1
 | |
| #endif
 | |
| #ifndef LUA_OPMUL
 | |
| #  define LUA_OPMUL 2
 | |
| #endif
 | |
| #ifndef LUA_OPDIV
 | |
| #  define LUA_OPDIV 3
 | |
| #endif
 | |
| #ifndef LUA_OPMOD
 | |
| #  define LUA_OPMOD 4
 | |
| #endif
 | |
| #ifndef LUA_OPPOW
 | |
| #  define LUA_OPPOW 5
 | |
| #endif
 | |
| #ifndef LUA_OPUNM
 | |
| #  define LUA_OPUNM 6
 | |
| #endif
 | |
| #ifndef LUA_OPEQ
 | |
| #  define LUA_OPEQ 0
 | |
| #endif
 | |
| #ifndef LUA_OPLT
 | |
| #  define LUA_OPLT 1
 | |
| #endif
 | |
| #ifndef LUA_OPLE
 | |
| #  define LUA_OPLE 2
 | |
| #endif
 | |
| 
 | |
| /* LuaJIT/Lua 5.1 does not have the updated
 | |
| * error codes for thread status/function returns (but some patched versions do)
 | |
| * define it only if it's not found
 | |
| */
 | |
| #if !defined(LUA_ERRGCMM)
 | |
| /* Use + 2 because in some versions of Lua (Lua 5.1)
 | |
| * LUA_ERRFILE is defined as (LUA_ERRERR+1)
 | |
| * so we need to avoid it (LuaJIT might have something at this
 | |
| * integer value too)
 | |
| */
 | |
| #  define LUA_ERRGCMM (LUA_ERRERR + 2)
 | |
| #endif /* LUA_ERRGCMM define */
 | |
| 
 | |
| #if !defined(MOONJIT_VERSION)
 | |
| typedef size_t lua_Unsigned;
 | |
| #endif
 | |
| 
 | |
| typedef struct luaL_Buffer_53 {
 | |
| 	luaL_Buffer b; /* make incorrect code crash! */
 | |
| 	char *ptr;
 | |
| 	size_t nelems;
 | |
| 	size_t capacity;
 | |
| 	lua_State *L2;
 | |
| } luaL_Buffer_53;
 | |
| #define luaL_Buffer luaL_Buffer_53
 | |
| 
 | |
| /* In PUC-Rio 5.1, userdata is a simple FILE*
 | |
| * In LuaJIT, it's a struct where the first member is a FILE*
 | |
| * We can't support the `closef` member
 | |
| */
 | |
| typedef struct luaL_Stream {
 | |
| 	FILE *f;
 | |
| } luaL_Stream;
 | |
| 
 | |
| #define lua_absindex COMPAT53_CONCAT(COMPAT53_PREFIX, _absindex)
 | |
| COMPAT53_API int lua_absindex(lua_State *L, int i);
 | |
| 
 | |
| #define lua_arith COMPAT53_CONCAT(COMPAT53_PREFIX, _arith)
 | |
| COMPAT53_API void lua_arith(lua_State *L, int op);
 | |
| 
 | |
| #define lua_compare COMPAT53_CONCAT(COMPAT53_PREFIX, _compare)
 | |
| COMPAT53_API int lua_compare(lua_State *L, int idx1, int idx2, int op);
 | |
| 
 | |
| #define lua_copy COMPAT53_CONCAT(COMPAT53_PREFIX, _copy)
 | |
| COMPAT53_API void lua_copy(lua_State *L, int from, int to);
 | |
| 
 | |
| #define lua_getuservalue(L, i) \
 | |
|   (lua_getfenv((L), (i)), lua_type((L), -1))
 | |
| #define lua_setuservalue(L, i) \
 | |
|   (luaL_checktype((L), -1, LUA_TTABLE), lua_setfenv((L), (i)))
 | |
| 
 | |
| #define lua_len COMPAT53_CONCAT(COMPAT53_PREFIX, _len)
 | |
| COMPAT53_API void lua_len(lua_State *L, int i);
 | |
| 
 | |
| #define lua_pushstring(L, s) \
 | |
|   (lua_pushstring((L), (s)), lua_tostring((L), -1))
 | |
| 
 | |
| #define lua_pushlstring(L, s, len) \
 | |
|   ((((len) == 0) ? lua_pushlstring((L), "", 0) : lua_pushlstring((L), (s), (len))), lua_tostring((L), -1))
 | |
| 
 | |
| #ifndef luaL_newlibtable
 | |
| #  define luaL_newlibtable(L, l) \
 | |
|   (lua_createtable((L), 0, sizeof((l))/sizeof(*(l))-1))
 | |
| #endif
 | |
| #ifndef luaL_newlib
 | |
| #  define luaL_newlib(L, l) \
 | |
|   (luaL_newlibtable((L), (l)), luaL_register((L), NULL, (l)))
 | |
| #endif
 | |
| 
 | |
| #ifndef lua_pushglobaltable
 | |
| #  define lua_pushglobaltable(L) \
 | |
|   lua_pushvalue((L), LUA_GLOBALSINDEX)
 | |
| #endif
 | |
| #define lua_rawgetp COMPAT53_CONCAT(COMPAT53_PREFIX, _rawgetp)
 | |
| COMPAT53_API int lua_rawgetp(lua_State *L, int i, const void *p);
 | |
| 
 | |
| #define lua_rawsetp COMPAT53_CONCAT(COMPAT53_PREFIX, _rawsetp)
 | |
| COMPAT53_API void lua_rawsetp(lua_State *L, int i, const void *p);
 | |
| 
 | |
| #define lua_rawlen(L, i) lua_objlen((L), (i))
 | |
| 
 | |
| #define lua_tointeger(L, i) lua_tointegerx((L), (i), NULL)
 | |
| 
 | |
| #define lua_tonumberx COMPAT53_CONCAT(COMPAT53_PREFIX, _tonumberx)
 | |
| COMPAT53_API lua_Number lua_tonumberx(lua_State *L, int i, int *isnum);
 | |
| 
 | |
| #define luaL_checkversion COMPAT53_CONCAT(COMPAT53_PREFIX, L_checkversion)
 | |
| COMPAT53_API void luaL_checkversion(lua_State *L);
 | |
| 
 | |
| #define lua_load COMPAT53_CONCAT(COMPAT53_PREFIX, _load_53)
 | |
| COMPAT53_API int lua_load(lua_State *L, lua_Reader reader, void *data, const char* source, const char* mode);
 | |
| 
 | |
| #define luaL_loadfilex COMPAT53_CONCAT(COMPAT53_PREFIX, L_loadfilex)
 | |
| COMPAT53_API int luaL_loadfilex(lua_State *L, const char *filename, const char *mode);
 | |
| 
 | |
| #define luaL_loadbufferx COMPAT53_CONCAT(COMPAT53_PREFIX, L_loadbufferx)
 | |
| COMPAT53_API int luaL_loadbufferx(lua_State *L, const char *buff, size_t sz, const char *name, const char *mode);
 | |
| 
 | |
| #define luaL_checkstack COMPAT53_CONCAT(COMPAT53_PREFIX, L_checkstack_53)
 | |
| COMPAT53_API void luaL_checkstack(lua_State *L, int sp, const char *msg);
 | |
| 
 | |
| #define luaL_getsubtable COMPAT53_CONCAT(COMPAT53_PREFIX, L_getsubtable)
 | |
| COMPAT53_API int luaL_getsubtable(lua_State* L, int i, const char *name);
 | |
| 
 | |
| #define luaL_len COMPAT53_CONCAT(COMPAT53_PREFIX, L_len)
 | |
| COMPAT53_API lua_Integer luaL_len(lua_State *L, int i);
 | |
| 
 | |
| #define luaL_setfuncs COMPAT53_CONCAT(COMPAT53_PREFIX, L_setfuncs)
 | |
| COMPAT53_API void luaL_setfuncs(lua_State *L, const luaL_Reg *l, int nup);
 | |
| 
 | |
| #define luaL_setmetatable COMPAT53_CONCAT(COMPAT53_PREFIX, L_setmetatable)
 | |
| COMPAT53_API void luaL_setmetatable(lua_State *L, const char *tname);
 | |
| 
 | |
| #define luaL_testudata COMPAT53_CONCAT(COMPAT53_PREFIX, L_testudata)
 | |
| COMPAT53_API void *luaL_testudata(lua_State *L, int i, const char *tname);
 | |
| 
 | |
| #define luaL_traceback COMPAT53_CONCAT(COMPAT53_PREFIX, L_traceback)
 | |
| COMPAT53_API void luaL_traceback(lua_State *L, lua_State *L1, const char *msg, int level);
 | |
| 
 | |
| #define luaL_fileresult COMPAT53_CONCAT(COMPAT53_PREFIX, L_fileresult)
 | |
| COMPAT53_API int luaL_fileresult(lua_State *L, int stat, const char *fname);
 | |
| 
 | |
| #define luaL_execresult COMPAT53_CONCAT(COMPAT53_PREFIX, L_execresult)
 | |
| COMPAT53_API int luaL_execresult(lua_State *L, int stat);
 | |
| 
 | |
| #define lua_callk(L, na, nr, ctx, cont) \
 | |
|   ((void)(ctx), (void)(cont), lua_call((L), (na), (nr)))
 | |
| #define lua_pcallk(L, na, nr, err, ctx, cont) \
 | |
|   ((void)(ctx), (void)(cont), lua_pcall((L), (na), (nr), (err)))
 | |
| 
 | |
| #define lua_resume(L, from, nargs) \
 | |
|   ((void)(from), lua_resume((L), (nargs)))
 | |
| 
 | |
| #define luaL_buffinit COMPAT53_CONCAT(COMPAT53_PREFIX, _buffinit_53)
 | |
| COMPAT53_API void luaL_buffinit(lua_State *L, luaL_Buffer_53 *B);
 | |
| 
 | |
| #define luaL_prepbuffsize COMPAT53_CONCAT(COMPAT53_PREFIX, _prepbufsize_53)
 | |
| COMPAT53_API char *luaL_prepbuffsize(luaL_Buffer_53 *B, size_t s);
 | |
| 
 | |
| #define luaL_addlstring COMPAT53_CONCAT(COMPAT53_PREFIX, _addlstring_53)
 | |
| COMPAT53_API void luaL_addlstring(luaL_Buffer_53 *B, const char *s, size_t l);
 | |
| 
 | |
| #define luaL_addvalue COMPAT53_CONCAT(COMPAT53_PREFIX, _addvalue_53)
 | |
| COMPAT53_API void luaL_addvalue(luaL_Buffer_53 *B);
 | |
| 
 | |
| #define luaL_pushresult COMPAT53_CONCAT(COMPAT53_PREFIX, _pushresult_53)
 | |
| COMPAT53_API void luaL_pushresult(luaL_Buffer_53 *B);
 | |
| 
 | |
| #undef luaL_buffinitsize
 | |
| #define luaL_buffinitsize(L, B, s) \
 | |
|   (luaL_buffinit((L), (B)), luaL_prepbuffsize((B), (s)))
 | |
| 
 | |
| #undef luaL_prepbuffer
 | |
| #define luaL_prepbuffer(B) \
 | |
|   luaL_prepbuffsize((B), LUAL_BUFFERSIZE)
 | |
| 
 | |
| #undef luaL_addchar
 | |
| #define luaL_addchar(B, c) \
 | |
|   ((void)((B)->nelems < (B)->capacity || luaL_prepbuffsize((B), 1)), \
 | |
|    ((B)->ptr[(B)->nelems++] = (c)))
 | |
| 
 | |
| #undef luaL_addsize
 | |
| #define luaL_addsize(B, s) \
 | |
|   ((B)->nelems += (s))
 | |
| 
 | |
| #undef luaL_addstring
 | |
| #define luaL_addstring(B, s) \
 | |
|   luaL_addlstring((B), (s), strlen((s)))
 | |
| 
 | |
| #undef luaL_pushresultsize
 | |
| #define luaL_pushresultsize(B, s) \
 | |
|   (luaL_addsize((B), (s)), luaL_pushresult((B)))
 | |
| 
 | |
| #if defined(LUA_COMPAT_APIINTCASTS)
 | |
| #define lua_pushunsigned(L, n) \
 | |
|   lua_pushinteger((L), (lua_Integer)(n))
 | |
| #define lua_tounsignedx(L, i, is) \
 | |
|   ((lua_Unsigned)lua_tointegerx((L), (i), (is)))
 | |
| #define lua_tounsigned(L, i) \
 | |
|   lua_tounsignedx((L), (i), NULL)
 | |
| #define luaL_checkunsigned(L, a) \
 | |
|   ((lua_Unsigned)luaL_checkinteger((L), (a)))
 | |
| #define luaL_optunsigned(L, a, d) \
 | |
|   ((lua_Unsigned)luaL_optinteger((L), (a), (lua_Integer)(d)))
 | |
| #endif
 | |
| 
 | |
| #endif /* Lua 5.1 only */
 | |
| 
 | |
| /* declarations for Lua 5.1 and 5.2 */
 | |
| #if defined(LUA_VERSION_NUM) && LUA_VERSION_NUM <= 502
 | |
| 
 | |
| typedef int lua_KContext;
 | |
| 
 | |
| typedef int(*lua_KFunction)(lua_State *L, int status, lua_KContext ctx);
 | |
| 
 | |
| #define lua_dump(L, w, d, s) \
 | |
|   ((void)(s), lua_dump((L), (w), (d)))
 | |
| 
 | |
| #define lua_getfield(L, i, k) \
 | |
|   (lua_getfield((L), (i), (k)), lua_type((L), -1))
 | |
| 
 | |
| #define lua_gettable(L, i) \
 | |
|   (lua_gettable((L), (i)), lua_type((L), -1))
 | |
| 
 | |
| #define lua_geti COMPAT53_CONCAT(COMPAT53_PREFIX, _geti)
 | |
| COMPAT53_API int lua_geti(lua_State *L, int index, lua_Integer i);
 | |
| 
 | |
| #define lua_isinteger COMPAT53_CONCAT(COMPAT53_PREFIX, _isinteger)
 | |
| COMPAT53_API int lua_isinteger(lua_State *L, int index);
 | |
| 
 | |
| #define lua_tointegerx COMPAT53_CONCAT(COMPAT53_PREFIX, _tointegerx_53)
 | |
| COMPAT53_API lua_Integer lua_tointegerx(lua_State *L, int i, int *isnum);
 | |
| 
 | |
| #define lua_numbertointeger(n, p) \
 | |
|   ((*(p) = (lua_Integer)(n)), 1)
 | |
| 
 | |
| #define lua_rawget(L, i) \
 | |
|   (lua_rawget((L), (i)), lua_type((L), -1))
 | |
| 
 | |
| #define lua_rawgeti(L, i, n) \
 | |
|   (lua_rawgeti((L), (i), (n)), lua_type((L), -1))
 | |
| 
 | |
| #define lua_rotate COMPAT53_CONCAT(COMPAT53_PREFIX, _rotate)
 | |
| COMPAT53_API void lua_rotate(lua_State *L, int idx, int n);
 | |
| 
 | |
| #define lua_seti COMPAT53_CONCAT(COMPAT53_PREFIX, _seti)
 | |
| COMPAT53_API void lua_seti(lua_State *L, int index, lua_Integer i);
 | |
| 
 | |
| #define lua_stringtonumber COMPAT53_CONCAT(COMPAT53_PREFIX, _stringtonumber)
 | |
| COMPAT53_API size_t lua_stringtonumber(lua_State *L, const char *s);
 | |
| 
 | |
| #define luaL_tolstring COMPAT53_CONCAT(COMPAT53_PREFIX, L_tolstring)
 | |
| COMPAT53_API const char *luaL_tolstring(lua_State *L, int idx, size_t *len);
 | |
| 
 | |
| #define luaL_getmetafield(L, o, e) \
 | |
|   (luaL_getmetafield((L), (o), (e)) ? lua_type((L), -1) : LUA_TNIL)
 | |
| 
 | |
| #define luaL_newmetatable(L, tn) \
 | |
|   (luaL_newmetatable((L), (tn)) ? (lua_pushstring((L), (tn)), lua_setfield((L), -2, "__name"), 1) : 0)
 | |
| 
 | |
| #define luaL_requiref COMPAT53_CONCAT(COMPAT53_PREFIX, L_requiref_53)
 | |
| COMPAT53_API void luaL_requiref(lua_State *L, const char *modname,
 | |
| 	lua_CFunction openf, int glb);
 | |
| 
 | |
| #endif /* Lua 5.1 and Lua 5.2 */
 | |
| 
 | |
| /* declarations for Lua 5.2 */
 | |
| #if defined(LUA_VERSION_NUM) && LUA_VERSION_NUM == 502
 | |
| 
 | |
| /* XXX not implemented:
 | |
| * lua_isyieldable
 | |
| * lua_getextraspace
 | |
| * lua_arith (new operators)
 | |
| * lua_pushfstring (new formats)
 | |
| */
 | |
| 
 | |
| #define lua_getglobal(L, n) \
 | |
|   (lua_getglobal((L), (n)), lua_type((L), -1))
 | |
| 
 | |
| #define lua_getuservalue(L, i) \
 | |
|   (lua_getuservalue((L), (i)), lua_type((L), -1))
 | |
| 
 | |
| #define lua_pushlstring(L, s, len) \
 | |
|   (((len) == 0) ? lua_pushlstring((L), "", 0) : lua_pushlstring((L), (s), (len)))
 | |
| 
 | |
| #define lua_rawgetp(L, i, p) \
 | |
|   (lua_rawgetp((L), (i), (p)), lua_type((L), -1))
 | |
| 
 | |
| #define LUA_KFUNCTION(_name) \
 | |
|   static int (_name)(lua_State *L, int status, lua_KContext ctx); \
 | |
|   static int (_name ## _52)(lua_State *L) { \
 | |
|     lua_KContext ctx; \
 | |
|     int status = lua_getctx(L, &ctx); \
 | |
|     return (_name)(L, status, ctx); \
 | |
|   } \
 | |
|   static int (_name)(lua_State *L, int status, lua_KContext ctx)
 | |
| 
 | |
| #define lua_pcallk(L, na, nr, err, ctx, cont) \
 | |
|   lua_pcallk((L), (na), (nr), (err), (ctx), cont ## _52)
 | |
| 
 | |
| #define lua_callk(L, na, nr, ctx, cont) \
 | |
|   lua_callk((L), (na), (nr), (ctx), cont ## _52)
 | |
| 
 | |
| #define lua_yieldk(L, nr, ctx, cont) \
 | |
|   lua_yieldk((L), (nr), (ctx), cont ## _52)
 | |
| 
 | |
| #ifdef lua_call
 | |
| #  undef lua_call
 | |
| #  define lua_call(L, na, nr) \
 | |
|   (lua_callk)((L), (na), (nr), 0, NULL)
 | |
| #endif
 | |
| 
 | |
| #ifdef lua_pcall
 | |
| #  undef lua_pcall
 | |
| #  define lua_pcall(L, na, nr, err) \
 | |
|   (lua_pcallk)((L), (na), (nr), (err), 0, NULL)
 | |
| #endif
 | |
| 
 | |
| #ifdef lua_yield
 | |
| #  undef lua_yield
 | |
| #  define lua_yield(L, nr) \
 | |
|   (lua_yieldk)((L), (nr), 0, NULL)
 | |
| #endif
 | |
| 
 | |
| #endif /* Lua 5.2 only */
 | |
| 
 | |
| /* other Lua versions */
 | |
| #if !defined(LUA_VERSION_NUM) || LUA_VERSION_NUM < 501 || LUA_VERSION_NUM > 504
 | |
| 
 | |
| #  error "unsupported Lua version (i.e. not Lua 5.1, 5.2, 5.3, or 5.4)"
 | |
| 
 | |
| #endif /* other Lua versions except 5.1, 5.2, 5.3, and 5.4 */
 | |
| 
 | |
| /* helper macro for defining continuation functions (for every version
 | |
| * *except* Lua 5.2) */
 | |
| #ifndef LUA_KFUNCTION
 | |
| #define LUA_KFUNCTION(_name) \
 | |
|   static int (_name)(lua_State *L, int status, lua_KContext ctx)
 | |
| #endif
 | |
| 
 | |
| #if defined(COMPAT53_INCLUDE_SOURCE) && COMPAT53_INCLUDE_SOURCE == 1
 | |
| // beginning of sol/compatibility/compat-5.3.c.h
 | |
| 
 | |
| #include <stddef.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <ctype.h>
 | |
| #include <errno.h>
 | |
| #include <stdio.h>
 | |
| 
 | |
| /* don't compile it again if it already is included via compat53.h */
 | |
| #ifndef KEPLER_PROJECT_COMPAT53_C_
 | |
| #define KEPLER_PROJECT_COMPAT53_C_
 | |
| 
 | |
| /* definitions for Lua 5.1 only */
 | |
| #if defined(LUA_VERSION_NUM) && LUA_VERSION_NUM == 501
 | |
| 
 | |
| #ifndef COMPAT53_FOPEN_NO_LOCK
 | |
| #if defined(_MSC_VER)
 | |
| #define COMPAT53_FOPEN_NO_LOCK 1
 | |
| #else /* otherwise */
 | |
| #define COMPAT53_FOPEN_NO_LOCK 0
 | |
| #endif /* VC++ only so far */
 | |
| #endif /* No-lock fopen_s usage if possible */
 | |
| 
 | |
| #if defined(_MSC_VER) && COMPAT53_FOPEN_NO_LOCK
 | |
| #include <share.h>
 | |
| #endif /* VC++ _fsopen for share-allowed file read */
 | |
| 
 | |
| #ifndef COMPAT53_HAVE_STRERROR_R
 | |
| #if defined(__GLIBC__) || defined(_POSIX_VERSION) || defined(__APPLE__) || (!defined(__MINGW32__) && defined(__GNUC__) && (__GNUC__ < 6))
 | |
| #define COMPAT53_HAVE_STRERROR_R 1
 | |
| #else /* none of the defines matched: define to 0 */
 | |
| #define COMPAT53_HAVE_STRERROR_R 0
 | |
| #endif /* have strerror_r of some form */
 | |
| #endif /* strerror_r */
 | |
| 
 | |
| #ifndef COMPAT53_HAVE_STRERROR_S
 | |
| #if defined(_MSC_VER) || (defined(__STDC_VERSION__) && __STDC_VERSION__ >= 201112L) || (defined(__STDC_LIB_EXT1__) && __STDC_LIB_EXT1__)
 | |
| #define COMPAT53_HAVE_STRERROR_S 1
 | |
| #else /* not VC++ or C11 */
 | |
| #define COMPAT53_HAVE_STRERROR_S 0
 | |
| #endif /* strerror_s from VC++ or C11 */
 | |
| #endif /* strerror_s */
 | |
| 
 | |
| #ifndef COMPAT53_LUA_FILE_BUFFER_SIZE
 | |
| #define COMPAT53_LUA_FILE_BUFFER_SIZE 4096
 | |
| #endif /* Lua File Buffer Size */
 | |
| 
 | |
| static char* compat53_strerror(int en, char* buff, size_t sz) {
 | |
| #if COMPAT53_HAVE_STRERROR_R
 | |
| 	/* use strerror_r here, because it's available on these specific platforms */
 | |
| 	if (sz > 0) {
 | |
| 		buff[0] = '\0';
 | |
| 		/* we don't care whether the GNU version or the XSI version is used: */
 | |
| 		if (strerror_r(en, buff, sz)) {
 | |
| 			/* Yes, we really DO want to ignore the return value!
 | |
| 			 * GCC makes that extra hard, not even a (void) cast will do. */
 | |
| 		}
 | |
| 		if (buff[0] == '\0') {
 | |
| 			/* Buffer is unchanged, so we probably have called GNU strerror_r which
 | |
| 			 * returned a static constant string. Chances are that strerror will
 | |
| 			 * return the same static constant string and therefore be thread-safe. */
 | |
| 			return strerror(en);
 | |
| 		}
 | |
| 	}
 | |
| 	return buff; /* sz is 0 *or* strerror_r wrote into the buffer */
 | |
| #elif COMPAT53_HAVE_STRERROR_S
 | |
| 	/* for MSVC and other C11 implementations, use strerror_s since it's
 | |
| 	 * provided by default by the libraries */
 | |
| 	strerror_s(buff, sz, en);
 | |
| 	return buff;
 | |
| #else
 | |
| 	/* fallback, but strerror is not guaranteed to be threadsafe due to modifying
 | |
| 	 * errno itself and some impls not locking a static buffer for it ... but most
 | |
| 	 * known systems have threadsafe errno: this might only change if the locale
 | |
| 	 * is changed out from under someone while this function is being called */
 | |
| 	(void)buff;
 | |
| 	(void)sz;
 | |
| 	return strerror(en);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| COMPAT53_API int lua_absindex(lua_State* L, int i) {
 | |
| 	if (i < 0 && i > LUA_REGISTRYINDEX)
 | |
| 		i += lua_gettop(L) + 1;
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| static void compat53_call_lua(lua_State* L, char const code[], size_t len, int nargs, int nret) {
 | |
| 	lua_rawgetp(L, LUA_REGISTRYINDEX, (void*)code);
 | |
| 	if (lua_type(L, -1) != LUA_TFUNCTION) {
 | |
| 		lua_pop(L, 1);
 | |
| 		if (luaL_loadbuffer(L, code, len, "=none"))
 | |
| 			lua_error(L);
 | |
| 		lua_pushvalue(L, -1);
 | |
| 		lua_rawsetp(L, LUA_REGISTRYINDEX, (void*)code);
 | |
| 	}
 | |
| 	lua_insert(L, -nargs - 1);
 | |
| 	lua_call(L, nargs, nret);
 | |
| }
 | |
| 
 | |
| static const char compat53_arith_code[]
 | |
|      = "local op,a,b=...\n"
 | |
|        "if op==0 then return a+b\n"
 | |
|        "elseif op==1 then return a-b\n"
 | |
|        "elseif op==2 then return a*b\n"
 | |
|        "elseif op==3 then return a/b\n"
 | |
|        "elseif op==4 then return a%b\n"
 | |
|        "elseif op==5 then return a^b\n"
 | |
|        "elseif op==6 then return -a\n"
 | |
|        "end\n";
 | |
| 
 | |
| COMPAT53_API void lua_arith(lua_State* L, int op) {
 | |
| 	if (op < LUA_OPADD || op > LUA_OPUNM)
 | |
| 		luaL_error(L, "invalid 'op' argument for lua_arith");
 | |
| 	luaL_checkstack(L, 5, "not enough stack slots");
 | |
| 	if (op == LUA_OPUNM)
 | |
| 		lua_pushvalue(L, -1);
 | |
| 	lua_pushnumber(L, op);
 | |
| 	lua_insert(L, -3);
 | |
| 	compat53_call_lua(L, compat53_arith_code, sizeof(compat53_arith_code) - 1, 3, 1);
 | |
| }
 | |
| 
 | |
| static const char compat53_compare_code[]
 | |
|      = "local a,b=...\n"
 | |
|        "return a<=b\n";
 | |
| 
 | |
| COMPAT53_API int lua_compare(lua_State* L, int idx1, int idx2, int op) {
 | |
| 	int result = 0;
 | |
| 	switch (op) {
 | |
| 	case LUA_OPEQ:
 | |
| 		return lua_equal(L, idx1, idx2);
 | |
| 	case LUA_OPLT:
 | |
| 		return lua_lessthan(L, idx1, idx2);
 | |
| 	case LUA_OPLE:
 | |
| 		luaL_checkstack(L, 5, "not enough stack slots");
 | |
| 		idx1 = lua_absindex(L, idx1);
 | |
| 		idx2 = lua_absindex(L, idx2);
 | |
| 		lua_pushvalue(L, idx1);
 | |
| 		lua_pushvalue(L, idx2);
 | |
| 		compat53_call_lua(L, compat53_compare_code, sizeof(compat53_compare_code) - 1, 2, 1);
 | |
| 		result = lua_toboolean(L, -1);
 | |
| 		lua_pop(L, 1);
 | |
| 		return result;
 | |
| 	default:
 | |
| 		luaL_error(L, "invalid 'op' argument for lua_compare");
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| COMPAT53_API void lua_copy(lua_State* L, int from, int to) {
 | |
| 	int abs_to = lua_absindex(L, to);
 | |
| 	luaL_checkstack(L, 1, "not enough stack slots");
 | |
| 	lua_pushvalue(L, from);
 | |
| 	lua_replace(L, abs_to);
 | |
| }
 | |
| 
 | |
| COMPAT53_API void lua_len(lua_State* L, int i) {
 | |
| 	switch (lua_type(L, i)) {
 | |
| 	case LUA_TSTRING:
 | |
| 		lua_pushnumber(L, (lua_Number)lua_objlen(L, i));
 | |
| 		break;
 | |
| 	case LUA_TTABLE:
 | |
| 		if (!luaL_callmeta(L, i, "__len"))
 | |
| 			lua_pushnumber(L, (lua_Number)lua_objlen(L, i));
 | |
| 		break;
 | |
| 	case LUA_TUSERDATA:
 | |
| 		if (luaL_callmeta(L, i, "__len"))
 | |
| 			break;
 | |
| 		/* FALLTHROUGH */
 | |
| 	default:
 | |
| 		luaL_error(L, "attempt to get length of a %s value", lua_typename(L, lua_type(L, i)));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| COMPAT53_API int lua_rawgetp(lua_State* L, int i, const void* p) {
 | |
| 	int abs_i = lua_absindex(L, i);
 | |
| 	lua_pushlightuserdata(L, (void*)p);
 | |
| 	lua_rawget(L, abs_i);
 | |
| 	return lua_type(L, -1);
 | |
| }
 | |
| 
 | |
| COMPAT53_API void lua_rawsetp(lua_State* L, int i, const void* p) {
 | |
| 	int abs_i = lua_absindex(L, i);
 | |
| 	luaL_checkstack(L, 1, "not enough stack slots");
 | |
| 	lua_pushlightuserdata(L, (void*)p);
 | |
| 	lua_insert(L, -2);
 | |
| 	lua_rawset(L, abs_i);
 | |
| }
 | |
| 
 | |
| COMPAT53_API lua_Number lua_tonumberx(lua_State* L, int i, int* isnum) {
 | |
| 	lua_Number n = lua_tonumber(L, i);
 | |
| 	if (isnum != NULL) {
 | |
| 		*isnum = (n != 0 || lua_isnumber(L, i));
 | |
| 	}
 | |
| 	return n;
 | |
| }
 | |
| 
 | |
| COMPAT53_API void luaL_checkversion(lua_State* L) {
 | |
| 	(void)L;
 | |
| }
 | |
| 
 | |
| COMPAT53_API void luaL_checkstack(lua_State* L, int sp, const char* msg) {
 | |
| 	if (!lua_checkstack(L, sp + LUA_MINSTACK)) {
 | |
| 		if (msg != NULL)
 | |
| 			luaL_error(L, "stack overflow (%s)", msg);
 | |
| 		else {
 | |
| 			lua_pushliteral(L, "stack overflow");
 | |
| 			lua_error(L);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| COMPAT53_API int luaL_getsubtable(lua_State* L, int i, const char* name) {
 | |
| 	int abs_i = lua_absindex(L, i);
 | |
| 	luaL_checkstack(L, 3, "not enough stack slots");
 | |
| 	lua_pushstring(L, name);
 | |
| 	lua_gettable(L, abs_i);
 | |
| 	if (lua_istable(L, -1))
 | |
| 		return 1;
 | |
| 	lua_pop(L, 1);
 | |
| 	lua_newtable(L);
 | |
| 	lua_pushstring(L, name);
 | |
| 	lua_pushvalue(L, -2);
 | |
| 	lua_settable(L, abs_i);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| COMPAT53_API lua_Integer luaL_len(lua_State* L, int i) {
 | |
| 	lua_Integer res = 0;
 | |
| 	int isnum = 0;
 | |
| 	luaL_checkstack(L, 1, "not enough stack slots");
 | |
| 	lua_len(L, i);
 | |
| 	res = lua_tointegerx(L, -1, &isnum);
 | |
| 	lua_pop(L, 1);
 | |
| 	if (!isnum)
 | |
| 		luaL_error(L, "object length is not an integer");
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| COMPAT53_API void luaL_setfuncs(lua_State* L, const luaL_Reg* l, int nup) {
 | |
| 	luaL_checkstack(L, nup + 1, "too many upvalues");
 | |
| 	for (; l->name != NULL; l++) { /* fill the table with given functions */
 | |
| 		int i;
 | |
| 		lua_pushstring(L, l->name);
 | |
| 		for (i = 0; i < nup; i++) /* copy upvalues to the top */
 | |
| 			lua_pushvalue(L, -(nup + 1));
 | |
| 		lua_pushcclosure(L, l->func, nup); /* closure with those upvalues */
 | |
| 		lua_settable(L, -(nup + 3));       /* table must be below the upvalues, the name and the closure */
 | |
| 	}
 | |
| 	lua_pop(L, nup); /* remove upvalues */
 | |
| }
 | |
| 
 | |
| COMPAT53_API void luaL_setmetatable(lua_State* L, const char* tname) {
 | |
| 	luaL_checkstack(L, 1, "not enough stack slots");
 | |
| 	luaL_getmetatable(L, tname);
 | |
| 	lua_setmetatable(L, -2);
 | |
| }
 | |
| 
 | |
| COMPAT53_API void* luaL_testudata(lua_State* L, int i, const char* tname) {
 | |
| 	void* p = lua_touserdata(L, i);
 | |
| 	luaL_checkstack(L, 2, "not enough stack slots");
 | |
| 	if (p == NULL || !lua_getmetatable(L, i))
 | |
| 		return NULL;
 | |
| 	else {
 | |
| 		int res = 0;
 | |
| 		luaL_getmetatable(L, tname);
 | |
| 		res = lua_rawequal(L, -1, -2);
 | |
| 		lua_pop(L, 2);
 | |
| 		if (!res)
 | |
| 			p = NULL;
 | |
| 	}
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| static int compat53_countlevels(lua_State* L) {
 | |
| 	lua_Debug ar;
 | |
| 	int li = 1, le = 1;
 | |
| 	/* find an upper bound */
 | |
| 	while (lua_getstack(L, le, &ar)) {
 | |
| 		li = le;
 | |
| 		le *= 2;
 | |
| 	}
 | |
| 	/* do a binary search */
 | |
| 	while (li < le) {
 | |
| 		int m = (li + le) / 2;
 | |
| 		if (lua_getstack(L, m, &ar))
 | |
| 			li = m + 1;
 | |
| 		else
 | |
| 			le = m;
 | |
| 	}
 | |
| 	return le - 1;
 | |
| }
 | |
| 
 | |
| static int compat53_findfield(lua_State* L, int objidx, int level) {
 | |
| 	if (level == 0 || !lua_istable(L, -1))
 | |
| 		return 0;                               /* not found */
 | |
| 	lua_pushnil(L);                              /* start 'next' loop */
 | |
| 	while (lua_next(L, -2)) {                    /* for each pair in table */
 | |
| 		if (lua_type(L, -2) == LUA_TSTRING) {   /* ignore non-string keys */
 | |
| 			if (lua_rawequal(L, objidx, -1)) { /* found object? */
 | |
| 				lua_pop(L, 1);                /* remove value (but keep name) */
 | |
| 				return 1;
 | |
| 			}
 | |
| 			else if (compat53_findfield(L, objidx, level - 1)) { /* try recursively */
 | |
| 				lua_remove(L, -2);                              /* remove table (but keep name) */
 | |
| 				lua_pushliteral(L, ".");
 | |
| 				lua_insert(L, -2); /* place '.' between the two names */
 | |
| 				lua_concat(L, 3);
 | |
| 				return 1;
 | |
| 			}
 | |
| 		}
 | |
| 		lua_pop(L, 1); /* remove value */
 | |
| 	}
 | |
| 	return 0; /* not found */
 | |
| }
 | |
| 
 | |
| static int compat53_pushglobalfuncname(lua_State* L, lua_Debug* ar) {
 | |
| 	int top = lua_gettop(L);
 | |
| 	lua_getinfo(L, "f", ar); /* push function */
 | |
| 	lua_pushvalue(L, LUA_GLOBALSINDEX);
 | |
| 	if (compat53_findfield(L, top + 1, 2)) {
 | |
| 		lua_copy(L, -1, top + 1); /* move name to proper place */
 | |
| 		lua_pop(L, 2);            /* remove pushed values */
 | |
| 		return 1;
 | |
| 	}
 | |
| 	else {
 | |
| 		lua_settop(L, top); /* remove function and global table */
 | |
| 		return 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void compat53_pushfuncname(lua_State* L, lua_Debug* ar) {
 | |
| 	if (*ar->namewhat != '\0') /* is there a name? */
 | |
| 		lua_pushfstring(L, "function " LUA_QS, ar->name);
 | |
| 	else if (*ar->what == 'm') /* main? */
 | |
| 		lua_pushliteral(L, "main chunk");
 | |
| 	else if (*ar->what == 'C') {
 | |
| 		if (compat53_pushglobalfuncname(L, ar)) {
 | |
| 			lua_pushfstring(L, "function " LUA_QS, lua_tostring(L, -1));
 | |
| 			lua_remove(L, -2); /* remove name */
 | |
| 		}
 | |
| 		else
 | |
| 			lua_pushliteral(L, "?");
 | |
| 	}
 | |
| 	else
 | |
| 		lua_pushfstring(L, "function <%s:%d>", ar->short_src, ar->linedefined);
 | |
| }
 | |
| 
 | |
| #define COMPAT53_LEVELS1 12 /* size of the first part of the stack */
 | |
| #define COMPAT53_LEVELS2 10 /* size of the second part of the stack */
 | |
| 
 | |
| COMPAT53_API void luaL_traceback(lua_State* L, lua_State* L1, const char* msg, int level) {
 | |
| 	lua_Debug ar;
 | |
| 	int top = lua_gettop(L);
 | |
| 	int numlevels = compat53_countlevels(L1);
 | |
| 	int mark = (numlevels > COMPAT53_LEVELS1 + COMPAT53_LEVELS2) ? COMPAT53_LEVELS1 : 0;
 | |
| 	if (msg)
 | |
| 		lua_pushfstring(L, "%s\n", msg);
 | |
| 	lua_pushliteral(L, "stack traceback:");
 | |
| 	while (lua_getstack(L1, level++, &ar)) {
 | |
| 		if (level == mark) {                       /* too many levels? */
 | |
| 			lua_pushliteral(L, "\n\t...");        /* add a '...' */
 | |
| 			level = numlevels - COMPAT53_LEVELS2; /* and skip to last ones */
 | |
| 		}
 | |
| 		else {
 | |
| 			lua_getinfo(L1, "Slnt", &ar);
 | |
| 			lua_pushfstring(L, "\n\t%s:", ar.short_src);
 | |
| 			if (ar.currentline > 0)
 | |
| 				lua_pushfstring(L, "%d:", ar.currentline);
 | |
| 			lua_pushliteral(L, " in ");
 | |
| 			compat53_pushfuncname(L, &ar);
 | |
| 			lua_concat(L, lua_gettop(L) - top);
 | |
| 		}
 | |
| 	}
 | |
| 	lua_concat(L, lua_gettop(L) - top);
 | |
| }
 | |
| 
 | |
| COMPAT53_API int luaL_fileresult(lua_State* L, int stat, const char* fname) {
 | |
| 	const char* serr = NULL;
 | |
| 	int en = errno; /* calls to Lua API may change this value */
 | |
| 	char buf[512] = { 0 };
 | |
| 	if (stat) {
 | |
| 		lua_pushboolean(L, 1);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	else {
 | |
| 		lua_pushnil(L);
 | |
| 		serr = compat53_strerror(en, buf, sizeof(buf));
 | |
| 		if (fname)
 | |
| 			lua_pushfstring(L, "%s: %s", fname, serr);
 | |
| 		else
 | |
| 			lua_pushstring(L, serr);
 | |
| 		lua_pushnumber(L, (lua_Number)en);
 | |
| 		return 3;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int compat53_checkmode(lua_State* L, const char* mode, const char* modename, int err) {
 | |
| 	if (mode && strchr(mode, modename[0]) == NULL) {
 | |
| 		lua_pushfstring(L, "attempt to load a %s chunk (mode is '%s')", modename, mode);
 | |
| 		return err;
 | |
| 	}
 | |
| 	return LUA_OK;
 | |
| }
 | |
| 
 | |
| typedef struct {
 | |
| 	lua_Reader reader;
 | |
| 	void* ud;
 | |
| 	int has_peeked_data;
 | |
| 	const char* peeked_data;
 | |
| 	size_t peeked_data_size;
 | |
| } compat53_reader_data;
 | |
| 
 | |
| static const char* compat53_reader(lua_State* L, void* ud, size_t* size) {
 | |
| 	compat53_reader_data* data = (compat53_reader_data*)ud;
 | |
| 	if (data->has_peeked_data) {
 | |
| 		data->has_peeked_data = 0;
 | |
| 		*size = data->peeked_data_size;
 | |
| 		return data->peeked_data;
 | |
| 	}
 | |
| 	else
 | |
| 		return data->reader(L, data->ud, size);
 | |
| }
 | |
| 
 | |
| COMPAT53_API int lua_load(lua_State* L, lua_Reader reader, void* data, const char* source, const char* mode) {
 | |
| 	int status = LUA_OK;
 | |
| 	compat53_reader_data compat53_data = { reader, data, 1, 0, 0 };
 | |
| 	compat53_data.peeked_data = reader(L, data, &(compat53_data.peeked_data_size));
 | |
| 	if (compat53_data.peeked_data && compat53_data.peeked_data_size && compat53_data.peeked_data[0] == LUA_SIGNATURE[0]) /* binary file? */
 | |
| 		status = compat53_checkmode(L, mode, "binary", LUA_ERRSYNTAX);
 | |
| 	else
 | |
| 		status = compat53_checkmode(L, mode, "text", LUA_ERRSYNTAX);
 | |
| 	if (status != LUA_OK)
 | |
| 		return status;
 | |
| 		/* we need to call the original 5.1 version of lua_load! */
 | |
| #undef lua_load
 | |
| 	return lua_load(L, compat53_reader, &compat53_data, source);
 | |
| #define lua_load COMPAT53_CONCAT(COMPAT53_PREFIX, _load_53)
 | |
| }
 | |
| 
 | |
| typedef struct {
 | |
| 	int n;                                    /* number of pre-read characters */
 | |
| 	FILE* f;                                  /* file being read */
 | |
| 	char buff[COMPAT53_LUA_FILE_BUFFER_SIZE]; /* area for reading file */
 | |
| } compat53_LoadF;
 | |
| 
 | |
| static const char* compat53_getF(lua_State* L, void* ud, size_t* size) {
 | |
| 	compat53_LoadF* lf = (compat53_LoadF*)ud;
 | |
| 	(void)L;            /* not used */
 | |
| 	if (lf->n > 0) {    /* are there pre-read characters to be read? */
 | |
| 		*size = lf->n; /* return them (chars already in buffer) */
 | |
| 		lf->n = 0;     /* no more pre-read characters */
 | |
| 	}
 | |
| 	else { /* read a block from file */
 | |
| 		  /* 'fread' can return > 0 *and* set the EOF flag. If next call to
 | |
| 		  'compat53_getF' called 'fread', it might still wait for user input.
 | |
| 		  The next check avoids this problem. */
 | |
| 		if (feof(lf->f))
 | |
| 			return NULL;
 | |
| 		*size = fread(lf->buff, 1, sizeof(lf->buff), lf->f); /* read block */
 | |
| 	}
 | |
| 	return lf->buff;
 | |
| }
 | |
| 
 | |
| static int compat53_errfile(lua_State* L, const char* what, int fnameindex) {
 | |
| 	char buf[512] = { 0 };
 | |
| 	const char* serr = compat53_strerror(errno, buf, sizeof(buf));
 | |
| 	const char* filename = lua_tostring(L, fnameindex) + 1;
 | |
| 	lua_pushfstring(L, "cannot %s %s: %s", what, filename, serr);
 | |
| 	lua_remove(L, fnameindex);
 | |
| 	return LUA_ERRFILE;
 | |
| }
 | |
| 
 | |
| static int compat53_skipBOM(compat53_LoadF* lf) {
 | |
| 	const char* p = "\xEF\xBB\xBF"; /* UTF-8 BOM mark */
 | |
| 	int c;
 | |
| 	lf->n = 0;
 | |
| 	do {
 | |
| 		c = getc(lf->f);
 | |
| 		if (c == EOF || c != *(const unsigned char*)p++)
 | |
| 			return c;
 | |
| 		lf->buff[lf->n++] = (char)c; /* to be read by the parser */
 | |
| 	} while (*p != '\0');
 | |
| 	lf->n = 0;          /* prefix matched; discard it */
 | |
| 	return getc(lf->f); /* return next character */
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** reads the first character of file 'f' and skips an optional BOM mark
 | |
| ** in its beginning plus its first line if it starts with '#'. Returns
 | |
| ** true if it skipped the first line.  In any case, '*cp' has the
 | |
| ** first "valid" character of the file (after the optional BOM and
 | |
| ** a first-line comment).
 | |
| */
 | |
| static int compat53_skipcomment(compat53_LoadF* lf, int* cp) {
 | |
| 	int c = *cp = compat53_skipBOM(lf);
 | |
| 	if (c == '#') { /* first line is a comment (Unix exec. file)? */
 | |
| 		do {       /* skip first line */
 | |
| 			c = getc(lf->f);
 | |
| 		} while (c != EOF && c != '\n');
 | |
| 		*cp = getc(lf->f); /* skip end-of-line, if present */
 | |
| 		return 1;          /* there was a comment */
 | |
| 	}
 | |
| 	else
 | |
| 		return 0; /* no comment */
 | |
| }
 | |
| 
 | |
| COMPAT53_API int luaL_loadfilex(lua_State* L, const char* filename, const char* mode) {
 | |
| 	compat53_LoadF lf;
 | |
| 	int status, readstatus;
 | |
| 	int c;
 | |
| 	int fnameindex = lua_gettop(L) + 1; /* index of filename on the stack */
 | |
| 	if (filename == NULL) {
 | |
| 		lua_pushliteral(L, "=stdin");
 | |
| 		lf.f = stdin;
 | |
| 	}
 | |
| 	else {
 | |
| 		lua_pushfstring(L, "@%s", filename);
 | |
| #if defined(_MSC_VER)
 | |
| 		/* This code is here to stop a deprecation error that stops builds
 | |
| 		 * if a certain macro is defined. While normally not caring would
 | |
| 		 * be best, some header-only libraries and builds can't afford to
 | |
| 		 * dictate this to the user. A quick check shows that fopen_s this
 | |
| 		 * goes back to VS 2005, and _fsopen goes back to VS 2003 .NET,
 | |
| 		 * possibly even before that so we don't need to do any version
 | |
| 		 * number checks, since this has been there since forever.  */
 | |
| 
 | |
| 		/* TO USER: if you want the behavior of typical fopen_s/fopen,
 | |
| 		 * which does lock the file on VC++, define the macro used below to 0 */
 | |
| #if COMPAT53_FOPEN_NO_LOCK
 | |
| 		lf.f = _fsopen(filename, "r", _SH_DENYNO); /* do not lock the file in any way */
 | |
| 		if (lf.f == NULL)
 | |
| 			return compat53_errfile(L, "open", fnameindex);
 | |
| #else  /* use default locking version */
 | |
| 		if (fopen_s(&lf.f, filename, "r") != 0)
 | |
| 			return compat53_errfile(L, "open", fnameindex);
 | |
| #endif /* Locking vs. No-locking fopen variants */
 | |
| #else
 | |
| 		lf.f = fopen(filename, "r"); /* default stdlib doesn't forcefully lock files here */
 | |
| 		if (lf.f == NULL)
 | |
| 			return compat53_errfile(L, "open", fnameindex);
 | |
| #endif
 | |
| 	}
 | |
| 	if (compat53_skipcomment(&lf, &c))       /* read initial portion */
 | |
| 		lf.buff[lf.n++] = '\n';             /* add line to correct line numbers */
 | |
| 	if (c == LUA_SIGNATURE[0] && filename) { /* binary file? */
 | |
| #if defined(_MSC_VER)
 | |
| 		if (freopen_s(&lf.f, filename, "rb", lf.f) != 0)
 | |
| 			return compat53_errfile(L, "reopen", fnameindex);
 | |
| #else
 | |
| 		lf.f = freopen(filename, "rb", lf.f); /* reopen in binary mode */
 | |
| 		if (lf.f == NULL)
 | |
| 			return compat53_errfile(L, "reopen", fnameindex);
 | |
| #endif
 | |
| 		compat53_skipcomment(&lf, &c); /* re-read initial portion */
 | |
| 	}
 | |
| 	if (c != EOF)
 | |
| 		lf.buff[lf.n++] = (char)c; /* 'c' is the first character of the stream */
 | |
| 	status = lua_load(L, &compat53_getF, &lf, lua_tostring(L, -1), mode);
 | |
| 	readstatus = ferror(lf.f);
 | |
| 	if (filename)
 | |
| 		fclose(lf.f); /* close file (even in case of errors) */
 | |
| 	if (readstatus) {
 | |
| 		lua_settop(L, fnameindex); /* ignore results from 'lua_load' */
 | |
| 		return compat53_errfile(L, "read", fnameindex);
 | |
| 	}
 | |
| 	lua_remove(L, fnameindex);
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| COMPAT53_API int luaL_loadbufferx(lua_State* L, const char* buff, size_t sz, const char* name, const char* mode) {
 | |
| 	int status = LUA_OK;
 | |
| 	if (sz > 0 && buff[0] == LUA_SIGNATURE[0]) {
 | |
| 		status = compat53_checkmode(L, mode, "binary", LUA_ERRSYNTAX);
 | |
| 	}
 | |
| 	else {
 | |
| 		status = compat53_checkmode(L, mode, "text", LUA_ERRSYNTAX);
 | |
| 	}
 | |
| 	if (status != LUA_OK)
 | |
| 		return status;
 | |
| 	return luaL_loadbuffer(L, buff, sz, name);
 | |
| }
 | |
| 
 | |
| #if !defined(l_inspectstat) \
 | |
|      && (defined(unix) || defined(__unix) || defined(__unix__) || defined(__TOS_AIX__) || defined(_SYSTYPE_BSD) || (defined(__APPLE__) && defined(__MACH__)))
 | |
| /* some form of unix; check feature macros in unistd.h for details */
 | |
| #include <unistd.h>
 | |
| /* check posix version; the relevant include files and macros probably
 | |
|  * were available before 2001, but I'm not sure */
 | |
| #if defined(_POSIX_VERSION) && _POSIX_VERSION >= 200112L
 | |
| #include <sys/wait.h>
 | |
| #define l_inspectstat(stat, what)   \
 | |
| 	if (WIFEXITED(stat)) {         \
 | |
| 		stat = WEXITSTATUS(stat); \
 | |
| 	}                              \
 | |
| 	else if (WIFSIGNALED(stat)) {  \
 | |
| 		stat = WTERMSIG(stat);    \
 | |
| 		what = "signal";          \
 | |
| 	}
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| /* provide default (no-op) version */
 | |
| #if !defined(l_inspectstat)
 | |
| #define l_inspectstat(stat, what) ((void)0)
 | |
| #endif
 | |
| 
 | |
| COMPAT53_API int luaL_execresult(lua_State* L, int stat) {
 | |
| 	const char* what = "exit";
 | |
| 	if (stat == -1)
 | |
| 		return luaL_fileresult(L, 0, NULL);
 | |
| 	else {
 | |
| 		l_inspectstat(stat, what);
 | |
| 		if (*what == 'e' && stat == 0)
 | |
| 			lua_pushboolean(L, 1);
 | |
| 		else
 | |
| 			lua_pushnil(L);
 | |
| 		lua_pushstring(L, what);
 | |
| 		lua_pushinteger(L, stat);
 | |
| 		return 3;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| COMPAT53_API void luaL_buffinit(lua_State* L, luaL_Buffer_53* B) {
 | |
| 	/* make it crash if used via pointer to a 5.1-style luaL_Buffer */
 | |
| 	B->b.p = NULL;
 | |
| 	B->b.L = NULL;
 | |
| 	B->b.lvl = 0;
 | |
| 	/* reuse the buffer from the 5.1-style luaL_Buffer though! */
 | |
| 	B->ptr = B->b.buffer;
 | |
| 	B->capacity = LUAL_BUFFERSIZE;
 | |
| 	B->nelems = 0;
 | |
| 	B->L2 = L;
 | |
| }
 | |
| 
 | |
| COMPAT53_API char* luaL_prepbuffsize(luaL_Buffer_53* B, size_t s) {
 | |
| 	if (B->capacity - B->nelems < s) { /* needs to grow */
 | |
| 		char* newptr = NULL;
 | |
| 		size_t newcap = B->capacity * 2;
 | |
| 		if (newcap - B->nelems < s)
 | |
| 			newcap = B->nelems + s;
 | |
| 		if (newcap < B->capacity) /* overflow */
 | |
| 			luaL_error(B->L2, "buffer too large");
 | |
| 		newptr = (char*)lua_newuserdata(B->L2, newcap);
 | |
| 		memcpy(newptr, B->ptr, B->nelems);
 | |
| 		if (B->ptr != B->b.buffer)
 | |
| 			lua_replace(B->L2, -2); /* remove old buffer */
 | |
| 		B->ptr = newptr;
 | |
| 		B->capacity = newcap;
 | |
| 	}
 | |
| 	return B->ptr + B->nelems;
 | |
| }
 | |
| 
 | |
| COMPAT53_API void luaL_addlstring(luaL_Buffer_53* B, const char* s, size_t l) {
 | |
| 	memcpy(luaL_prepbuffsize(B, l), s, l);
 | |
| 	luaL_addsize(B, l);
 | |
| }
 | |
| 
 | |
| COMPAT53_API void luaL_addvalue(luaL_Buffer_53* B) {
 | |
| 	size_t len = 0;
 | |
| 	const char* s = lua_tolstring(B->L2, -1, &len);
 | |
| 	if (!s)
 | |
| 		luaL_error(B->L2, "cannot convert value to string");
 | |
| 	if (B->ptr != B->b.buffer)
 | |
| 		lua_insert(B->L2, -2); /* userdata buffer must be at stack top */
 | |
| 	luaL_addlstring(B, s, len);
 | |
| 	lua_remove(B->L2, B->ptr != B->b.buffer ? -2 : -1);
 | |
| }
 | |
| 
 | |
| void luaL_pushresult(luaL_Buffer_53* B) {
 | |
| 	lua_pushlstring(B->L2, B->ptr, B->nelems);
 | |
| 	if (B->ptr != B->b.buffer)
 | |
| 		lua_replace(B->L2, -2); /* remove userdata buffer */
 | |
| }
 | |
| 
 | |
| #endif /* Lua 5.1 */
 | |
| 
 | |
| /* definitions for Lua 5.1 and Lua 5.2 */
 | |
| #if defined(LUA_VERSION_NUM) && LUA_VERSION_NUM <= 502
 | |
| 
 | |
| COMPAT53_API int lua_geti(lua_State* L, int index, lua_Integer i) {
 | |
| 	index = lua_absindex(L, index);
 | |
| 	lua_pushinteger(L, i);
 | |
| 	lua_gettable(L, index);
 | |
| 	return lua_type(L, -1);
 | |
| }
 | |
| 
 | |
| COMPAT53_API int lua_isinteger(lua_State* L, int index) {
 | |
| 	if (lua_type(L, index) == LUA_TNUMBER) {
 | |
| 		lua_Number n = lua_tonumber(L, index);
 | |
| 		lua_Integer i = lua_tointeger(L, index);
 | |
| 		if (i == n)
 | |
| 			return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| COMPAT53_API lua_Integer lua_tointegerx(lua_State* L, int i, int* isnum) {
 | |
| 	int ok = 0;
 | |
| 	lua_Number n = lua_tonumberx(L, i, &ok);
 | |
| 	if (ok) {
 | |
| 		if (n == (lua_Integer)n) {
 | |
| 			if (isnum)
 | |
| 				*isnum = 1;
 | |
| 			return (lua_Integer)n;
 | |
| 		}
 | |
| 	}
 | |
| 	if (isnum)
 | |
| 		*isnum = 0;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void compat53_reverse(lua_State* L, int a, int b) {
 | |
| 	for (; a < b; ++a, --b) {
 | |
| 		lua_pushvalue(L, a);
 | |
| 		lua_pushvalue(L, b);
 | |
| 		lua_replace(L, a);
 | |
| 		lua_replace(L, b);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| COMPAT53_API void lua_rotate(lua_State* L, int idx, int n) {
 | |
| 	int n_elems = 0;
 | |
| 	idx = lua_absindex(L, idx);
 | |
| 	n_elems = lua_gettop(L) - idx + 1;
 | |
| 	if (n < 0)
 | |
| 		n += n_elems;
 | |
| 	if (n > 0 && n < n_elems) {
 | |
| 		luaL_checkstack(L, 2, "not enough stack slots available");
 | |
| 		n = n_elems - n;
 | |
| 		compat53_reverse(L, idx, idx + n - 1);
 | |
| 		compat53_reverse(L, idx + n, idx + n_elems - 1);
 | |
| 		compat53_reverse(L, idx, idx + n_elems - 1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| COMPAT53_API void lua_seti(lua_State* L, int index, lua_Integer i) {
 | |
| 	luaL_checkstack(L, 1, "not enough stack slots available");
 | |
| 	index = lua_absindex(L, index);
 | |
| 	lua_pushinteger(L, i);
 | |
| 	lua_insert(L, -2);
 | |
| 	lua_settable(L, index);
 | |
| }
 | |
| 
 | |
| #if !defined(lua_str2number)
 | |
| #define lua_str2number(s, p) strtod((s), (p))
 | |
| #endif
 | |
| 
 | |
| COMPAT53_API size_t lua_stringtonumber(lua_State* L, const char* s) {
 | |
| 	char* endptr;
 | |
| 	lua_Number n = lua_str2number(s, &endptr);
 | |
| 	if (endptr != s) {
 | |
| 		while (*endptr != '\0' && isspace((unsigned char)*endptr))
 | |
| 			++endptr;
 | |
| 		if (*endptr == '\0') {
 | |
| 			lua_pushnumber(L, n);
 | |
| 			return endptr - s + 1;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| COMPAT53_API const char* luaL_tolstring(lua_State* L, int idx, size_t* len) {
 | |
| 	if (!luaL_callmeta(L, idx, "__tostring")) {
 | |
| 		int t = lua_type(L, idx), tt = 0;
 | |
| 		char const* name = NULL;
 | |
| 		switch (t) {
 | |
| 		case LUA_TNIL:
 | |
| 			lua_pushliteral(L, "nil");
 | |
| 			break;
 | |
| 		case LUA_TSTRING:
 | |
| 		case LUA_TNUMBER:
 | |
| 			lua_pushvalue(L, idx);
 | |
| 			break;
 | |
| 		case LUA_TBOOLEAN:
 | |
| 			if (lua_toboolean(L, idx))
 | |
| 				lua_pushliteral(L, "true");
 | |
| 			else
 | |
| 				lua_pushliteral(L, "false");
 | |
| 			break;
 | |
| 		default:
 | |
| 			tt = luaL_getmetafield(L, idx, "__name");
 | |
| 			name = (tt == LUA_TSTRING) ? lua_tostring(L, -1) : lua_typename(L, t);
 | |
| 			lua_pushfstring(L, "%s: %p", name, lua_topointer(L, idx));
 | |
| 			if (tt != LUA_TNIL)
 | |
| 				lua_replace(L, -2);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		if (!lua_isstring(L, -1))
 | |
| 			luaL_error(L, "'__tostring' must return a string");
 | |
| 	}
 | |
| 	return lua_tolstring(L, -1, len);
 | |
| }
 | |
| 
 | |
| COMPAT53_API void luaL_requiref(lua_State* L, const char* modname, lua_CFunction openf, int glb) {
 | |
| 	luaL_checkstack(L, 3, "not enough stack slots available");
 | |
| 	luaL_getsubtable(L, LUA_REGISTRYINDEX, "_LOADED");
 | |
| 	if (lua_getfield(L, -1, modname) == LUA_TNIL) {
 | |
| 		lua_pop(L, 1);
 | |
| 		lua_pushcfunction(L, openf);
 | |
| 		lua_pushstring(L, modname);
 | |
| 		lua_call(L, 1, 1);
 | |
| 		lua_pushvalue(L, -1);
 | |
| 		lua_setfield(L, -3, modname);
 | |
| 	}
 | |
| 	if (glb) {
 | |
| 		lua_pushvalue(L, -1);
 | |
| 		lua_setglobal(L, modname);
 | |
| 	}
 | |
| 	lua_replace(L, -2);
 | |
| }
 | |
| 
 | |
| #endif /* Lua 5.1 and 5.2 */
 | |
| 
 | |
| #endif /* KEPLER_PROJECT_COMPAT53_C_ */
 | |
| 
 | |
| /*********************************************************************
 | |
|  * This file contains parts of Lua 5.2's and Lua 5.3's source code:
 | |
|  *
 | |
|  * Copyright (C) 1994-2014 Lua.org, PUC-Rio.
 | |
|  *
 | |
|  * Permission is hereby granted, free of charge, to any person obtaining
 | |
|  * a copy of this software and associated documentation files (the
 | |
|  * "Software"), to deal in the Software without restriction, including
 | |
|  * without limitation the rights to use, copy, modify, merge, publish,
 | |
|  * distribute, sublicense, and/or sell copies of the Software, and to
 | |
|  * permit persons to whom the Software is furnished to do so, subject to
 | |
|  * the following conditions:
 | |
|  *
 | |
|  * The above copyright notice and this permission notice shall be
 | |
|  * included in all copies or substantial portions of the Software.
 | |
|  *
 | |
|  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 | |
|  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 | |
|  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
 | |
|  * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
 | |
|  * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
 | |
|  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
 | |
|  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 | |
|  *********************************************************************/
 | |
| // end of sol/compatibility/compat-5.3.c.h
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #endif /* KEPLER_PROJECT_COMPAT53_H_ */
 | |
| 
 | |
| // end of sol/compatibility/compat-5.3.h
 | |
| 
 | |
| // beginning of sol/compatibility/compat-5.4.h
 | |
| 
 | |
| #ifndef NOT_KEPLER_PROJECT_COMPAT54_H_
 | |
| #define NOT_KEPLER_PROJECT_COMPAT54_H_
 | |
| 
 | |
| #if defined(__cplusplus) && !defined(COMPAT53_LUA_CPP)
 | |
| extern "C" {
 | |
| #endif
 | |
| #include <lua.h>
 | |
| #include <lauxlib.h>
 | |
| #include <lualib.h>
 | |
| #if defined(__cplusplus) && !defined(COMPAT53_LUA_CPP)
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if defined(LUA_VERSION_NUM) && LUA_VERSION_NUM == 504
 | |
| 
 | |
| #if !defined(LUA_ERRGCMM)
 | |
| /* So Lua 5.4 actually removes this, which breaks sol2...
 | |
|  man, this API is quite unstable...!
 | |
| */
 | |
| #  define LUA_ERRGCMM (LUA_ERRERR + 2)
 | |
| #endif /* LUA_ERRGCMM define */
 | |
| 
 | |
| #endif // Lua 5.4 only
 | |
| 
 | |
| #endif // NOT_KEPLER_PROJECT_COMPAT54_H_// end of sol/compatibility/compat-5.4.h
 | |
| 
 | |
| #endif
 | |
| 
 | |
| // end of sol/compatibility.hpp
 | |
| 
 | |
| #include <vector>
 | |
| #include <cstdint>
 | |
| #include <cstddef>
 | |
| 
 | |
| namespace sol {
 | |
| 
 | |
| 	template <typename Allocator = std::allocator<std::byte>>
 | |
| 	class basic_bytecode : private std::vector<std::byte, Allocator> {
 | |
| 	private:
 | |
| 		using base_t = std::vector<std::byte, Allocator>;
 | |
| 
 | |
| 	public:
 | |
| 		using typename base_t::allocator_type;
 | |
| 		using typename base_t::const_iterator;
 | |
| 		using typename base_t::const_pointer;
 | |
| 		using typename base_t::const_reference;
 | |
| 		using typename base_t::const_reverse_iterator;
 | |
| 		using typename base_t::difference_type;
 | |
| 		using typename base_t::iterator;
 | |
| 		using typename base_t::pointer;
 | |
| 		using typename base_t::reference;
 | |
| 		using typename base_t::reverse_iterator;
 | |
| 		using typename base_t::size_type;
 | |
| 		using typename base_t::value_type;
 | |
| 
 | |
| 		using base_t::base_t;
 | |
| 		using base_t::operator=;
 | |
| 
 | |
| 		using base_t::data;
 | |
| 		using base_t::empty;
 | |
| 		using base_t::max_size;
 | |
| 		using base_t::size;
 | |
| 
 | |
| 		using base_t::at;
 | |
| 		using base_t::operator[];
 | |
| 		using base_t::back;
 | |
| 		using base_t::front;
 | |
| 
 | |
| 		using base_t::begin;
 | |
| 		using base_t::cbegin;
 | |
| 		using base_t::cend;
 | |
| 		using base_t::end;
 | |
| 
 | |
| 		using base_t::crbegin;
 | |
| 		using base_t::crend;
 | |
| 		using base_t::rbegin;
 | |
| 		using base_t::rend;
 | |
| 
 | |
| 		using base_t::get_allocator;
 | |
| 		using base_t::swap;
 | |
| 
 | |
| 		using base_t::clear;
 | |
| 		using base_t::emplace;
 | |
| 		using base_t::emplace_back;
 | |
| 		using base_t::erase;
 | |
| 		using base_t::insert;
 | |
| 		using base_t::pop_back;
 | |
| 		using base_t::push_back;
 | |
| 		using base_t::reserve;
 | |
| 		using base_t::resize;
 | |
| 		using base_t::shrink_to_fit;
 | |
| 
 | |
| 		string_view as_string_view() const {
 | |
| 			return string_view(reinterpret_cast<const char*>(this->data()), this->size());
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename Container>
 | |
| 	inline int basic_insert_dump_writer(lua_State*, const void* memory, size_t memory_size, void* userdata) {
 | |
| 		using storage_t = Container;
 | |
| 		const std::byte* p_code = static_cast<const std::byte*>(memory);
 | |
| 		storage_t& bc = *static_cast<storage_t*>(userdata);
 | |
| #if SOL_IS_OFF(SOL_EXCEPTIONS_I_)
 | |
| 		bc.insert(bc.cend(), p_code, p_code + memory_size);
 | |
| #else
 | |
| 		try {
 | |
| 			bc.insert(bc.cend(), p_code, p_code + memory_size);
 | |
| 		}
 | |
| 		catch (...) {
 | |
| 			return -1;
 | |
| 		}
 | |
| #endif
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	using bytecode = basic_bytecode<>;
 | |
| 
 | |
| 	constexpr inline auto bytecode_dump_writer = &basic_insert_dump_writer<bytecode>;
 | |
| 
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/bytecode.hpp
 | |
| 
 | |
| // beginning of sol/stack.hpp
 | |
| 
 | |
| // beginning of sol/trampoline.hpp
 | |
| 
 | |
| // beginning of sol/types.hpp
 | |
| 
 | |
| // beginning of sol/error.hpp
 | |
| 
 | |
| #include <stdexcept>
 | |
| #include <string>
 | |
| #include <array>
 | |
| 
 | |
| namespace sol {
 | |
| 	namespace detail {
 | |
| 		struct direct_error_tag {};
 | |
| 		const auto direct_error = direct_error_tag{};
 | |
| 
 | |
| 		struct error_result {
 | |
| 			int results;
 | |
| 			const char* format_string;
 | |
| 			std::array<const char*, 4> args_strings;
 | |
| 
 | |
| 			error_result() : results(0), format_string(nullptr) {
 | |
| 			}
 | |
| 
 | |
| 			error_result(int results) : results(results), format_string(nullptr) {
 | |
| 			}
 | |
| 
 | |
| 			error_result(const char* fmt, const char* msg) : results(0), format_string(fmt) {
 | |
| 				args_strings[0] = msg;
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		inline int handle_errors(lua_State* L, const error_result& er) {
 | |
| 			if (er.format_string == nullptr) {
 | |
| 				return er.results;
 | |
| 			}
 | |
| 			return luaL_error(L, er.format_string, er.args_strings[0], er.args_strings[1], er.args_strings[2], er.args_strings[3]);
 | |
| 		}
 | |
| 	} // namespace detail
 | |
| 
 | |
| 	class error : public std::runtime_error {
 | |
| 	private:
 | |
| 		// Because VC++ is upsetting, most of the time!
 | |
| 		std::string what_reason;
 | |
| 
 | |
| 	public:
 | |
| 		error(const std::string& str) : error(detail::direct_error, "lua: error: " + str) {
 | |
| 		}
 | |
| 		error(std::string&& str) : error(detail::direct_error, "lua: error: " + std::move(str)) {
 | |
| 		}
 | |
| 		error(detail::direct_error_tag, const std::string& str) : std::runtime_error(""), what_reason(str) {
 | |
| 		}
 | |
| 		error(detail::direct_error_tag, std::string&& str) : std::runtime_error(""), what_reason(std::move(str)) {
 | |
| 		}
 | |
| 
 | |
| 		error(const error& e) = default;
 | |
| 		error(error&& e) = default;
 | |
| 		error& operator=(const error& e) = default;
 | |
| 		error& operator=(error&& e) = default;
 | |
| 
 | |
| 		virtual const char* what() const noexcept override {
 | |
| 			return what_reason.c_str();
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/error.hpp
 | |
| 
 | |
| // beginning of sol/optional.hpp
 | |
| 
 | |
| // beginning of sol/in_place.hpp
 | |
| 
 | |
| #include <cstddef>
 | |
| #include <utility>
 | |
| 
 | |
| namespace sol {
 | |
| 
 | |
| 	using in_place_t = std::in_place_t;
 | |
| 	constexpr std::in_place_t in_place {};
 | |
| 	constexpr std::in_place_t in_place_of {};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	using in_place_type_t = std::in_place_type_t<T>;
 | |
| 	template <typename T>
 | |
| 	constexpr std::in_place_type_t<T> in_place_type {};
 | |
| 
 | |
| 	template <size_t I>
 | |
| 	using in_place_index_t = std::in_place_index_t<I>;
 | |
| 	template <size_t I>
 | |
| 	constexpr in_place_index_t<I> in_place_index {};
 | |
| 
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/in_place.hpp
 | |
| 
 | |
| #if SOL_IS_ON(SOL_USE_BOOST_I_)
 | |
| #include <boost/optional.hpp>
 | |
| #else
 | |
| // beginning of sol/optional_implementation.hpp
 | |
| 
 | |
| #define SOL_TL_OPTIONAL_VERSION_MAJOR 0
 | |
| #define SOL_TL_OPTIONAL_VERSION_MINOR 5
 | |
| 
 | |
| #include <exception>
 | |
| #include <functional>
 | |
| #include <new>
 | |
| #include <type_traits>
 | |
| #include <utility>
 | |
| #include <cstdlib>
 | |
| #include <optional>
 | |
| 
 | |
| #if (defined(_MSC_VER) && _MSC_VER == 1900)
 | |
| #define SOL_TL_OPTIONAL_MSVC2015
 | |
| #endif
 | |
| 
 | |
| #if (defined(__GNUC__) && __GNUC__ == 4 && __GNUC_MINOR__ <= 9 && !defined(__clang__))
 | |
| #define SOL_TL_OPTIONAL_GCC49
 | |
| #endif
 | |
| 
 | |
| #if (defined(__GNUC__) && __GNUC__ == 5 && __GNUC_MINOR__ <= 4 && !defined(__clang__))
 | |
| #define SOL_TL_OPTIONAL_GCC54
 | |
| #endif
 | |
| 
 | |
| #if (defined(__GNUC__) && __GNUC__ == 5 && __GNUC_MINOR__ <= 5 && !defined(__clang__))
 | |
| #define SOL_TL_OPTIONAL_GCC55
 | |
| #endif
 | |
| 
 | |
| #if (defined(__GNUC__) && __GNUC__ == 4 && __GNUC_MINOR__ <= 9 && !defined(__clang__))
 | |
| #define SOL_TL_OPTIONAL_NO_CONSTRR
 | |
| 
 | |
| #define SOL_TL_OPTIONAL_IS_TRIVIALLY_COPY_CONSTRUCTIBLE(T) std::has_trivial_copy_constructor<T>::value
 | |
| #define SOL_TL_OPTIONAL_IS_TRIVIALLY_COPY_ASSIGNABLE(T) std::has_trivial_copy_assign<T>::value
 | |
| 
 | |
| #define SOL_TL_OPTIONAL_IS_TRIVIALLY_DESTRUCTIBLE(T) std::is_trivially_destructible<T>::value
 | |
| 
 | |
| #elif (defined(__GNUC__) && __GNUC__ < 8 && !defined(__clang__))
 | |
| #ifndef SOL_TL_GCC_LESS_8_TRIVIALLY_COPY_CONSTRUCTIBLE_MUTEX
 | |
| #define SOL_TL_GCC_LESS_8_TRIVIALLY_COPY_CONSTRUCTIBLE_MUTEX
 | |
| namespace sol { namespace detail {
 | |
| 	template <class T>
 | |
| 	struct is_trivially_copy_constructible : std::is_trivially_copy_constructible<T> {};
 | |
| #ifdef _GLIBCXX_VECTOR
 | |
| 	template <class T, class A>
 | |
| 	struct is_trivially_copy_constructible<std::vector<T, A>> : std::is_trivially_copy_constructible<T> {};
 | |
| #endif
 | |
| }} // namespace sol::detail
 | |
| #endif
 | |
| 
 | |
| #define SOL_TL_OPTIONAL_IS_TRIVIALLY_COPY_CONSTRUCTIBLE(T) sol::detail::is_trivially_copy_constructible<T>::value
 | |
| #define SOL_TL_OPTIONAL_IS_TRIVIALLY_COPY_ASSIGNABLE(T) std::is_trivially_copy_assignable<T>::value
 | |
| #define SOL_TL_OPTIONAL_IS_TRIVIALLY_DESTRUCTIBLE(T) std::is_trivially_destructible<T>::value
 | |
| #else
 | |
| #define SOL_TL_OPTIONAL_IS_TRIVIALLY_COPY_CONSTRUCTIBLE(T) std::is_trivially_copy_constructible<T>::value
 | |
| #define SOL_TL_OPTIONAL_IS_TRIVIALLY_COPY_ASSIGNABLE(T) std::is_trivially_copy_assignable<T>::value
 | |
| #define SOL_TL_OPTIONAL_IS_TRIVIALLY_DESTRUCTIBLE(T) std::is_trivially_destructible<T>::value
 | |
| #endif
 | |
| 
 | |
| #if __cplusplus > 201103L
 | |
| #define SOL_TL_OPTIONAL_CXX14
 | |
| #endif
 | |
| 
 | |
| #if (__cplusplus == 201103L || defined(SOL_TL_OPTIONAL_MSVC2015) || defined(SOL_TL_OPTIONAL_GCC49))
 | |
| #define SOL_TL_OPTIONAL_11_CONSTEXPR
 | |
| #else
 | |
|    /// \exclude
 | |
| #define SOL_TL_OPTIONAL_11_CONSTEXPR constexpr
 | |
| #endif
 | |
| 
 | |
| namespace sol {
 | |
| #ifndef SOL_TL_MONOSTATE_INPLACE_MUTEX
 | |
| #define SOL_TL_MONOSTATE_INPLACE_MUTEX
 | |
| 	/// \brief Used to represent an optional with no data; essentially a bool
 | |
| 	class monostate {};
 | |
| #endif
 | |
| 
 | |
| 	template <class T>
 | |
| 	class optional;
 | |
| 
 | |
| 	/// \exclude
 | |
| 	namespace detail {
 | |
| #ifndef SOL_TL_TRAITS_MUTEX
 | |
| #define SOL_TL_TRAITS_MUTEX
 | |
| 		// C++14-style aliases for brevity
 | |
| 		template <class T>
 | |
| 		using remove_const_t = typename std::remove_const<T>::type;
 | |
| 		template <class T>
 | |
| 		using remove_reference_t = typename std::remove_reference<T>::type;
 | |
| 		template <class T>
 | |
| 		using decay_t = typename std::decay<T>::type;
 | |
| 		template <bool E, class T = void>
 | |
| 		using enable_if_t = typename std::enable_if<E, T>::type;
 | |
| 		template <bool B, class T, class F>
 | |
| 		using conditional_t = typename std::conditional<B, T, F>::type;
 | |
| 
 | |
| 		// std::conjunction from C++17
 | |
| 		template <class...>
 | |
| 		struct conjunction : std::true_type {};
 | |
| 		template <class B>
 | |
| 		struct conjunction<B> : B {};
 | |
| 		template <class B, class... Bs>
 | |
| 		struct conjunction<B, Bs...> : std::conditional<bool(B::value), conjunction<Bs...>, B>::type {};
 | |
| 
 | |
| #if defined(_LIBCPP_VERSION) && __cplusplus == 201103L
 | |
| #define SOL_TL_OPTIONAL_LIBCXX_MEM_FN_WORKAROUND
 | |
| #endif
 | |
| 
 | |
| #ifdef SOL_TL_OPTIONAL_LIBCXX_MEM_FN_WORKAROUND
 | |
| 		template <class T>
 | |
| 		struct is_pointer_to_non_const_member_func : std::false_type {};
 | |
| 		template <class T, class Ret, class... Args>
 | |
| 		struct is_pointer_to_non_const_member_func<Ret (T::*)(Args...)> : std::true_type {};
 | |
| 		template <class T, class Ret, class... Args>
 | |
| 		struct is_pointer_to_non_const_member_func<Ret (T::*)(Args...)&> : std::true_type {};
 | |
| 		template <class T, class Ret, class... Args>
 | |
| 		struct is_pointer_to_non_const_member_func<Ret (T::*)(Args...) &&> : std::true_type {};
 | |
| 		template <class T, class Ret, class... Args>
 | |
| 		struct is_pointer_to_non_const_member_func<Ret (T::*)(Args...) volatile> : std::true_type {};
 | |
| 		template <class T, class Ret, class... Args>
 | |
| 		struct is_pointer_to_non_const_member_func<Ret (T::*)(Args...) volatile&> : std::true_type {};
 | |
| 		template <class T, class Ret, class... Args>
 | |
| 		struct is_pointer_to_non_const_member_func<Ret (T::*)(Args...) volatile&&> : std::true_type {};
 | |
| 
 | |
| 		template <class T>
 | |
| 		struct is_const_or_const_ref : std::false_type {};
 | |
| 		template <class T>
 | |
| 		struct is_const_or_const_ref<T const&> : std::true_type {};
 | |
| 		template <class T>
 | |
| 		struct is_const_or_const_ref<T const> : std::true_type {};
 | |
| #endif
 | |
| 
 | |
| 		// std::invoke from C++17
 | |
| 		// https://stackoverflow.com/questions/38288042/c11-14-invoke-workaround
 | |
| 		template <typename Fn, typename... Args,
 | |
| #ifdef SOL_TL_OPTIONAL_LIBCXX_MEM_FN_WORKAROUND
 | |
| 		     typename = enable_if_t<!(is_pointer_to_non_const_member_func<Fn>::value && is_const_or_const_ref<Args...>::value)>,
 | |
| #endif
 | |
| 		     typename = enable_if_t<std::is_member_pointer<decay_t<Fn>>::value>, int = 0>
 | |
| 		constexpr auto invoke(Fn&& f, Args&&... args) noexcept(noexcept(std::mem_fn(f)(std::forward<Args>(args)...)))
 | |
| 		     -> decltype(std::mem_fn(f)(std::forward<Args>(args)...)) {
 | |
| 			return std::mem_fn(f)(std::forward<Args>(args)...);
 | |
| 		}
 | |
| 
 | |
| 		template <typename Fn, typename... Args, typename = enable_if_t<!std::is_member_pointer<decay_t<Fn>>::value>>
 | |
| 		constexpr auto invoke(Fn&& f, Args&&... args) noexcept(noexcept(std::forward<Fn>(f)(std::forward<Args>(args)...)))
 | |
| 		     -> decltype(std::forward<Fn>(f)(std::forward<Args>(args)...)) {
 | |
| 			return std::forward<Fn>(f)(std::forward<Args>(args)...);
 | |
| 		}
 | |
| 
 | |
| 		// std::invoke_result from C++17
 | |
| 		template <class F, class, class... Us>
 | |
| 		struct invoke_result_impl;
 | |
| 
 | |
| 		template <class F, class... Us>
 | |
| 		struct invoke_result_impl<F, decltype(detail::invoke(std::declval<F>(), std::declval<Us>()...), void()), Us...> {
 | |
| 			using type = decltype(detail::invoke(std::declval<F>(), std::declval<Us>()...));
 | |
| 		};
 | |
| 
 | |
| 		template <class F, class... Us>
 | |
| 		using invoke_result = invoke_result_impl<F, void, Us...>;
 | |
| 
 | |
| 		template <class F, class... Us>
 | |
| 		using invoke_result_t = typename invoke_result<F, Us...>::type;
 | |
| #endif
 | |
| 
 | |
| 		// std::void_t from C++17
 | |
| 		template <class...>
 | |
| 		struct voider {
 | |
| 			using type = void;
 | |
| 		};
 | |
| 		template <class... Ts>
 | |
| 		using void_t = typename voider<Ts...>::type;
 | |
| 
 | |
| 		// Trait for checking if a type is a sol::optional
 | |
| 		template <class T>
 | |
| 		struct is_optional_impl : std::false_type {};
 | |
| 		template <class T>
 | |
| 		struct is_optional_impl<optional<T>> : std::true_type {};
 | |
| 		template <class T>
 | |
| 		using is_optional = is_optional_impl<decay_t<T>>;
 | |
| 
 | |
| 		// Change void to sol::monostate
 | |
| 		template <class U>
 | |
| 		using fixup_void = conditional_t<std::is_void<U>::value, monostate, U>;
 | |
| 
 | |
| 		template <class F, class U, class = invoke_result_t<F, U>>
 | |
| 		using get_map_return = optional<fixup_void<invoke_result_t<F, U>>>;
 | |
| 
 | |
| 		// Check if invoking F for some Us returns void
 | |
| 		template <class F, class = void, class... U>
 | |
| 		struct returns_void_impl;
 | |
| 		template <class F, class... U>
 | |
| 		struct returns_void_impl<F, void_t<invoke_result_t<F, U...>>, U...> : std::is_void<invoke_result_t<F, U...>> {};
 | |
| 		template <class F, class... U>
 | |
| 		using returns_void = returns_void_impl<F, void, U...>;
 | |
| 
 | |
| 		template <class T, class... U>
 | |
| 		using enable_if_ret_void = enable_if_t<returns_void<T&&, U...>::value>;
 | |
| 
 | |
| 		template <class T, class... U>
 | |
| 		using disable_if_ret_void = enable_if_t<!returns_void<T&&, U...>::value>;
 | |
| 
 | |
| 		template <class T, class U>
 | |
| 		using enable_forward_value = detail::enable_if_t<std::is_constructible<T, U&&>::value && !std::is_same<detail::decay_t<U>, in_place_t>::value
 | |
| 		     && !std::is_same<optional<T>, detail::decay_t<U>>::value>;
 | |
| 
 | |
| 		template <class T, class U, class Other>
 | |
| 		using enable_from_other = detail::enable_if_t<std::is_constructible<T, Other>::value && !std::is_constructible<T, optional<U>&>::value
 | |
| 		     && !std::is_constructible<T, optional<U>&&>::value && !std::is_constructible<T, const optional<U>&>::value
 | |
| 		     && !std::is_constructible<T, const optional<U>&&>::value && !std::is_convertible<optional<U>&, T>::value
 | |
| 		     && !std::is_convertible<optional<U>&&, T>::value && !std::is_convertible<const optional<U>&, T>::value
 | |
| 		     && !std::is_convertible<const optional<U>&&, T>::value>;
 | |
| 
 | |
| 		template <class T, class U>
 | |
| 		using enable_assign_forward = detail::enable_if_t<!std::is_same<optional<T>, detail::decay_t<U>>::value
 | |
| 		     && !detail::conjunction<std::is_scalar<T>, std::is_same<T, detail::decay_t<U>>>::value && std::is_constructible<T, U>::value
 | |
| 		     && std::is_assignable<T&, U>::value>;
 | |
| 
 | |
| 		template <class T, class U, class Other>
 | |
| 		using enable_assign_from_other = detail::enable_if_t<std::is_constructible<T, Other>::value && std::is_assignable<T&, Other>::value
 | |
| 		     && !std::is_constructible<T, optional<U>&>::value && !std::is_constructible<T, optional<U>&&>::value
 | |
| 		     && !std::is_constructible<T, const optional<U>&>::value && !std::is_constructible<T, const optional<U>&&>::value
 | |
| 		     && !std::is_convertible<optional<U>&, T>::value && !std::is_convertible<optional<U>&&, T>::value
 | |
| 		     && !std::is_convertible<const optional<U>&, T>::value && !std::is_convertible<const optional<U>&&, T>::value
 | |
| 		     && !std::is_assignable<T&, optional<U>&>::value && !std::is_assignable<T&, optional<U>&&>::value
 | |
| 		     && !std::is_assignable<T&, const optional<U>&>::value && !std::is_assignable<T&, const optional<U>&&>::value>;
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| 		// TODO make a version which works with MSVC
 | |
| 		template <class T, class U = T>
 | |
| 		struct is_swappable : std::true_type {};
 | |
| 
 | |
| 		template <class T, class U = T>
 | |
| 		struct is_nothrow_swappable : std::true_type {};
 | |
| #else
 | |
| 		// https://stackoverflow.com/questions/26744589/what-is-a-proper-way-to-implement-is-swappable-to-test-for-the-swappable-concept
 | |
| 		namespace swap_adl_tests {
 | |
| 			// if swap ADL finds this then it would call std::swap otherwise (same
 | |
| 			// signature)
 | |
| 			struct tag {};
 | |
| 
 | |
| 			template <class T>
 | |
| 			tag swap(T&, T&);
 | |
| 			template <class T, std::size_t N>
 | |
| 			tag swap(T (&a)[N], T (&b)[N]);
 | |
| 
 | |
| 			// helper functions to test if an unqualified swap is possible, and if it
 | |
| 			// becomes std::swap
 | |
| 			template <class, class>
 | |
| 			std::false_type can_swap(...) noexcept(false);
 | |
| 			template <class T, class U, class = decltype(swap(std::declval<T&>(), std::declval<U&>()))>
 | |
| 			std::true_type can_swap(int) noexcept(noexcept(swap(std::declval<T&>(), std::declval<U&>())));
 | |
| 
 | |
| 			template <class, class>
 | |
| 			std::false_type uses_std(...);
 | |
| 			template <class T, class U>
 | |
| 			std::is_same<decltype(swap(std::declval<T&>(), std::declval<U&>())), tag> uses_std(int);
 | |
| 
 | |
| 			template <class T>
 | |
| 			struct is_std_swap_noexcept
 | |
| 			: std::integral_constant<bool, std::is_nothrow_move_constructible<T>::value && std::is_nothrow_move_assignable<T>::value> {};
 | |
| 
 | |
| 			template <class T, std::size_t N>
 | |
| 			struct is_std_swap_noexcept<T[N]> : is_std_swap_noexcept<T> {};
 | |
| 
 | |
| 			template <class T, class U>
 | |
| 			struct is_adl_swap_noexcept : std::integral_constant<bool, noexcept(can_swap<T, U>(0))> {};
 | |
| 		} // namespace swap_adl_tests
 | |
| 
 | |
| 		template <class T, class U = T>
 | |
| 		struct is_swappable : std::integral_constant<bool,
 | |
| 		                           decltype(detail::swap_adl_tests::can_swap<T, U>(0))::value
 | |
| 		                                && (!decltype(detail::swap_adl_tests::uses_std<T, U>(0))::value
 | |
| 		                                     || (std::is_move_assignable<T>::value && std::is_move_constructible<T>::value))> {};
 | |
| 
 | |
| 		template <class T, std::size_t N>
 | |
| 		struct is_swappable<T[N], T[N]> : std::integral_constant<bool,
 | |
| 		                                       decltype(detail::swap_adl_tests::can_swap<T[N], T[N]>(0))::value
 | |
| 		                                            && (!decltype(detail::swap_adl_tests::uses_std<T[N], T[N]>(0))::value || is_swappable<T, T>::value)> {};
 | |
| 
 | |
| 		template <class T, class U = T>
 | |
| 		struct is_nothrow_swappable
 | |
| 		: std::integral_constant<bool,
 | |
| 		       is_swappable<T, U>::value
 | |
| 		            && ((decltype(detail::swap_adl_tests::uses_std<T, U>(0))::value&& detail::swap_adl_tests::is_std_swap_noexcept<T>::value)
 | |
| 		                 || (!decltype(detail::swap_adl_tests::uses_std<T, U>(0))::value&& detail::swap_adl_tests::is_adl_swap_noexcept<T, U>::value))> {};
 | |
| #endif
 | |
| 
 | |
| 		// The storage base manages the actual storage, and correctly propagates
 | |
| 		// trivial destruction from T. This case is for when T is not trivially
 | |
| 		// destructible.
 | |
| 		template <class T, bool = ::std::is_trivially_destructible<T>::value>
 | |
| 		struct optional_storage_base {
 | |
| 			SOL_TL_OPTIONAL_11_CONSTEXPR optional_storage_base() noexcept : m_dummy(), m_has_value(false) {
 | |
| 			}
 | |
| 
 | |
| 			template <class... U>
 | |
| 			SOL_TL_OPTIONAL_11_CONSTEXPR optional_storage_base(in_place_t, U&&... u) : m_value(std::forward<U>(u)...), m_has_value(true) {
 | |
| 			}
 | |
| 
 | |
| 			~optional_storage_base() {
 | |
| 				if (m_has_value) {
 | |
| 					m_value.~T();
 | |
| 					m_has_value = false;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			struct dummy {};
 | |
| 			union {
 | |
| 				dummy m_dummy;
 | |
| 				T m_value;
 | |
| 			};
 | |
| 
 | |
| 			bool m_has_value;
 | |
| 		};
 | |
| 
 | |
| 		// This case is for when T is trivially destructible.
 | |
| 		template <class T>
 | |
| 		struct optional_storage_base<T, true> {
 | |
| 			SOL_TL_OPTIONAL_11_CONSTEXPR optional_storage_base() noexcept : m_dummy(), m_has_value(false) {
 | |
| 			}
 | |
| 
 | |
| 			template <class... U>
 | |
| 			SOL_TL_OPTIONAL_11_CONSTEXPR optional_storage_base(in_place_t, U&&... u) : m_value(std::forward<U>(u)...), m_has_value(true) {
 | |
| 			}
 | |
| 
 | |
| 			// No destructor, so this class is trivially destructible
 | |
| 
 | |
| 			struct dummy {};
 | |
| 			union {
 | |
| 				dummy m_dummy;
 | |
| 				T m_value;
 | |
| 			};
 | |
| 
 | |
| 			bool m_has_value = false;
 | |
| 		};
 | |
| 
 | |
| 		// This base class provides some handy member functions which can be used in
 | |
| 		// further derived classes
 | |
| 		template <class T>
 | |
| 		struct optional_operations_base : optional_storage_base<T> {
 | |
| 			using optional_storage_base<T>::optional_storage_base;
 | |
| 
 | |
| 			void hard_reset() noexcept {
 | |
| 				get().~T();
 | |
| 				this->m_has_value = false;
 | |
| 			}
 | |
| 
 | |
| 			template <class... Args>
 | |
| 			void construct(Args&&... args) noexcept {
 | |
| 				new (std::addressof(this->m_value)) T(std::forward<Args>(args)...);
 | |
| 				this->m_has_value = true;
 | |
| 			}
 | |
| 
 | |
| 			template <class Opt>
 | |
| 			void assign(Opt&& rhs) {
 | |
| 				if (this->has_value()) {
 | |
| 					if (rhs.has_value()) {
 | |
| 						this->m_value = std::forward<Opt>(rhs).get();
 | |
| 					}
 | |
| 					else {
 | |
| 						this->m_value.~T();
 | |
| 						this->m_has_value = false;
 | |
| 					}
 | |
| 				}
 | |
| 
 | |
| 				else if (rhs.has_value()) {
 | |
| 					construct(std::forward<Opt>(rhs).get());
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			bool has_value() const {
 | |
| 				return this->m_has_value;
 | |
| 			}
 | |
| 
 | |
| 			SOL_TL_OPTIONAL_11_CONSTEXPR T& get() & {
 | |
| 				return this->m_value;
 | |
| 			}
 | |
| 			SOL_TL_OPTIONAL_11_CONSTEXPR const T& get() const& {
 | |
| 				return this->m_value;
 | |
| 			}
 | |
| 			SOL_TL_OPTIONAL_11_CONSTEXPR T&& get() && {
 | |
| 				return std::move(this->m_value);
 | |
| 			}
 | |
| #ifndef SOL_TL_OPTIONAL_NO_CONSTRR
 | |
| 			constexpr const T&& get() const&& {
 | |
| 				return std::move(this->m_value);
 | |
| 			}
 | |
| #endif
 | |
| 		};
 | |
| 
 | |
| 		// This class manages conditionally having a trivial copy constructor
 | |
| 		// This specialization is for when T is trivially copy constructible
 | |
| 		template <class T, bool = SOL_TL_OPTIONAL_IS_TRIVIALLY_COPY_CONSTRUCTIBLE(T)>
 | |
| 		struct optional_copy_base : optional_operations_base<T> {
 | |
| 			using optional_operations_base<T>::optional_operations_base;
 | |
| 		};
 | |
| 
 | |
| 		// This specialization is for when T is not trivially copy constructible
 | |
| 		template <class T>
 | |
| 		struct optional_copy_base<T, false> : optional_operations_base<T> {
 | |
| 			using base_t = optional_operations_base<T>;
 | |
| 
 | |
| 			using base_t::base_t;
 | |
| 
 | |
| 			optional_copy_base() = default;
 | |
| 			optional_copy_base(const optional_copy_base& rhs) : base_t() {
 | |
| 				if (rhs.has_value()) {
 | |
| 					this->construct(rhs.get());
 | |
| 				}
 | |
| 				else {
 | |
| 					this->m_has_value = false;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			optional_copy_base(optional_copy_base&& rhs) = default;
 | |
| 			optional_copy_base& operator=(const optional_copy_base& rhs) = default;
 | |
| 			optional_copy_base& operator=(optional_copy_base&& rhs) = default;
 | |
| 		};
 | |
| 
 | |
| #ifndef SOL_TL_OPTIONAL_GCC49
 | |
| 		template <class T, bool = std::is_trivially_move_constructible<T>::value>
 | |
| 		struct optional_move_base : optional_copy_base<T> {
 | |
| 			using optional_copy_base<T>::optional_copy_base;
 | |
| 		};
 | |
| #else
 | |
| 		template <class T, bool = false>
 | |
| 		struct optional_move_base;
 | |
| #endif
 | |
| 		template <class T>
 | |
| 		struct optional_move_base<T, false> : optional_copy_base<T> {
 | |
| 			using optional_copy_base<T>::optional_copy_base;
 | |
| 
 | |
| 			optional_move_base() = default;
 | |
| 			optional_move_base(const optional_move_base& rhs) = default;
 | |
| 
 | |
| 			optional_move_base(optional_move_base&& rhs) noexcept(std::is_nothrow_move_constructible<T>::value) {
 | |
| 				if (rhs.has_value()) {
 | |
| 					this->construct(std::move(rhs.get()));
 | |
| 				}
 | |
| 				else {
 | |
| 					this->m_has_value = false;
 | |
| 				}
 | |
| 			}
 | |
| 			optional_move_base& operator=(const optional_move_base& rhs) = default;
 | |
| 			optional_move_base& operator=(optional_move_base&& rhs) = default;
 | |
| 		};
 | |
| 
 | |
| 		// This class manages conditionally having a trivial copy assignment operator
 | |
| 		template <class T,
 | |
| 		     bool = SOL_TL_OPTIONAL_IS_TRIVIALLY_COPY_ASSIGNABLE(T) && SOL_TL_OPTIONAL_IS_TRIVIALLY_COPY_CONSTRUCTIBLE(T)
 | |
| 		          && SOL_TL_OPTIONAL_IS_TRIVIALLY_DESTRUCTIBLE(T)>
 | |
| 		struct optional_copy_assign_base : optional_move_base<T> {
 | |
| 			using optional_move_base<T>::optional_move_base;
 | |
| 		};
 | |
| 
 | |
| 		template <class T>
 | |
| 		struct optional_copy_assign_base<T, false> : optional_move_base<T> {
 | |
| 			using optional_move_base<T>::optional_move_base;
 | |
| 
 | |
| 			optional_copy_assign_base() = default;
 | |
| 			optional_copy_assign_base(const optional_copy_assign_base& rhs) = default;
 | |
| 
 | |
| 			optional_copy_assign_base(optional_copy_assign_base&& rhs) = default;
 | |
| 			optional_copy_assign_base& operator=(const optional_copy_assign_base& rhs) {
 | |
| 				this->assign(rhs);
 | |
| 				return *this;
 | |
| 			}
 | |
| 			optional_copy_assign_base& operator=(optional_copy_assign_base&& rhs) = default;
 | |
| 		};
 | |
| 
 | |
| #ifndef SOL_TL_OPTIONAL_GCC49
 | |
| 		template <class T,
 | |
| 		     bool = std::is_trivially_destructible<T>::value&& std::is_trivially_move_constructible<T>::value&& std::is_trivially_move_assignable<T>::value>
 | |
| 		struct optional_move_assign_base : optional_copy_assign_base<T> {
 | |
| 			using optional_copy_assign_base<T>::optional_copy_assign_base;
 | |
| 		};
 | |
| #else
 | |
| 		template <class T, bool = false>
 | |
| 		struct optional_move_assign_base;
 | |
| #endif
 | |
| 
 | |
| 		template <class T>
 | |
| 		struct optional_move_assign_base<T, false> : optional_copy_assign_base<T> {
 | |
| 			using optional_copy_assign_base<T>::optional_copy_assign_base;
 | |
| 
 | |
| 			optional_move_assign_base() = default;
 | |
| 			optional_move_assign_base(const optional_move_assign_base& rhs) = default;
 | |
| 
 | |
| 			optional_move_assign_base(optional_move_assign_base&& rhs) = default;
 | |
| 
 | |
| 			optional_move_assign_base& operator=(const optional_move_assign_base& rhs) = default;
 | |
| 
 | |
| 			optional_move_assign_base& operator=(optional_move_assign_base&& rhs) noexcept(
 | |
| 			     std::is_nothrow_move_constructible<T>::value&& std::is_nothrow_move_assignable<T>::value) {
 | |
| 				this->assign(std::move(rhs));
 | |
| 				return *this;
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		// optional_delete_ctor_base will conditionally delete copy and move
 | |
| 		// constructors depending on whether T is copy/move constructible
 | |
| 		template <class T, bool EnableCopy = std::is_copy_constructible<T>::value, bool EnableMove = std::is_move_constructible<T>::value>
 | |
| 		struct optional_delete_ctor_base {
 | |
| 			optional_delete_ctor_base() = default;
 | |
| 			optional_delete_ctor_base(const optional_delete_ctor_base&) = default;
 | |
| 			optional_delete_ctor_base(optional_delete_ctor_base&&) noexcept = default;
 | |
| 			optional_delete_ctor_base& operator=(const optional_delete_ctor_base&) = default;
 | |
| 			optional_delete_ctor_base& operator=(optional_delete_ctor_base&&) noexcept = default;
 | |
| 		};
 | |
| 
 | |
| 		template <class T>
 | |
| 		struct optional_delete_ctor_base<T, true, false> {
 | |
| 			optional_delete_ctor_base() = default;
 | |
| 			optional_delete_ctor_base(const optional_delete_ctor_base&) = default;
 | |
| 			optional_delete_ctor_base(optional_delete_ctor_base&&) noexcept = delete;
 | |
| 			optional_delete_ctor_base& operator=(const optional_delete_ctor_base&) = default;
 | |
| 			optional_delete_ctor_base& operator=(optional_delete_ctor_base&&) noexcept = default;
 | |
| 		};
 | |
| 
 | |
| 		template <class T>
 | |
| 		struct optional_delete_ctor_base<T, false, true> {
 | |
| 			optional_delete_ctor_base() = default;
 | |
| 			optional_delete_ctor_base(const optional_delete_ctor_base&) = delete;
 | |
| 			optional_delete_ctor_base(optional_delete_ctor_base&&) noexcept = default;
 | |
| 			optional_delete_ctor_base& operator=(const optional_delete_ctor_base&) = default;
 | |
| 			optional_delete_ctor_base& operator=(optional_delete_ctor_base&&) noexcept = default;
 | |
| 		};
 | |
| 
 | |
| 		template <class T>
 | |
| 		struct optional_delete_ctor_base<T, false, false> {
 | |
| 			optional_delete_ctor_base() = default;
 | |
| 			optional_delete_ctor_base(const optional_delete_ctor_base&) = delete;
 | |
| 			optional_delete_ctor_base(optional_delete_ctor_base&&) noexcept = delete;
 | |
| 			optional_delete_ctor_base& operator=(const optional_delete_ctor_base&) = default;
 | |
| 			optional_delete_ctor_base& operator=(optional_delete_ctor_base&&) noexcept = default;
 | |
| 		};
 | |
| 
 | |
| 		// optional_delete_assign_base will conditionally delete copy and move
 | |
| 		// constructors depending on whether T is copy/move constructible + assignable
 | |
| 		template <class T, bool EnableCopy = (std::is_copy_constructible<T>::value && std::is_copy_assignable<T>::value),
 | |
| 		     bool EnableMove = (std::is_move_constructible<T>::value && std::is_move_assignable<T>::value)>
 | |
| 		struct optional_delete_assign_base {
 | |
| 			optional_delete_assign_base() = default;
 | |
| 			optional_delete_assign_base(const optional_delete_assign_base&) = default;
 | |
| 			optional_delete_assign_base(optional_delete_assign_base&&) noexcept = default;
 | |
| 			optional_delete_assign_base& operator=(const optional_delete_assign_base&) = default;
 | |
| 			optional_delete_assign_base& operator=(optional_delete_assign_base&&) noexcept = default;
 | |
| 		};
 | |
| 
 | |
| 		template <class T>
 | |
| 		struct optional_delete_assign_base<T, true, false> {
 | |
| 			optional_delete_assign_base() = default;
 | |
| 			optional_delete_assign_base(const optional_delete_assign_base&) = default;
 | |
| 			optional_delete_assign_base(optional_delete_assign_base&&) noexcept = default;
 | |
| 			optional_delete_assign_base& operator=(const optional_delete_assign_base&) = default;
 | |
| 			optional_delete_assign_base& operator=(optional_delete_assign_base&&) noexcept = delete;
 | |
| 		};
 | |
| 
 | |
| 		template <class T>
 | |
| 		struct optional_delete_assign_base<T, false, true> {
 | |
| 			optional_delete_assign_base() = default;
 | |
| 			optional_delete_assign_base(const optional_delete_assign_base&) = default;
 | |
| 			optional_delete_assign_base(optional_delete_assign_base&&) noexcept = default;
 | |
| 			optional_delete_assign_base& operator=(const optional_delete_assign_base&) = delete;
 | |
| 			optional_delete_assign_base& operator=(optional_delete_assign_base&&) noexcept = default;
 | |
| 		};
 | |
| 
 | |
| 		template <class T>
 | |
| 		struct optional_delete_assign_base<T, false, false> {
 | |
| 			optional_delete_assign_base() = default;
 | |
| 			optional_delete_assign_base(const optional_delete_assign_base&) = default;
 | |
| 			optional_delete_assign_base(optional_delete_assign_base&&) noexcept = default;
 | |
| 			optional_delete_assign_base& operator=(const optional_delete_assign_base&) = delete;
 | |
| 			optional_delete_assign_base& operator=(optional_delete_assign_base&&) noexcept = delete;
 | |
| 		};
 | |
| 
 | |
| 	} // namespace detail
 | |
| 
 | |
| 	/// \brief A tag type to represent an empty optional
 | |
| 	using nullopt_t = std::nullopt_t;
 | |
| 
 | |
| 	/// \brief Represents an empty optional
 | |
| 	/// \synopsis static constexpr nullopt_t nullopt;
 | |
| 	///
 | |
| 	/// *Examples*:
 | |
| 	/// ```
 | |
| 	/// sol::optional<int> a = sol::nullopt;
 | |
| 	/// void foo (sol::optional<int>);
 | |
| 	/// foo(sol::nullopt); //pass an empty optional
 | |
| 	/// ```
 | |
| 	using std::nullopt;
 | |
| 
 | |
| 	class bad_optional_access : public std::exception {
 | |
| 	public:
 | |
| 		bad_optional_access() = default;
 | |
| 		const char* what() const noexcept {
 | |
| 			return "Optional has no value";
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	/// An optional object is an object that contains the storage for another
 | |
| 	/// object and manages the lifetime of this contained object, if any. The
 | |
| 	/// contained object may be initialized after the optional object has been
 | |
| 	/// initialized, and may be destroyed before the optional object has been
 | |
| 	/// destroyed. The initialization state of the contained object is tracked by
 | |
| 	/// the optional object.
 | |
| 	template <class T>
 | |
| 	class optional : private detail::optional_move_assign_base<T>,
 | |
| 	                 private detail::optional_delete_ctor_base<T>,
 | |
| 	                 private detail::optional_delete_assign_base<T> {
 | |
| 		using base = detail::optional_move_assign_base<T>;
 | |
| 
 | |
| 		static_assert(!std::is_same<T, in_place_t>::value, "instantiation of optional with in_place_t is ill-formed");
 | |
| 		static_assert(!std::is_same<detail::decay_t<T>, nullopt_t>::value, "instantiation of optional with nullopt_t is ill-formed");
 | |
| 
 | |
| 	public:
 | |
| #if defined(SOL_TL_OPTIONAL_CXX14) && !defined(SOL_TL_OPTIONAL_GCC49) && !defined(SOL_TL_OPTIONAL_GCC54) && !defined(SOL_TL_OPTIONAL_GCC55)
 | |
| 		/// \group and_then
 | |
| 		/// Carries out some operation which returns an optional on the stored
 | |
| 		/// object if there is one. \requires `std::invoke(std::forward<F>(f),
 | |
| 		/// value())` returns a `std::optional<U>` for some `U`. \returns Let `U` be
 | |
| 		/// the result of `std::invoke(std::forward<F>(f), value())`. Returns a
 | |
| 		/// `std::optional<U>`. The return value is empty if `*this` is empty,
 | |
| 		/// otherwise the return value of `std::invoke(std::forward<F>(f), value())`
 | |
| 		/// is returned.
 | |
| 		/// \group and_then
 | |
| 		/// \synopsis template <class F>\nconstexpr auto and_then(F &&f) &;
 | |
| 		template <class F>
 | |
| 		SOL_TL_OPTIONAL_11_CONSTEXPR auto and_then(F&& f) & {
 | |
| 			using result = detail::invoke_result_t<F, T&>;
 | |
| 			static_assert(detail::is_optional<result>::value, "F must return an optional");
 | |
| 
 | |
| 			return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt);
 | |
| 		}
 | |
| 
 | |
| 		/// \group and_then
 | |
| 		/// \synopsis template <class F>\nconstexpr auto and_then(F &&f) &&;
 | |
| 		template <class F>
 | |
| 		SOL_TL_OPTIONAL_11_CONSTEXPR auto and_then(F&& f) && {
 | |
| 			using result = detail::invoke_result_t<F, T&&>;
 | |
| 			static_assert(detail::is_optional<result>::value, "F must return an optional");
 | |
| 
 | |
| 			return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : result(nullopt);
 | |
| 		}
 | |
| 
 | |
| 		/// \group and_then
 | |
| 		/// \synopsis template <class F>\nconstexpr auto and_then(F &&f) const &;
 | |
| 		template <class F>
 | |
| 		constexpr auto and_then(F&& f) const& {
 | |
| 			using result = detail::invoke_result_t<F, const T&>;
 | |
| 			static_assert(detail::is_optional<result>::value, "F must return an optional");
 | |
| 
 | |
| 			return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt);
 | |
| 		}
 | |
| 
 | |
| #ifndef SOL_TL_OPTIONAL_NO_CONSTRR
 | |
| 		/// \group and_then
 | |
| 		/// \synopsis template <class F>\nconstexpr auto and_then(F &&f) const &&;
 | |
| 		template <class F>
 | |
| 		constexpr auto and_then(F&& f) const&& {
 | |
| 			using result = detail::invoke_result_t<F, const T&&>;
 | |
| 			static_assert(detail::is_optional<result>::value, "F must return an optional");
 | |
| 
 | |
| 			return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : result(nullopt);
 | |
| 		}
 | |
| #endif
 | |
| #else
 | |
| 		/// \group and_then
 | |
| 		/// Carries out some operation which returns an optional on the stored
 | |
| 		/// object if there is one. \requires `std::invoke(std::forward<F>(f),
 | |
| 		/// value())` returns a `std::optional<U>` for some `U`.
 | |
| 		/// \returns Let `U` be the result of `std::invoke(std::forward<F>(f),
 | |
| 		/// value())`. Returns a `std::optional<U>`. The return value is empty if
 | |
| 		/// `*this` is empty, otherwise the return value of
 | |
| 		/// `std::invoke(std::forward<F>(f), value())` is returned.
 | |
| 		/// \group and_then
 | |
| 		/// \synopsis template <class F>\nconstexpr auto and_then(F &&f) &;
 | |
| 		template <class F>
 | |
| 		SOL_TL_OPTIONAL_11_CONSTEXPR detail::invoke_result_t<F, T&> and_then(F&& f) & {
 | |
| 			using result = detail::invoke_result_t<F, T&>;
 | |
| 			static_assert(detail::is_optional<result>::value, "F must return an optional");
 | |
| 
 | |
| 			return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt);
 | |
| 		}
 | |
| 
 | |
| 		/// \group and_then
 | |
| 		/// \synopsis template <class F>\nconstexpr auto and_then(F &&f) &&;
 | |
| 		template <class F>
 | |
| 		SOL_TL_OPTIONAL_11_CONSTEXPR detail::invoke_result_t<F, T&&> and_then(F&& f) && {
 | |
| 			using result = detail::invoke_result_t<F, T&&>;
 | |
| 			static_assert(detail::is_optional<result>::value, "F must return an optional");
 | |
| 
 | |
| 			return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : result(nullopt);
 | |
| 		}
 | |
| 
 | |
| 		/// \group and_then
 | |
| 		/// \synopsis template <class F>\nconstexpr auto and_then(F &&f) const &;
 | |
| 		template <class F>
 | |
| 		constexpr detail::invoke_result_t<F, const T&> and_then(F&& f) const& {
 | |
| 			using result = detail::invoke_result_t<F, const T&>;
 | |
| 			static_assert(detail::is_optional<result>::value, "F must return an optional");
 | |
| 
 | |
| 			return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt);
 | |
| 		}
 | |
| 
 | |
| #ifndef SOL_TL_OPTIONAL_NO_CONSTRR
 | |
| 		/// \group and_then
 | |
| 		/// \synopsis template <class F>\nconstexpr auto and_then(F &&f) const &&;
 | |
| 		template <class F>
 | |
| 		constexpr detail::invoke_result_t<F, const T&&> and_then(F&& f) const&& {
 | |
| 			using result = detail::invoke_result_t<F, const T&&>;
 | |
| 			static_assert(detail::is_optional<result>::value, "F must return an optional");
 | |
| 
 | |
| 			return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : result(nullopt);
 | |
| 		}
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| #if defined(SOL_TL_OPTIONAL_CXX14) && !defined(SOL_TL_OPTIONAL_GCC49) && !defined(SOL_TL_OPTIONAL_GCC54) && !defined(SOL_TL_OPTIONAL_GCC55)
 | |
| 		/// \brief Carries out some operation on the stored object if there is one.
 | |
| 		/// \returns Let `U` be the result of `std::invoke(std::forward<F>(f),
 | |
| 		/// value())`. Returns a `std::optional<U>`. The return value is empty if
 | |
| 		/// `*this` is empty, otherwise an `optional<U>` is constructed from the
 | |
| 		/// return value of `std::invoke(std::forward<F>(f), value())` and is
 | |
| 		/// returned.
 | |
| 		///
 | |
| 		/// \group map
 | |
| 		/// \synopsis template <class F> constexpr auto map(F &&f) &;
 | |
| 		template <class F>
 | |
| 		SOL_TL_OPTIONAL_11_CONSTEXPR auto map(F&& f) & {
 | |
| 			return optional_map_impl(*this, std::forward<F>(f));
 | |
| 		}
 | |
| 
 | |
| 		/// \group map
 | |
| 		/// \synopsis template <class F> constexpr auto map(F &&f) &&;
 | |
| 		template <class F>
 | |
| 		SOL_TL_OPTIONAL_11_CONSTEXPR auto map(F&& f) && {
 | |
| 			return optional_map_impl(std::move(*this), std::forward<F>(f));
 | |
| 		}
 | |
| 
 | |
| 		/// \group map
 | |
| 		/// \synopsis template <class F> constexpr auto map(F &&f) const&;
 | |
| 		template <class F>
 | |
| 		constexpr auto map(F&& f) const& {
 | |
| 			return optional_map_impl(*this, std::forward<F>(f));
 | |
| 		}
 | |
| 
 | |
| 		/// \group map
 | |
| 		/// \synopsis template <class F> constexpr auto map(F &&f) const&&;
 | |
| 		template <class F>
 | |
| 		constexpr auto map(F&& f) const&& {
 | |
| 			return optional_map_impl(std::move(*this), std::forward<F>(f));
 | |
| 		}
 | |
| #else
 | |
| 		/// \brief Carries out some operation on the stored object if there is one.
 | |
| 		/// \returns Let `U` be the result of `std::invoke(std::forward<F>(f),
 | |
| 		/// value())`. Returns a `std::optional<U>`. The return value is empty if
 | |
| 		/// `*this` is empty, otherwise an `optional<U>` is constructed from the
 | |
| 		/// return value of `std::invoke(std::forward<F>(f), value())` and is
 | |
| 		/// returned.
 | |
| 		///
 | |
| 		/// \group map
 | |
| 		/// \synopsis template <class F> auto map(F &&f) &;
 | |
| 		template <class F>
 | |
| 		SOL_TL_OPTIONAL_11_CONSTEXPR decltype(optional_map_impl(std::declval<optional&>(), std::declval<F&&>())) map(F&& f) & {
 | |
| 			return optional_map_impl(*this, std::forward<F>(f));
 | |
| 		}
 | |
| 
 | |
| 		/// \group map
 | |
| 		/// \synopsis template <class F> auto map(F &&f) &&;
 | |
| 		template <class F>
 | |
| 		SOL_TL_OPTIONAL_11_CONSTEXPR decltype(optional_map_impl(std::declval<optional&&>(), std::declval<F&&>())) map(F&& f) && {
 | |
| 			return optional_map_impl(std::move(*this), std::forward<F>(f));
 | |
| 		}
 | |
| 
 | |
| 		/// \group map
 | |
| 		/// \synopsis template <class F> auto map(F &&f) const&;
 | |
| 		template <class F>
 | |
| 		constexpr decltype(optional_map_impl(std::declval<const optional&>(), std::declval<F&&>())) map(F&& f) const& {
 | |
| 			return optional_map_impl(*this, std::forward<F>(f));
 | |
| 		}
 | |
| 
 | |
| #ifndef SOL_TL_OPTIONAL_NO_CONSTRR
 | |
| 		/// \group map
 | |
| 		/// \synopsis template <class F> auto map(F &&f) const&&;
 | |
| 		template <class F>
 | |
| 		constexpr decltype(optional_map_impl(std::declval<const optional&&>(), std::declval<F&&>())) map(F&& f) const&& {
 | |
| 			return optional_map_impl(std::move(*this), std::forward<F>(f));
 | |
| 		}
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| 		/// \brief Calls `f` if the optional is empty
 | |
| 		/// \requires `std::invoke_result_t<F>` must be void or convertible to
 | |
| 		/// `optional<T>`.
 | |
| 		/// \effects If `*this` has a value, returns `*this`.
 | |
| 		/// Otherwise, if `f` returns `void`, calls `std::forward<F>(f)` and returns
 | |
| 		/// `std::nullopt`. Otherwise, returns `std::forward<F>(f)()`.
 | |
| 		///
 | |
| 		/// \group or_else
 | |
| 		/// \synopsis template <class F> optional<T> or_else (F &&f) &;
 | |
| 		template <class F, detail::enable_if_ret_void<F>* = nullptr>
 | |
| 		optional<T> SOL_TL_OPTIONAL_11_CONSTEXPR or_else(F&& f) & {
 | |
| 			if (has_value())
 | |
| 				return *this;
 | |
| 
 | |
| 			std::forward<F>(f)();
 | |
| 			return nullopt;
 | |
| 		}
 | |
| 
 | |
| 		/// \exclude
 | |
| 		template <class F, detail::disable_if_ret_void<F>* = nullptr>
 | |
| 		optional<T> SOL_TL_OPTIONAL_11_CONSTEXPR or_else(F&& f) & {
 | |
| 			return has_value() ? *this : std::forward<F>(f)();
 | |
| 		}
 | |
| 
 | |
| 		/// \group or_else
 | |
| 		/// \synopsis template <class F> optional<T> or_else (F &&f) &&;
 | |
| 		template <class F, detail::enable_if_ret_void<F>* = nullptr>
 | |
| 		optional<T> or_else(F&& f) && {
 | |
| 			if (has_value())
 | |
| 				return std::move(*this);
 | |
| 
 | |
| 			std::forward<F>(f)();
 | |
| 			return nullopt;
 | |
| 		}
 | |
| 
 | |
| 		/// \exclude
 | |
| 		template <class F, detail::disable_if_ret_void<F>* = nullptr>
 | |
| 		optional<T> SOL_TL_OPTIONAL_11_CONSTEXPR or_else(F&& f) && {
 | |
| 			return has_value() ? std::move(*this) : std::forward<F>(f)();
 | |
| 		}
 | |
| 
 | |
| 		/// \group or_else
 | |
| 		/// \synopsis template <class F> optional<T> or_else (F &&f) const &;
 | |
| 		template <class F, detail::enable_if_ret_void<F>* = nullptr>
 | |
| 		optional<T> or_else(F&& f) const& {
 | |
| 			if (has_value())
 | |
| 				return *this;
 | |
| 
 | |
| 			std::forward<F>(f)();
 | |
| 			return nullopt;
 | |
| 		}
 | |
| 
 | |
| 		/// \exclude
 | |
| 		template <class F, detail::disable_if_ret_void<F>* = nullptr>
 | |
| 		optional<T> SOL_TL_OPTIONAL_11_CONSTEXPR or_else(F&& f) const& {
 | |
| 			return has_value() ? *this : std::forward<F>(f)();
 | |
| 		}
 | |
| 
 | |
| #ifndef SOL_TL_OPTIONAL_NO_CONSTRR
 | |
| 		/// \exclude
 | |
| 		template <class F, detail::enable_if_ret_void<F>* = nullptr>
 | |
| 		optional<T> or_else(F&& f) const&& {
 | |
| 			if (has_value())
 | |
| 				return std::move(*this);
 | |
| 
 | |
| 			std::forward<F>(f)();
 | |
| 			return nullopt;
 | |
| 		}
 | |
| 
 | |
| 		/// \exclude
 | |
| 		template <class F, detail::disable_if_ret_void<F>* = nullptr>
 | |
| 		optional<T> or_else(F&& f) const&& {
 | |
| 			return has_value() ? std::move(*this) : std::forward<F>(f)();
 | |
| 		}
 | |
| #endif
 | |
| 
 | |
| 		/// \brief Maps the stored value with `f` if there is one, otherwise returns
 | |
| 		/// `u`.
 | |
| 		///
 | |
| 		/// \details If there is a value stored, then `f` is called with `**this`
 | |
| 		/// and the value is returned. Otherwise `u` is returned.
 | |
| 		///
 | |
| 		/// \group map_or
 | |
| 		template <class F, class U>
 | |
| 		U map_or(F&& f, U&& u) & {
 | |
| 			return has_value() ? detail::invoke(std::forward<F>(f), **this) : std::forward<U>(u);
 | |
| 		}
 | |
| 
 | |
| 		/// \group map_or
 | |
| 		template <class F, class U>
 | |
| 		U map_or(F&& f, U&& u) && {
 | |
| 			return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : std::forward<U>(u);
 | |
| 		}
 | |
| 
 | |
| 		/// \group map_or
 | |
| 		template <class F, class U>
 | |
| 		U map_or(F&& f, U&& u) const& {
 | |
| 			return has_value() ? detail::invoke(std::forward<F>(f), **this) : std::forward<U>(u);
 | |
| 		}
 | |
| 
 | |
| #ifndef SOL_TL_OPTIONAL_NO_CONSTRR
 | |
| 		/// \group map_or
 | |
| 		template <class F, class U>
 | |
| 		U map_or(F&& f, U&& u) const&& {
 | |
| 			return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : std::forward<U>(u);
 | |
| 		}
 | |
| #endif
 | |
| 
 | |
| 		/// \brief Maps the stored value with `f` if there is one, otherwise calls
 | |
| 		/// `u` and returns the result.
 | |
| 		///
 | |
| 		/// \details If there is a value stored, then `f` is
 | |
| 		/// called with `**this` and the value is returned. Otherwise
 | |
| 		/// `std::forward<U>(u)()` is returned.
 | |
| 		///
 | |
| 		/// \group map_or_else
 | |
| 		/// \synopsis template <class F, class U>\nauto map_or_else(F &&f, U &&u) &;
 | |
| 		template <class F, class U>
 | |
| 		detail::invoke_result_t<U> map_or_else(F&& f, U&& u) & {
 | |
| 			return has_value() ? detail::invoke(std::forward<F>(f), **this) : std::forward<U>(u)();
 | |
| 		}
 | |
| 
 | |
| 		/// \group map_or_else
 | |
| 		/// \synopsis template <class F, class U>\nauto map_or_else(F &&f, U &&u)
 | |
| 		/// &&;
 | |
| 		template <class F, class U>
 | |
| 		detail::invoke_result_t<U> map_or_else(F&& f, U&& u) && {
 | |
| 			return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : std::forward<U>(u)();
 | |
| 		}
 | |
| 
 | |
| 		/// \group map_or_else
 | |
| 		/// \synopsis template <class F, class U>\nauto map_or_else(F &&f, U &&u)
 | |
| 		/// const &;
 | |
| 		template <class F, class U>
 | |
| 		detail::invoke_result_t<U> map_or_else(F&& f, U&& u) const& {
 | |
| 			return has_value() ? detail::invoke(std::forward<F>(f), **this) : std::forward<U>(u)();
 | |
| 		}
 | |
| 
 | |
| #ifndef SOL_TL_OPTIONAL_NO_CONSTRR
 | |
| 		/// \group map_or_else
 | |
| 		/// \synopsis template <class F, class U>\nauto map_or_else(F &&f, U &&u)
 | |
| 		/// const &&;
 | |
| 		template <class F, class U>
 | |
| 		detail::invoke_result_t<U> map_or_else(F&& f, U&& u) const&& {
 | |
| 			return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : std::forward<U>(u)();
 | |
| 		}
 | |
| #endif
 | |
| 
 | |
| 		/// \returns `u` if `*this` has a value, otherwise an empty optional.
 | |
| 		template <class U>
 | |
| 		constexpr optional<typename std::decay<U>::type> conjunction(U&& u) const {
 | |
| 			using result = optional<detail::decay_t<U>>;
 | |
| 			return has_value() ? result { u } : result { nullopt };
 | |
| 		}
 | |
| 
 | |
| 		/// \returns `rhs` if `*this` is empty, otherwise the current value.
 | |
| 		/// \group disjunction
 | |
| 		SOL_TL_OPTIONAL_11_CONSTEXPR optional disjunction(const optional& rhs) & {
 | |
| 			return has_value() ? *this : rhs;
 | |
| 		}
 | |
| 
 | |
| 		/// \group disjunction
 | |
| 		constexpr optional disjunction(const optional& rhs) const& {
 | |
| 			return has_value() ? *this : rhs;
 | |
| 		}
 | |
| 
 | |
| 		/// \group disjunction
 | |
| 		SOL_TL_OPTIONAL_11_CONSTEXPR optional disjunction(const optional& rhs) && {
 | |
| 			return has_value() ? std::move(*this) : rhs;
 | |
| 		}
 | |
| 
 | |
| #ifndef SOL_TL_OPTIONAL_NO_CONSTRR
 | |
| 		/// \group disjunction
 | |
| 		constexpr optional disjunction(const optional& rhs) const&& {
 | |
| 			return has_value() ? std::move(*this) : rhs;
 | |
| 		}
 | |
| #endif
 | |
| 
 | |
| 		/// \group disjunction
 | |
| 		SOL_TL_OPTIONAL_11_CONSTEXPR optional disjunction(optional&& rhs) & {
 | |
| 			return has_value() ? *this : std::move(rhs);
 | |
| 		}
 | |
| 
 | |
| 		/// \group disjunction
 | |
| 		constexpr optional disjunction(optional&& rhs) const& {
 | |
| 			return has_value() ? *this : std::move(rhs);
 | |
| 		}
 | |
| 
 | |
| 		/// \group disjunction
 | |
| 		SOL_TL_OPTIONAL_11_CONSTEXPR optional disjunction(optional&& rhs) && {
 | |
| 			return has_value() ? std::move(*this) : std::move(rhs);
 | |
| 		}
 | |
| 
 | |
| #ifndef SOL_TL_OPTIONAL_NO_CONSTRR
 | |
| 		/// \group disjunction
 | |
| 		constexpr optional disjunction(optional&& rhs) const&& {
 | |
| 			return has_value() ? std::move(*this) : std::move(rhs);
 | |
| 		}
 | |
| #endif
 | |
| 
 | |
| 		/// Takes the value out of the optional, leaving it empty
 | |
| 		/// \group take
 | |
| 		optional take() & {
 | |
| 			optional ret = *this;
 | |
| 			reset();
 | |
| 			return ret;
 | |
| 		}
 | |
| 
 | |
| 		/// \group take
 | |
| 		optional take() const& {
 | |
| 			optional ret = *this;
 | |
| 			reset();
 | |
| 			return ret;
 | |
| 		}
 | |
| 
 | |
| 		/// \group take
 | |
| 		optional take() && {
 | |
| 			optional ret = std::move(*this);
 | |
| 			reset();
 | |
| 			return ret;
 | |
| 		}
 | |
| 
 | |
| #ifndef SOL_TL_OPTIONAL_NO_CONSTRR
 | |
| 		/// \group take
 | |
| 		optional take() const&& {
 | |
| 			optional ret = std::move(*this);
 | |
| 			reset();
 | |
| 			return ret;
 | |
| 		}
 | |
| #endif
 | |
| 
 | |
| 		using value_type = T;
 | |
| 
 | |
| 		/// Constructs an optional that does not contain a value.
 | |
| 		/// \group ctor_empty
 | |
| 		constexpr optional() noexcept = default;
 | |
| 
 | |
| 		/// \group ctor_empty
 | |
| 		constexpr optional(nullopt_t) noexcept {
 | |
| 		}
 | |
| 
 | |
| 		/// Copy constructor
 | |
| 		///
 | |
| 		/// If `rhs` contains a value, the stored value is direct-initialized with
 | |
| 		/// it. Otherwise, the constructed optional is empty.
 | |
| 		SOL_TL_OPTIONAL_11_CONSTEXPR optional(const optional& rhs) = default;
 | |
| 
 | |
| 		/// Move constructor
 | |
| 		///
 | |
| 		/// If `rhs` contains a value, the stored value is direct-initialized with
 | |
| 		/// it. Otherwise, the constructed optional is empty.
 | |
| 		SOL_TL_OPTIONAL_11_CONSTEXPR optional(optional&& rhs) = default;
 | |
| 
 | |
| 		/// Constructs the stored value in-place using the given arguments.
 | |
| 		/// \group in_place
 | |
| 		/// \synopsis template <class... Args> constexpr explicit optional(in_place_t, Args&&... args);
 | |
| 		template <class... Args>
 | |
| 		constexpr explicit optional(detail::enable_if_t<std::is_constructible<T, Args...>::value, in_place_t>, Args&&... args)
 | |
| 		: base(in_place, std::forward<Args>(args)...) {
 | |
| 		}
 | |
| 
 | |
| 		/// \group in_place
 | |
| 		/// \synopsis template <class U, class... Args>\nconstexpr explicit optional(in_place_t, std::initializer_list<U>&, Args&&... args);
 | |
| 		template <class U, class... Args>
 | |
| 		SOL_TL_OPTIONAL_11_CONSTEXPR explicit optional(detail::enable_if_t<std::is_constructible<T, std::initializer_list<U>&, Args&&...>::value, in_place_t>,
 | |
| 		     std::initializer_list<U> il, Args&&... args) {
 | |
| 			this->construct(il, std::forward<Args>(args)...);
 | |
| 		}
 | |
| 
 | |
| #if 0 // SOL_MODIFICATION
 | |
|       /// Constructs the stored value with `u`.
 | |
|       /// \synopsis template <class U=T> constexpr optional(U &&u);
 | |
| 		template <class U = T, detail::enable_if_t<std::is_convertible<U&&, T>::value>* = nullptr, detail::enable_forward_value<T, U>* = nullptr>
 | |
| 		constexpr optional(U&& u) : base(in_place, std::forward<U>(u)) {
 | |
| 		}
 | |
| 
 | |
| 		/// \exclude
 | |
| 		template <class U = T, detail::enable_if_t<!std::is_convertible<U&&, T>::value>* = nullptr, detail::enable_forward_value<T, U>* = nullptr>
 | |
| 		constexpr explicit optional(U&& u) : base(in_place, std::forward<U>(u)) {
 | |
| 		}
 | |
| #else
 | |
| 		/// Constructs the stored value with `u`.
 | |
| 		/// \synopsis template <class U=T> constexpr optional(U &&u);
 | |
| 		constexpr optional(T&& u) : base(in_place, std::move(u)) {
 | |
| 		}
 | |
| 
 | |
| 		/// \exclude
 | |
| 		constexpr optional(const T& u) : base(in_place, u) {
 | |
| 		}
 | |
| #endif // sol3 modification
 | |
| 
 | |
| 		/// Converting copy constructor.
 | |
| 		/// \synopsis template <class U> optional(const optional<U> &rhs);
 | |
| 		template <class U, detail::enable_from_other<T, U, const U&>* = nullptr, detail::enable_if_t<std::is_convertible<const U&, T>::value>* = nullptr>
 | |
| 		optional(const optional<U>& rhs) {
 | |
| 			if (rhs.has_value()) {
 | |
| 				this->construct(*rhs);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/// \exclude
 | |
| 		template <class U, detail::enable_from_other<T, U, const U&>* = nullptr, detail::enable_if_t<!std::is_convertible<const U&, T>::value>* = nullptr>
 | |
| 		explicit optional(const optional<U>& rhs) {
 | |
| 			if (rhs.has_value()) {
 | |
| 				this->construct(*rhs);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/// Converting move constructor.
 | |
| 		/// \synopsis template <class U> optional(optional<U> &&rhs);
 | |
| 		template <class U, detail::enable_from_other<T, U, U&&>* = nullptr, detail::enable_if_t<std::is_convertible<U&&, T>::value>* = nullptr>
 | |
| 		optional(optional<U>&& rhs) {
 | |
| 			if (rhs.has_value()) {
 | |
| 				this->construct(std::move(*rhs));
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/// \exclude
 | |
| 		template <class U, detail::enable_from_other<T, U, U&&>* = nullptr, detail::enable_if_t<!std::is_convertible<U&&, T>::value>* = nullptr>
 | |
| 		explicit optional(optional<U>&& rhs) {
 | |
| 			this->construct(std::move(*rhs));
 | |
| 		}
 | |
| 
 | |
| 		/// Destroys the stored value if there is one.
 | |
| 		~optional() = default;
 | |
| 
 | |
| 		/// Assignment to empty.
 | |
| 		///
 | |
| 		/// Destroys the current value if there is one.
 | |
| 		optional& operator=(nullopt_t) noexcept {
 | |
| 			if (has_value()) {
 | |
| 				this->m_value.~T();
 | |
| 				this->m_has_value = false;
 | |
| 			}
 | |
| 
 | |
| 			return *this;
 | |
| 		}
 | |
| 
 | |
| 		/// Copy assignment.
 | |
| 		///
 | |
| 		/// Copies the value from `rhs` if there is one. Otherwise resets the stored
 | |
| 		/// value in `*this`.
 | |
| 		optional& operator=(const optional& rhs) = default;
 | |
| 
 | |
| 		/// Move assignment.
 | |
| 		///
 | |
| 		/// Moves the value from `rhs` if there is one. Otherwise resets the stored
 | |
| 		/// value in `*this`.
 | |
| 		optional& operator=(optional&& rhs) = default;
 | |
| 
 | |
| 		/// Assigns the stored value from `u`, destroying the old value if there was
 | |
| 		/// one.
 | |
| 		/// \synopsis optional &operator=(U &&u);
 | |
| 		template <class U = T, detail::enable_assign_forward<T, U>* = nullptr>
 | |
| 		optional& operator=(U&& u) {
 | |
| 			if (has_value()) {
 | |
| 				this->m_value = std::forward<U>(u);
 | |
| 			}
 | |
| 			else {
 | |
| 				this->construct(std::forward<U>(u));
 | |
| 			}
 | |
| 
 | |
| 			return *this;
 | |
| 		}
 | |
| 
 | |
| 		/// Converting copy assignment operator.
 | |
| 		///
 | |
| 		/// Copies the value from `rhs` if there is one. Otherwise resets the stored
 | |
| 		/// value in `*this`.
 | |
| 		/// \synopsis optional &operator=(const optional<U> & rhs);
 | |
| 		template <class U, detail::enable_assign_from_other<T, U, const U&>* = nullptr>
 | |
| 		optional& operator=(const optional<U>& rhs) {
 | |
| 			if (has_value()) {
 | |
| 				if (rhs.has_value()) {
 | |
| 					this->m_value = *rhs;
 | |
| 				}
 | |
| 				else {
 | |
| 					this->hard_reset();
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			if (rhs.has_value()) {
 | |
| 				this->construct(*rhs);
 | |
| 			}
 | |
| 
 | |
| 			return *this;
 | |
| 		}
 | |
| 
 | |
| 		// TODO check exception guarantee
 | |
| 		/// Converting move assignment operator.
 | |
| 		///
 | |
| 		/// Moves the value from `rhs` if there is one. Otherwise resets the stored
 | |
| 		/// value in `*this`.
 | |
| 		/// \synopsis optional &operator=(optional<U> && rhs);
 | |
| 		template <class U, detail::enable_assign_from_other<T, U, U>* = nullptr>
 | |
| 		optional& operator=(optional<U>&& rhs) {
 | |
| 			if (has_value()) {
 | |
| 				if (rhs.has_value()) {
 | |
| 					this->m_value = std::move(*rhs);
 | |
| 				}
 | |
| 				else {
 | |
| 					this->hard_reset();
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			if (rhs.has_value()) {
 | |
| 				this->construct(std::move(*rhs));
 | |
| 			}
 | |
| 
 | |
| 			return *this;
 | |
| 		}
 | |
| 
 | |
| 		/// Constructs the value in-place, destroying the current one if there is
 | |
| 		/// one.
 | |
| 		/// \group emplace
 | |
| 		template <class... Args>
 | |
| 		T& emplace(Args&&... args) {
 | |
| 			static_assert(std::is_constructible<T, Args&&...>::value, "T must be constructible with Args");
 | |
| 
 | |
| 			*this = nullopt;
 | |
| 			this->construct(std::forward<Args>(args)...);
 | |
| 			return value();
 | |
| 		}
 | |
| 
 | |
| 		/// \group emplace
 | |
| 		/// \synopsis template <class U, class... Args>\nT& emplace(std::initializer_list<U> il, Args &&... args);
 | |
| 		template <class U, class... Args>
 | |
| 		detail::enable_if_t<std::is_constructible<T, std::initializer_list<U>&, Args&&...>::value, T&> emplace(std::initializer_list<U> il, Args&&... args) {
 | |
| 			*this = nullopt;
 | |
| 			this->construct(il, std::forward<Args>(args)...);
 | |
| 			return value();
 | |
| 		}
 | |
| 
 | |
| 		/// Swaps this optional with the other.
 | |
| 		///
 | |
| 		/// If neither optionals have a value, nothing happens.
 | |
| 		/// If both have a value, the values are swapped.
 | |
| 		/// If one has a value, it is moved to the other and the movee is left
 | |
| 		/// valueless.
 | |
| 		void swap(optional& rhs) noexcept(std::is_nothrow_move_constructible<T>::value&& detail::is_nothrow_swappable<T>::value) {
 | |
| 			if (has_value()) {
 | |
| 				if (rhs.has_value()) {
 | |
| 					using std::swap;
 | |
| 					swap(**this, *rhs);
 | |
| 				}
 | |
| 				else {
 | |
| 					new (std::addressof(rhs.m_value)) T(std::move(this->m_value));
 | |
| 					this->m_value.T::~T();
 | |
| 				}
 | |
| 			}
 | |
| 			else if (rhs.has_value()) {
 | |
| 				new (std::addressof(this->m_value)) T(std::move(rhs.m_value));
 | |
| 				rhs.m_value.T::~T();
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/// \returns a pointer to the stored value
 | |
| 		/// \requires a value is stored
 | |
| 		/// \group pointer
 | |
| 		/// \synopsis constexpr const T *operator->() const;
 | |
| 		constexpr const T* operator->() const {
 | |
| 			return std::addressof(this->m_value);
 | |
| 		}
 | |
| 
 | |
| 		/// \group pointer
 | |
| 		/// \synopsis constexpr T *operator->();
 | |
| 		SOL_TL_OPTIONAL_11_CONSTEXPR T* operator->() {
 | |
| 			return std::addressof(this->m_value);
 | |
| 		}
 | |
| 
 | |
| 		/// \returns the stored value
 | |
| 		/// \requires a value is stored
 | |
| 		/// \group deref
 | |
| 		/// \synopsis constexpr T &operator*();
 | |
| 		SOL_TL_OPTIONAL_11_CONSTEXPR T& operator*() & {
 | |
| 			return this->m_value;
 | |
| 		}
 | |
| 
 | |
| 		/// \group deref
 | |
| 		/// \synopsis constexpr const T &operator*() const;
 | |
| 		constexpr const T& operator*() const& {
 | |
| 			return this->m_value;
 | |
| 		}
 | |
| 
 | |
| 		/// \exclude
 | |
| 		SOL_TL_OPTIONAL_11_CONSTEXPR T&& operator*() && {
 | |
| 			return std::move(this->m_value);
 | |
| 		}
 | |
| 
 | |
| #ifndef SOL_TL_OPTIONAL_NO_CONSTRR
 | |
| 		/// \exclude
 | |
| 		constexpr const T&& operator*() const&& {
 | |
| 			return std::move(this->m_value);
 | |
| 		}
 | |
| #endif
 | |
| 
 | |
| 		/// \returns whether or not the optional has a value
 | |
| 		/// \group has_value
 | |
| 		constexpr bool has_value() const noexcept {
 | |
| 			return this->m_has_value;
 | |
| 		}
 | |
| 
 | |
| 		/// \group has_value
 | |
| 		constexpr explicit operator bool() const noexcept {
 | |
| 			return this->m_has_value;
 | |
| 		}
 | |
| 
 | |
| 		/// \returns the contained value if there is one, otherwise throws
 | |
| 		/// [bad_optional_access]
 | |
| 		/// \group value
 | |
| 		/// \synopsis constexpr T &value();
 | |
| 		SOL_TL_OPTIONAL_11_CONSTEXPR T& value() & {
 | |
| 			if (has_value())
 | |
| 				return this->m_value;
 | |
| #if SOL_IS_OFF(SOL_EXCEPTIONS_I_)
 | |
| 			std::abort();
 | |
| #else
 | |
| 			throw bad_optional_access();
 | |
| #endif // No exceptions allowed
 | |
| 		}
 | |
| 		/// \group value
 | |
| 		/// \synopsis constexpr const T &value() const;
 | |
| 		SOL_TL_OPTIONAL_11_CONSTEXPR const T& value() const& {
 | |
| 			if (has_value())
 | |
| 				return this->m_value;
 | |
| #if SOL_IS_OFF(SOL_EXCEPTIONS_I_)
 | |
| 			std::abort();
 | |
| #else
 | |
| 			throw bad_optional_access();
 | |
| #endif // No exceptions allowed
 | |
| 		}
 | |
| 		/// \exclude
 | |
| 		SOL_TL_OPTIONAL_11_CONSTEXPR T&& value() && {
 | |
| 			if (has_value())
 | |
| 				return std::move(this->m_value);
 | |
| #if SOL_IS_OFF(SOL_EXCEPTIONS_I_)
 | |
| 			std::abort();
 | |
| #else
 | |
| 			throw bad_optional_access();
 | |
| #endif // No exceptions allowed
 | |
| 		}
 | |
| 
 | |
| #ifndef SOL_TL_OPTIONAL_NO_CONSTRR
 | |
| 		/// \exclude
 | |
| 		SOL_TL_OPTIONAL_11_CONSTEXPR const T&& value() const&& {
 | |
| 			if (has_value())
 | |
| 				return std::move(this->m_value);
 | |
| #if SOL_IS_OFF(SOL_EXCEPTIONS_I_)
 | |
| 			std::abort();
 | |
| #else
 | |
| 			throw bad_optional_access();
 | |
| #endif // No exceptions allowed
 | |
| 		}
 | |
| #endif
 | |
| 
 | |
| 		/// \returns the stored value if there is one, otherwise returns `u`
 | |
| 		/// \group value_or
 | |
| 		template <class U>
 | |
| 		constexpr T value_or(U&& u) const& {
 | |
| 			static_assert(std::is_copy_constructible<T>::value && std::is_convertible<U&&, T>::value, "T must be copy constructible and convertible from U");
 | |
| 			return has_value() ? **this : static_cast<T>(std::forward<U>(u));
 | |
| 		}
 | |
| 
 | |
| 		/// \group value_or
 | |
| 		template <class U>
 | |
| 		SOL_TL_OPTIONAL_11_CONSTEXPR T value_or(U&& u) && {
 | |
| 			static_assert(std::is_move_constructible<T>::value && std::is_convertible<U&&, T>::value, "T must be move constructible and convertible from U");
 | |
| 			return has_value() ? **this : static_cast<T>(std::forward<U>(u));
 | |
| 		}
 | |
| 
 | |
| 		/// Destroys the stored value if one exists, making the optional empty
 | |
| 		void reset() noexcept {
 | |
| 			if (has_value()) {
 | |
| 				this->m_value.~T();
 | |
| 				this->m_has_value = false;
 | |
| 			}
 | |
| 		}
 | |
| 	}; // namespace sol
 | |
| 
 | |
| 	/// \group relop
 | |
| 	/// \brief Compares two optional objects
 | |
| 	/// \details If both optionals contain a value, they are compared with `T`s
 | |
| 	/// relational operators. Otherwise `lhs` and `rhs` are equal only if they are
 | |
| 	/// both empty, and `lhs` is less than `rhs` only if `rhs` is empty and `lhs`
 | |
| 	/// is not.
 | |
| 	template <class T, class U>
 | |
| 	inline constexpr bool operator==(const optional<T>& lhs, const optional<U>& rhs) {
 | |
| 		return lhs.has_value() == rhs.has_value() && (!lhs.has_value() || *lhs == *rhs);
 | |
| 	}
 | |
| 	/// \group relop
 | |
| 	template <class T, class U>
 | |
| 	inline constexpr bool operator!=(const optional<T>& lhs, const optional<U>& rhs) {
 | |
| 		return lhs.has_value() != rhs.has_value() || (lhs.has_value() && *lhs != *rhs);
 | |
| 	}
 | |
| 	/// \group relop
 | |
| 	template <class T, class U>
 | |
| 	inline constexpr bool operator<(const optional<T>& lhs, const optional<U>& rhs) {
 | |
| 		return rhs.has_value() && (!lhs.has_value() || *lhs < *rhs);
 | |
| 	}
 | |
| 	/// \group relop
 | |
| 	template <class T, class U>
 | |
| 	inline constexpr bool operator>(const optional<T>& lhs, const optional<U>& rhs) {
 | |
| 		return lhs.has_value() && (!rhs.has_value() || *lhs > *rhs);
 | |
| 	}
 | |
| 	/// \group relop
 | |
| 	template <class T, class U>
 | |
| 	inline constexpr bool operator<=(const optional<T>& lhs, const optional<U>& rhs) {
 | |
| 		return !lhs.has_value() || (rhs.has_value() && *lhs <= *rhs);
 | |
| 	}
 | |
| 	/// \group relop
 | |
| 	template <class T, class U>
 | |
| 	inline constexpr bool operator>=(const optional<T>& lhs, const optional<U>& rhs) {
 | |
| 		return !rhs.has_value() || (lhs.has_value() && *lhs >= *rhs);
 | |
| 	}
 | |
| 
 | |
| 	/// \group relop_nullopt
 | |
| 	/// \brief Compares an optional to a `nullopt`
 | |
| 	/// \details Equivalent to comparing the optional to an empty optional
 | |
| 	template <class T>
 | |
| 	inline constexpr bool operator==(const optional<T>& lhs, nullopt_t) noexcept {
 | |
| 		return !lhs.has_value();
 | |
| 	}
 | |
| 	/// \group relop_nullopt
 | |
| 	template <class T>
 | |
| 	inline constexpr bool operator==(nullopt_t, const optional<T>& rhs) noexcept {
 | |
| 		return !rhs.has_value();
 | |
| 	}
 | |
| 	/// \group relop_nullopt
 | |
| 	template <class T>
 | |
| 	inline constexpr bool operator!=(const optional<T>& lhs, nullopt_t) noexcept {
 | |
| 		return lhs.has_value();
 | |
| 	}
 | |
| 	/// \group relop_nullopt
 | |
| 	template <class T>
 | |
| 	inline constexpr bool operator!=(nullopt_t, const optional<T>& rhs) noexcept {
 | |
| 		return rhs.has_value();
 | |
| 	}
 | |
| 	/// \group relop_nullopt
 | |
| 	template <class T>
 | |
| 	inline constexpr bool operator<(const optional<T>&, nullopt_t) noexcept {
 | |
| 		return false;
 | |
| 	}
 | |
| 	/// \group relop_nullopt
 | |
| 	template <class T>
 | |
| 	inline constexpr bool operator<(nullopt_t, const optional<T>& rhs) noexcept {
 | |
| 		return rhs.has_value();
 | |
| 	}
 | |
| 	/// \group relop_nullopt
 | |
| 	template <class T>
 | |
| 	inline constexpr bool operator<=(const optional<T>& lhs, nullopt_t) noexcept {
 | |
| 		return !lhs.has_value();
 | |
| 	}
 | |
| 	/// \group relop_nullopt
 | |
| 	template <class T>
 | |
| 	inline constexpr bool operator<=(nullopt_t, const optional<T>&) noexcept {
 | |
| 		return true;
 | |
| 	}
 | |
| 	/// \group relop_nullopt
 | |
| 	template <class T>
 | |
| 	inline constexpr bool operator>(const optional<T>& lhs, nullopt_t) noexcept {
 | |
| 		return lhs.has_value();
 | |
| 	}
 | |
| 	/// \group relop_nullopt
 | |
| 	template <class T>
 | |
| 	inline constexpr bool operator>(nullopt_t, const optional<T>&) noexcept {
 | |
| 		return false;
 | |
| 	}
 | |
| 	/// \group relop_nullopt
 | |
| 	template <class T>
 | |
| 	inline constexpr bool operator>=(const optional<T>&, nullopt_t) noexcept {
 | |
| 		return true;
 | |
| 	}
 | |
| 	/// \group relop_nullopt
 | |
| 	template <class T>
 | |
| 	inline constexpr bool operator>=(nullopt_t, const optional<T>& rhs) noexcept {
 | |
| 		return !rhs.has_value();
 | |
| 	}
 | |
| 
 | |
| 	/// \group relop_t
 | |
| 	/// \brief Compares the optional with a value.
 | |
| 	/// \details If the optional has a value, it is compared with the other value
 | |
| 	/// using `T`s relational operators. Otherwise, the optional is considered
 | |
| 	/// less than the value.
 | |
| 	template <class T, class U>
 | |
| 	inline constexpr bool operator==(const optional<T>& lhs, const U& rhs) {
 | |
| 		return lhs.has_value() ? *lhs == rhs : false;
 | |
| 	}
 | |
| 	/// \group relop_t
 | |
| 	template <class T, class U>
 | |
| 	inline constexpr bool operator==(const U& lhs, const optional<T>& rhs) {
 | |
| 		return rhs.has_value() ? lhs == *rhs : false;
 | |
| 	}
 | |
| 	/// \group relop_t
 | |
| 	template <class T, class U>
 | |
| 	inline constexpr bool operator!=(const optional<T>& lhs, const U& rhs) {
 | |
| 		return lhs.has_value() ? *lhs != rhs : true;
 | |
| 	}
 | |
| 	/// \group relop_t
 | |
| 	template <class T, class U>
 | |
| 	inline constexpr bool operator!=(const U& lhs, const optional<T>& rhs) {
 | |
| 		return rhs.has_value() ? lhs != *rhs : true;
 | |
| 	}
 | |
| 	/// \group relop_t
 | |
| 	template <class T, class U>
 | |
| 	inline constexpr bool operator<(const optional<T>& lhs, const U& rhs) {
 | |
| 		return lhs.has_value() ? *lhs < rhs : true;
 | |
| 	}
 | |
| 	/// \group relop_t
 | |
| 	template <class T, class U>
 | |
| 	inline constexpr bool operator<(const U& lhs, const optional<T>& rhs) {
 | |
| 		return rhs.has_value() ? lhs < *rhs : false;
 | |
| 	}
 | |
| 	/// \group relop_t
 | |
| 	template <class T, class U>
 | |
| 	inline constexpr bool operator<=(const optional<T>& lhs, const U& rhs) {
 | |
| 		return lhs.has_value() ? *lhs <= rhs : true;
 | |
| 	}
 | |
| 	/// \group relop_t
 | |
| 	template <class T, class U>
 | |
| 	inline constexpr bool operator<=(const U& lhs, const optional<T>& rhs) {
 | |
| 		return rhs.has_value() ? lhs <= *rhs : false;
 | |
| 	}
 | |
| 	/// \group relop_t
 | |
| 	template <class T, class U>
 | |
| 	inline constexpr bool operator>(const optional<T>& lhs, const U& rhs) {
 | |
| 		return lhs.has_value() ? *lhs > rhs : false;
 | |
| 	}
 | |
| 	/// \group relop_t
 | |
| 	template <class T, class U>
 | |
| 	inline constexpr bool operator>(const U& lhs, const optional<T>& rhs) {
 | |
| 		return rhs.has_value() ? lhs > *rhs : true;
 | |
| 	}
 | |
| 	/// \group relop_t
 | |
| 	template <class T, class U>
 | |
| 	inline constexpr bool operator>=(const optional<T>& lhs, const U& rhs) {
 | |
| 		return lhs.has_value() ? *lhs >= rhs : false;
 | |
| 	}
 | |
| 	/// \group relop_t
 | |
| 	template <class T, class U>
 | |
| 	inline constexpr bool operator>=(const U& lhs, const optional<T>& rhs) {
 | |
| 		return rhs.has_value() ? lhs >= *rhs : true;
 | |
| 	}
 | |
| 
 | |
| 	/// \synopsis template <class T>\nvoid swap(optional<T> &lhs, optional<T> &rhs);
 | |
| 	template <class T, detail::enable_if_t<std::is_move_constructible<T>::value>* = nullptr, detail::enable_if_t<detail::is_swappable<T>::value>* = nullptr>
 | |
| 	void swap(optional<T>& lhs, optional<T>& rhs) noexcept(noexcept(lhs.swap(rhs))) {
 | |
| 		return lhs.swap(rhs);
 | |
| 	}
 | |
| 
 | |
| 	namespace detail {
 | |
| 		struct i_am_secret {};
 | |
| 	} // namespace detail
 | |
| 
 | |
| 	template <class T = detail::i_am_secret, class U, class Ret = detail::conditional_t<std::is_same<T, detail::i_am_secret>::value, detail::decay_t<U>, T>>
 | |
| 	inline constexpr optional<Ret> make_optional(U&& v) {
 | |
| 		return optional<Ret>(std::forward<U>(v));
 | |
| 	}
 | |
| 
 | |
| 	template <class T, class... Args>
 | |
| 	inline constexpr optional<T> make_optional(Args&&... args) {
 | |
| 		return optional<T>(in_place, std::forward<Args>(args)...);
 | |
| 	}
 | |
| 	template <class T, class U, class... Args>
 | |
| 	inline constexpr optional<T> make_optional(std::initializer_list<U> il, Args&&... args) {
 | |
| 		return optional<T>(in_place, il, std::forward<Args>(args)...);
 | |
| 	}
 | |
| 
 | |
| #if __cplusplus >= 201703L
 | |
| 	template <class T>
 | |
| 	optional(T)->optional<T>;
 | |
| #endif
 | |
| 
 | |
| 	/// \exclude
 | |
| 	namespace detail {
 | |
| #ifdef SOL_TL_OPTIONAL_CXX14
 | |
| 		template <class Opt, class F, class Ret = decltype(detail::invoke(std::declval<F>(), *std::declval<Opt>())),
 | |
| 		     detail::enable_if_t<!std::is_void<Ret>::value>* = nullptr>
 | |
| 		constexpr auto optional_map_impl(Opt&& opt, F&& f) {
 | |
| 			return opt.has_value() ? detail::invoke(std::forward<F>(f), *std::forward<Opt>(opt)) : optional<Ret>(nullopt);
 | |
| 		}
 | |
| 
 | |
| 		template <class Opt, class F, class Ret = decltype(detail::invoke(std::declval<F>(), *std::declval<Opt>())),
 | |
| 		     detail::enable_if_t<std::is_void<Ret>::value>* = nullptr>
 | |
| 		auto optional_map_impl(Opt&& opt, F&& f) {
 | |
| 			if (opt.has_value()) {
 | |
| 				detail::invoke(std::forward<F>(f), *std::forward<Opt>(opt));
 | |
| 				return make_optional(monostate {});
 | |
| 			}
 | |
| 
 | |
| 			return optional<monostate>(nullopt);
 | |
| 		}
 | |
| #else
 | |
| 		template <class Opt, class F, class Ret = decltype(detail::invoke(std::declval<F>(), *std::declval<Opt>())),
 | |
| 		     detail::enable_if_t<!std::is_void<Ret>::value>* = nullptr>
 | |
| 
 | |
| 		constexpr auto optional_map_impl(Opt&& opt, F&& f) -> optional<Ret> {
 | |
| 			return opt.has_value() ? detail::invoke(std::forward<F>(f), *std::forward<Opt>(opt)) : optional<Ret>(nullopt);
 | |
| 		}
 | |
| 
 | |
| 		template <class Opt, class F, class Ret = decltype(detail::invoke(std::declval<F>(), *std::declval<Opt>())),
 | |
| 		     detail::enable_if_t<std::is_void<Ret>::value>* = nullptr>
 | |
| 
 | |
| 		auto optional_map_impl(Opt&& opt, F&& f) -> optional<monostate> {
 | |
| 			if (opt.has_value()) {
 | |
| 				detail::invoke(std::forward<F>(f), *std::forward<Opt>(opt));
 | |
| 				return monostate {};
 | |
| 			}
 | |
| 
 | |
| 			return nullopt;
 | |
| 		}
 | |
| #endif
 | |
| 	} // namespace detail
 | |
| 
 | |
| 	/// Specialization for when `T` is a reference. `optional<T&>` acts similarly
 | |
| 	/// to a `T*`, but provides more operations and shows intent more clearly.
 | |
| 	///
 | |
| 	/// *Examples*:
 | |
| 	///
 | |
| 	/// ```
 | |
| 	/// int i = 42;
 | |
| 	/// sol::optional<int&> o = i;
 | |
| 	/// *o == 42; //true
 | |
| 	/// i = 12;
 | |
| 	/// *o = 12; //true
 | |
| 	/// &*o == &i; //true
 | |
| 	/// ```
 | |
| 	///
 | |
| 	/// Assignment has rebind semantics rather than assign-through semantics:
 | |
| 	///
 | |
| 	/// ```
 | |
| 	/// int j = 8;
 | |
| 	/// o = j;
 | |
| 	///
 | |
| 	/// &*o == &j; //true
 | |
| 	/// ```
 | |
| 	template <class T>
 | |
| 	class optional<T&> {
 | |
| 	public:
 | |
| #if defined(SOL_TL_OPTIONAL_CXX14) && !defined(SOL_TL_OPTIONAL_GCC49) && !defined(SOL_TL_OPTIONAL_GCC54) && !defined(SOL_TL_OPTIONAL_GCC55)
 | |
| 		/// \group and_then
 | |
| 		/// Carries out some operation which returns an optional on the stored
 | |
| 		/// object if there is one. \requires `std::invoke(std::forward<F>(f),
 | |
| 		/// value())` returns a `std::optional<U>` for some `U`. \returns Let `U` be
 | |
| 		/// the result of `std::invoke(std::forward<F>(f), value())`. Returns a
 | |
| 		/// `std::optional<U>`. The return value is empty if `*this` is empty,
 | |
| 		/// otherwise the return value of `std::invoke(std::forward<F>(f), value())`
 | |
| 		/// is returned.
 | |
| 		/// \group and_then
 | |
| 		/// \synopsis template <class F>\nconstexpr auto and_then(F &&f) &;
 | |
| 		template <class F>
 | |
| 		SOL_TL_OPTIONAL_11_CONSTEXPR auto and_then(F&& f) & {
 | |
| 			using result = detail::invoke_result_t<F, T&>;
 | |
| 			static_assert(detail::is_optional<result>::value, "F must return an optional");
 | |
| 
 | |
| 			return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt);
 | |
| 		}
 | |
| 
 | |
| 		/// \group and_then
 | |
| 		/// \synopsis template <class F>\nconstexpr auto and_then(F &&f) &&;
 | |
| 		template <class F>
 | |
| 		SOL_TL_OPTIONAL_11_CONSTEXPR auto and_then(F&& f) && {
 | |
| 			using result = detail::invoke_result_t<F, T&>;
 | |
| 			static_assert(detail::is_optional<result>::value, "F must return an optional");
 | |
| 
 | |
| 			return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt);
 | |
| 		}
 | |
| 
 | |
| 		/// \group and_then
 | |
| 		/// \synopsis template <class F>\nconstexpr auto and_then(F &&f) const &;
 | |
| 		template <class F>
 | |
| 		constexpr auto and_then(F&& f) const& {
 | |
| 			using result = detail::invoke_result_t<F, const T&>;
 | |
| 			static_assert(detail::is_optional<result>::value, "F must return an optional");
 | |
| 
 | |
| 			return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt);
 | |
| 		}
 | |
| 
 | |
| #ifndef SOL_TL_OPTIONAL_NO_CONSTRR
 | |
| 		/// \group and_then
 | |
| 		/// \synopsis template <class F>\nconstexpr auto and_then(F &&f) const &&;
 | |
| 		template <class F>
 | |
| 		constexpr auto and_then(F&& f) const&& {
 | |
| 			using result = detail::invoke_result_t<F, const T&>;
 | |
| 			static_assert(detail::is_optional<result>::value, "F must return an optional");
 | |
| 
 | |
| 			return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt);
 | |
| 		}
 | |
| #endif
 | |
| #else
 | |
| 		/// \group and_then
 | |
| 		/// Carries out some operation which returns an optional on the stored
 | |
| 		/// object if there is one. \requires `std::invoke(std::forward<F>(f),
 | |
| 		/// value())` returns a `std::optional<U>` for some `U`. \returns Let `U` be
 | |
| 		/// the result of `std::invoke(std::forward<F>(f), value())`. Returns a
 | |
| 		/// `std::optional<U>`. The return value is empty if `*this` is empty,
 | |
| 		/// otherwise the return value of `std::invoke(std::forward<F>(f), value())`
 | |
| 		/// is returned.
 | |
| 		/// \group and_then
 | |
| 		/// \synopsis template <class F>\nconstexpr auto and_then(F &&f) &;
 | |
| 		template <class F>
 | |
| 		SOL_TL_OPTIONAL_11_CONSTEXPR detail::invoke_result_t<F, T&> and_then(F&& f) & {
 | |
| 			using result = detail::invoke_result_t<F, T&>;
 | |
| 			static_assert(detail::is_optional<result>::value, "F must return an optional");
 | |
| 
 | |
| 			return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt);
 | |
| 		}
 | |
| 
 | |
| 		/// \group and_then
 | |
| 		/// \synopsis template <class F>\nconstexpr auto and_then(F &&f) &&;
 | |
| 		template <class F>
 | |
| 		SOL_TL_OPTIONAL_11_CONSTEXPR detail::invoke_result_t<F, T&> and_then(F&& f) && {
 | |
| 			using result = detail::invoke_result_t<F, T&>;
 | |
| 			static_assert(detail::is_optional<result>::value, "F must return an optional");
 | |
| 
 | |
| 			return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt);
 | |
| 		}
 | |
| 
 | |
| 		/// \group and_then
 | |
| 		/// \synopsis template <class F>\nconstexpr auto and_then(F &&f) const &;
 | |
| 		template <class F>
 | |
| 		constexpr detail::invoke_result_t<F, const T&> and_then(F&& f) const& {
 | |
| 			using result = detail::invoke_result_t<F, const T&>;
 | |
| 			static_assert(detail::is_optional<result>::value, "F must return an optional");
 | |
| 
 | |
| 			return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt);
 | |
| 		}
 | |
| 
 | |
| #ifndef SOL_TL_OPTIONAL_NO_CONSTRR
 | |
| 		/// \group and_then
 | |
| 		/// \synopsis template <class F>\nconstexpr auto and_then(F &&f) const &&;
 | |
| 		template <class F>
 | |
| 		constexpr detail::invoke_result_t<F, const T&> and_then(F&& f) const&& {
 | |
| 			using result = detail::invoke_result_t<F, const T&>;
 | |
| 			static_assert(detail::is_optional<result>::value, "F must return an optional");
 | |
| 
 | |
| 			return has_value() ? detail::invoke(std::forward<F>(f), **this) : result(nullopt);
 | |
| 		}
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| #if defined(SOL_TL_OPTIONAL_CXX14) && !defined(SOL_TL_OPTIONAL_GCC49) && !defined(SOL_TL_OPTIONAL_GCC54) && !defined(SOL_TL_OPTIONAL_GCC55)
 | |
| 		/// \brief Carries out some operation on the stored object if there is one.
 | |
| 		/// \returns Let `U` be the result of `std::invoke(std::forward<F>(f),
 | |
| 		/// value())`. Returns a `std::optional<U>`. The return value is empty if
 | |
| 		/// `*this` is empty, otherwise an `optional<U>` is constructed from the
 | |
| 		/// return value of `std::invoke(std::forward<F>(f), value())` and is
 | |
| 		/// returned.
 | |
| 		///
 | |
| 		/// \group map
 | |
| 		/// \synopsis template <class F> constexpr auto map(F &&f) &;
 | |
| 		template <class F>
 | |
| 		SOL_TL_OPTIONAL_11_CONSTEXPR auto map(F&& f) & {
 | |
| 			return detail::optional_map_impl(*this, std::forward<F>(f));
 | |
| 		}
 | |
| 
 | |
| 		/// \group map
 | |
| 		/// \synopsis template <class F> constexpr auto map(F &&f) &&;
 | |
| 		template <class F>
 | |
| 		SOL_TL_OPTIONAL_11_CONSTEXPR auto map(F&& f) && {
 | |
| 			return detail::optional_map_impl(std::move(*this), std::forward<F>(f));
 | |
| 		}
 | |
| 
 | |
| 		/// \group map
 | |
| 		/// \synopsis template <class F> constexpr auto map(F &&f) const&;
 | |
| 		template <class F>
 | |
| 		constexpr auto map(F&& f) const& {
 | |
| 			return detail::optional_map_impl(*this, std::forward<F>(f));
 | |
| 		}
 | |
| 
 | |
| 		/// \group map
 | |
| 		/// \synopsis template <class F> constexpr auto map(F &&f) const&&;
 | |
| 		template <class F>
 | |
| 		constexpr auto map(F&& f) const&& {
 | |
| 			return detail::optional_map_impl(std::move(*this), std::forward<F>(f));
 | |
| 		}
 | |
| #else
 | |
| 		/// \brief Carries out some operation on the stored object if there is one.
 | |
| 		/// \returns Let `U` be the result of `std::invoke(std::forward<F>(f),
 | |
| 		/// value())`. Returns a `std::optional<U>`. The return value is empty if
 | |
| 		/// `*this` is empty, otherwise an `optional<U>` is constructed from the
 | |
| 		/// return value of `std::invoke(std::forward<F>(f), value())` and is
 | |
| 		/// returned.
 | |
| 		///
 | |
| 		/// \group map
 | |
| 		/// \synopsis template <class F> auto map(F &&f) &;
 | |
| 		template <class F>
 | |
| 		SOL_TL_OPTIONAL_11_CONSTEXPR decltype(detail::optional_map_impl(std::declval<optional&>(), std::declval<F&&>())) map(F&& f) & {
 | |
| 			return detail::optional_map_impl(*this, std::forward<F>(f));
 | |
| 		}
 | |
| 
 | |
| 		/// \group map
 | |
| 		/// \synopsis template <class F> auto map(F &&f) &&;
 | |
| 		template <class F>
 | |
| 		SOL_TL_OPTIONAL_11_CONSTEXPR decltype(detail::optional_map_impl(std::declval<optional&&>(), std::declval<F&&>())) map(F&& f) && {
 | |
| 			return detail::optional_map_impl(std::move(*this), std::forward<F>(f));
 | |
| 		}
 | |
| 
 | |
| 		/// \group map
 | |
| 		/// \synopsis template <class F> auto map(F &&f) const&;
 | |
| 		template <class F>
 | |
| 		constexpr decltype(detail::optional_map_impl(std::declval<const optional&>(), std::declval<F&&>())) map(F&& f) const& {
 | |
| 			return detail::optional_map_impl(*this, std::forward<F>(f));
 | |
| 		}
 | |
| 
 | |
| #ifndef SOL_TL_OPTIONAL_NO_CONSTRR
 | |
| 		/// \group map
 | |
| 		/// \synopsis template <class F> auto map(F &&f) const&&;
 | |
| 		template <class F>
 | |
| 		constexpr decltype(detail::optional_map_impl(std::declval<const optional&&>(), std::declval<F&&>())) map(F&& f) const&& {
 | |
| 			return detail::optional_map_impl(std::move(*this), std::forward<F>(f));
 | |
| 		}
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| 		/// \brief Calls `f` if the optional is empty
 | |
| 		/// \requires `std::invoke_result_t<F>` must be void or convertible to
 | |
| 		/// `optional<T>`. \effects If `*this` has a value, returns `*this`.
 | |
| 		/// Otherwise, if `f` returns `void`, calls `std::forward<F>(f)` and returns
 | |
| 		/// `std::nullopt`. Otherwise, returns `std::forward<F>(f)()`.
 | |
| 		///
 | |
| 		/// \group or_else
 | |
| 		/// \synopsis template <class F> optional<T> or_else (F &&f) &;
 | |
| 		template <class F, detail::enable_if_ret_void<F>* = nullptr>
 | |
| 		optional<T> SOL_TL_OPTIONAL_11_CONSTEXPR or_else(F&& f) & {
 | |
| 			if (has_value())
 | |
| 				return *this;
 | |
| 
 | |
| 			std::forward<F>(f)();
 | |
| 			return nullopt;
 | |
| 		}
 | |
| 
 | |
| 		/// \exclude
 | |
| 		template <class F, detail::disable_if_ret_void<F>* = nullptr>
 | |
| 		optional<T> SOL_TL_OPTIONAL_11_CONSTEXPR or_else(F&& f) & {
 | |
| 			return has_value() ? *this : std::forward<F>(f)();
 | |
| 		}
 | |
| 
 | |
| 		/// \group or_else
 | |
| 		/// \synopsis template <class F> optional<T> or_else (F &&f) &&;
 | |
| 		template <class F, detail::enable_if_ret_void<F>* = nullptr>
 | |
| 		optional<T> or_else(F&& f) && {
 | |
| 			if (has_value())
 | |
| 				return std::move(*this);
 | |
| 
 | |
| 			std::forward<F>(f)();
 | |
| 			return nullopt;
 | |
| 		}
 | |
| 
 | |
| 		/// \exclude
 | |
| 		template <class F, detail::disable_if_ret_void<F>* = nullptr>
 | |
| 		optional<T> SOL_TL_OPTIONAL_11_CONSTEXPR or_else(F&& f) && {
 | |
| 			return has_value() ? std::move(*this) : std::forward<F>(f)();
 | |
| 		}
 | |
| 
 | |
| 		/// \group or_else
 | |
| 		/// \synopsis template <class F> optional<T> or_else (F &&f) const &;
 | |
| 		template <class F, detail::enable_if_ret_void<F>* = nullptr>
 | |
| 		optional<T> or_else(F&& f) const& {
 | |
| 			if (has_value())
 | |
| 				return *this;
 | |
| 
 | |
| 			std::forward<F>(f)();
 | |
| 			return nullopt;
 | |
| 		}
 | |
| 
 | |
| 		/// \exclude
 | |
| 		template <class F, detail::disable_if_ret_void<F>* = nullptr>
 | |
| 		optional<T> SOL_TL_OPTIONAL_11_CONSTEXPR or_else(F&& f) const& {
 | |
| 			return has_value() ? *this : std::forward<F>(f)();
 | |
| 		}
 | |
| 
 | |
| #ifndef SOL_TL_OPTIONAL_NO_CONSTRR
 | |
| 		/// \exclude
 | |
| 		template <class F, detail::enable_if_ret_void<F>* = nullptr>
 | |
| 		optional<T> or_else(F&& f) const&& {
 | |
| 			if (has_value())
 | |
| 				return std::move(*this);
 | |
| 
 | |
| 			std::forward<F>(f)();
 | |
| 			return nullopt;
 | |
| 		}
 | |
| 
 | |
| 		/// \exclude
 | |
| 		template <class F, detail::disable_if_ret_void<F>* = nullptr>
 | |
| 		optional<T> or_else(F&& f) const&& {
 | |
| 			return has_value() ? std::move(*this) : std::forward<F>(f)();
 | |
| 		}
 | |
| #endif
 | |
| 
 | |
| 		/// \brief Maps the stored value with `f` if there is one, otherwise returns
 | |
| 		/// `u`.
 | |
| 		///
 | |
| 		/// \details If there is a value stored, then `f` is called with `**this`
 | |
| 		/// and the value is returned. Otherwise `u` is returned.
 | |
| 		///
 | |
| 		/// \group map_or
 | |
| 		template <class F, class U>
 | |
| 		U map_or(F&& f, U&& u) & {
 | |
| 			return has_value() ? detail::invoke(std::forward<F>(f), **this) : std::forward<U>(u);
 | |
| 		}
 | |
| 
 | |
| 		/// \group map_or
 | |
| 		template <class F, class U>
 | |
| 		U map_or(F&& f, U&& u) && {
 | |
| 			return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : std::forward<U>(u);
 | |
| 		}
 | |
| 
 | |
| 		/// \group map_or
 | |
| 		template <class F, class U>
 | |
| 		U map_or(F&& f, U&& u) const& {
 | |
| 			return has_value() ? detail::invoke(std::forward<F>(f), **this) : std::forward<U>(u);
 | |
| 		}
 | |
| 
 | |
| #ifndef SOL_TL_OPTIONAL_NO_CONSTRR
 | |
| 		/// \group map_or
 | |
| 		template <class F, class U>
 | |
| 		U map_or(F&& f, U&& u) const&& {
 | |
| 			return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : std::forward<U>(u);
 | |
| 		}
 | |
| #endif
 | |
| 
 | |
| 		/// \brief Maps the stored value with `f` if there is one, otherwise calls
 | |
| 		/// `u` and returns the result.
 | |
| 		///
 | |
| 		/// \details If there is a value stored, then `f` is
 | |
| 		/// called with `**this` and the value is returned. Otherwise
 | |
| 		/// `std::forward<U>(u)()` is returned.
 | |
| 		///
 | |
| 		/// \group map_or_else
 | |
| 		/// \synopsis template <class F, class U>\nauto map_or_else(F &&f, U &&u) &;
 | |
| 		template <class F, class U>
 | |
| 		detail::invoke_result_t<U> map_or_else(F&& f, U&& u) & {
 | |
| 			return has_value() ? detail::invoke(std::forward<F>(f), **this) : std::forward<U>(u)();
 | |
| 		}
 | |
| 
 | |
| 		/// \group map_or_else
 | |
| 		/// \synopsis template <class F, class U>\nauto map_or_else(F &&f, U &&u)
 | |
| 		/// &&;
 | |
| 		template <class F, class U>
 | |
| 		detail::invoke_result_t<U> map_or_else(F&& f, U&& u) && {
 | |
| 			return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : std::forward<U>(u)();
 | |
| 		}
 | |
| 
 | |
| 		/// \group map_or_else
 | |
| 		/// \synopsis template <class F, class U>\nauto map_or_else(F &&f, U &&u)
 | |
| 		/// const &;
 | |
| 		template <class F, class U>
 | |
| 		detail::invoke_result_t<U> map_or_else(F&& f, U&& u) const& {
 | |
| 			return has_value() ? detail::invoke(std::forward<F>(f), **this) : std::forward<U>(u)();
 | |
| 		}
 | |
| 
 | |
| #ifndef SOL_TL_OPTIONAL_NO_CONSTRR
 | |
| 		/// \group map_or_else
 | |
| 		/// \synopsis template <class F, class U>\nauto map_or_else(F &&f, U &&u)
 | |
| 		/// const &&;
 | |
| 		template <class F, class U>
 | |
| 		detail::invoke_result_t<U> map_or_else(F&& f, U&& u) const&& {
 | |
| 			return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this)) : std::forward<U>(u)();
 | |
| 		}
 | |
| #endif
 | |
| 
 | |
| 		/// \returns `u` if `*this` has a value, otherwise an empty optional.
 | |
| 		template <class U>
 | |
| 		constexpr optional<typename std::decay<U>::type> conjunction(U&& u) const {
 | |
| 			using result = optional<detail::decay_t<U>>;
 | |
| 			return has_value() ? result { u } : result { nullopt };
 | |
| 		}
 | |
| 
 | |
| 		/// \returns `rhs` if `*this` is empty, otherwise the current value.
 | |
| 		/// \group disjunction
 | |
| 		SOL_TL_OPTIONAL_11_CONSTEXPR optional disjunction(const optional& rhs) & {
 | |
| 			return has_value() ? *this : rhs;
 | |
| 		}
 | |
| 
 | |
| 		/// \group disjunction
 | |
| 		constexpr optional disjunction(const optional& rhs) const& {
 | |
| 			return has_value() ? *this : rhs;
 | |
| 		}
 | |
| 
 | |
| 		/// \group disjunction
 | |
| 		SOL_TL_OPTIONAL_11_CONSTEXPR optional disjunction(const optional& rhs) && {
 | |
| 			return has_value() ? std::move(*this) : rhs;
 | |
| 		}
 | |
| 
 | |
| #ifndef SOL_TL_OPTIONAL_NO_CONSTRR
 | |
| 		/// \group disjunction
 | |
| 		constexpr optional disjunction(const optional& rhs) const&& {
 | |
| 			return has_value() ? std::move(*this) : rhs;
 | |
| 		}
 | |
| #endif
 | |
| 
 | |
| 		/// \group disjunction
 | |
| 		SOL_TL_OPTIONAL_11_CONSTEXPR optional disjunction(optional&& rhs) & {
 | |
| 			return has_value() ? *this : std::move(rhs);
 | |
| 		}
 | |
| 
 | |
| 		/// \group disjunction
 | |
| 		constexpr optional disjunction(optional&& rhs) const& {
 | |
| 			return has_value() ? *this : std::move(rhs);
 | |
| 		}
 | |
| 
 | |
| 		/// \group disjunction
 | |
| 		SOL_TL_OPTIONAL_11_CONSTEXPR optional disjunction(optional&& rhs) && {
 | |
| 			return has_value() ? std::move(*this) : std::move(rhs);
 | |
| 		}
 | |
| 
 | |
| #ifndef SOL_TL_OPTIONAL_NO_CONSTRR
 | |
| 		/// \group disjunction
 | |
| 		constexpr optional disjunction(optional&& rhs) const&& {
 | |
| 			return has_value() ? std::move(*this) : std::move(rhs);
 | |
| 		}
 | |
| #endif
 | |
| 
 | |
| 		/// Takes the value out of the optional, leaving it empty
 | |
| 		/// \group take
 | |
| 		optional take() & {
 | |
| 			optional ret = *this;
 | |
| 			reset();
 | |
| 			return ret;
 | |
| 		}
 | |
| 
 | |
| 		/// \group take
 | |
| 		optional take() const& {
 | |
| 			optional ret = *this;
 | |
| 			reset();
 | |
| 			return ret;
 | |
| 		}
 | |
| 
 | |
| 		/// \group take
 | |
| 		optional take() && {
 | |
| 			optional ret = std::move(*this);
 | |
| 			reset();
 | |
| 			return ret;
 | |
| 		}
 | |
| 
 | |
| #ifndef SOL_TL_OPTIONAL_NO_CONSTRR
 | |
| 		/// \group take
 | |
| 		optional take() const&& {
 | |
| 			optional ret = std::move(*this);
 | |
| 			reset();
 | |
| 			return ret;
 | |
| 		}
 | |
| #endif
 | |
| 
 | |
| 		using value_type = T&;
 | |
| 
 | |
| 		/// Constructs an optional that does not contain a value.
 | |
| 		/// \group ctor_empty
 | |
| 		constexpr optional() noexcept : m_value(nullptr) {
 | |
| 		}
 | |
| 
 | |
| 		/// \group ctor_empty
 | |
| 		constexpr optional(nullopt_t) noexcept : m_value(nullptr) {
 | |
| 		}
 | |
| 
 | |
| 		/// Copy constructor
 | |
| 		///
 | |
| 		/// If `rhs` contains a value, the stored value is direct-initialized with
 | |
| 		/// it. Otherwise, the constructed optional is empty.
 | |
| 		SOL_TL_OPTIONAL_11_CONSTEXPR optional(const optional& rhs) noexcept = default;
 | |
| 
 | |
| 		/// Move constructor
 | |
| 		///
 | |
| 		/// If `rhs` contains a value, the stored value is direct-initialized with
 | |
| 		/// it. Otherwise, the constructed optional is empty.
 | |
| 		SOL_TL_OPTIONAL_11_CONSTEXPR optional(optional&& rhs) = default;
 | |
| 
 | |
| 		/// Constructs the stored value with `u`.
 | |
| 		/// \synopsis template <class U=T> constexpr optional(U &&u);
 | |
| 		template <class U = T, detail::enable_if_t<!detail::is_optional<detail::decay_t<U>>::value>* = nullptr>
 | |
| 		constexpr optional(U&& u) : m_value(std::addressof(u)) {
 | |
| 			static_assert(std::is_lvalue_reference<U>::value, "U must be an lvalue");
 | |
| 		}
 | |
| 
 | |
| 		/// \exclude
 | |
| 		template <class U>
 | |
| 		constexpr explicit optional(const optional<U>& rhs) : optional(*rhs) {
 | |
| 		}
 | |
| 
 | |
| 		/// No-op
 | |
| 		~optional() = default;
 | |
| 
 | |
| 		/// Assignment to empty.
 | |
| 		///
 | |
| 		/// Destroys the current value if there is one.
 | |
| 		optional& operator=(nullopt_t) noexcept {
 | |
| 			m_value = nullptr;
 | |
| 			return *this;
 | |
| 		}
 | |
| 
 | |
| 		/// Copy assignment.
 | |
| 		///
 | |
| 		/// Rebinds this optional to the referee of `rhs` if there is one. Otherwise
 | |
| 		/// resets the stored value in `*this`.
 | |
| 		optional& operator=(const optional& rhs) = default;
 | |
| 
 | |
| 		/// Rebinds this optional to `u`.
 | |
| 		///
 | |
| 		/// \requires `U` must be an lvalue reference.
 | |
| 		/// \synopsis optional &operator=(U &&u);
 | |
| 		template <class U = T, detail::enable_if_t<!detail::is_optional<detail::decay_t<U>>::value>* = nullptr>
 | |
| 		optional& operator=(U&& u) {
 | |
| 			static_assert(std::is_lvalue_reference<U>::value, "U must be an lvalue");
 | |
| 			m_value = std::addressof(u);
 | |
| 			return *this;
 | |
| 		}
 | |
| 
 | |
| 		/// Converting copy assignment operator.
 | |
| 		///
 | |
| 		/// Rebinds this optional to the referee of `rhs` if there is one. Otherwise
 | |
| 		/// resets the stored value in `*this`.
 | |
| 		template <class U>
 | |
| 		optional& operator=(const optional<U>& rhs) {
 | |
| 			m_value = std::addressof(rhs.value());
 | |
| 			return *this;
 | |
| 		}
 | |
| 
 | |
| 		/// Constructs the value in-place, destroying the current one if there is
 | |
| 		/// one.
 | |
| 		///
 | |
| 		/// \group emplace
 | |
| 		template <class... Args>
 | |
| 		T& emplace(Args&&... args) noexcept {
 | |
| 			static_assert(std::is_constructible<T, Args&&...>::value, "T must be constructible with Args");
 | |
| 
 | |
| 			*this = nullopt;
 | |
| 			this->construct(std::forward<Args>(args)...);
 | |
| 		}
 | |
| 
 | |
| 		/// Swaps this optional with the other.
 | |
| 		///
 | |
| 		/// If neither optionals have a value, nothing happens.
 | |
| 		/// If both have a value, the values are swapped.
 | |
| 		/// If one has a value, it is moved to the other and the movee is left
 | |
| 		/// valueless.
 | |
| 		void swap(optional& rhs) noexcept {
 | |
| 			std::swap(m_value, rhs.m_value);
 | |
| 		}
 | |
| 
 | |
| 		/// \returns a pointer to the stored value
 | |
| 		/// \requires a value is stored
 | |
| 		/// \group pointer
 | |
| 		/// \synopsis constexpr const T *operator->() const;
 | |
| 		constexpr const T* operator->() const {
 | |
| 			return m_value;
 | |
| 		}
 | |
| 
 | |
| 		/// \group pointer
 | |
| 		/// \synopsis constexpr T *operator->();
 | |
| 		SOL_TL_OPTIONAL_11_CONSTEXPR T* operator->() {
 | |
| 			return m_value;
 | |
| 		}
 | |
| 
 | |
| 		/// \returns the stored value
 | |
| 		/// \requires a value is stored
 | |
| 		/// \group deref
 | |
| 		/// \synopsis constexpr T &operator*();
 | |
| 		SOL_TL_OPTIONAL_11_CONSTEXPR T& operator*() {
 | |
| 			return *m_value;
 | |
| 		}
 | |
| 
 | |
| 		/// \group deref
 | |
| 		/// \synopsis constexpr const T &operator*() const;
 | |
| 		constexpr const T& operator*() const {
 | |
| 			return *m_value;
 | |
| 		}
 | |
| 
 | |
| 		/// \returns whether or not the optional has a value
 | |
| 		/// \group has_value
 | |
| 		constexpr bool has_value() const noexcept {
 | |
| 			return m_value != nullptr;
 | |
| 		}
 | |
| 
 | |
| 		/// \group has_value
 | |
| 		constexpr explicit operator bool() const noexcept {
 | |
| 			return m_value != nullptr;
 | |
| 		}
 | |
| 
 | |
| 		/// \returns the contained value if there is one, otherwise throws
 | |
| 		/// [bad_optional_access]
 | |
| 		/// \group value
 | |
| 		/// synopsis constexpr T &value();
 | |
| 		SOL_TL_OPTIONAL_11_CONSTEXPR T& value() {
 | |
| 			if (has_value())
 | |
| 				return *m_value;
 | |
| #if SOL_IS_OFF(SOL_EXCEPTIONS_I_)
 | |
| 			std::abort();
 | |
| #else
 | |
| 			throw bad_optional_access();
 | |
| #endif // No exceptions allowed
 | |
| 		}
 | |
| 		/// \group value
 | |
| 		/// \synopsis constexpr const T &value() const;
 | |
| 		SOL_TL_OPTIONAL_11_CONSTEXPR const T& value() const {
 | |
| 			if (has_value())
 | |
| 				return *m_value;
 | |
| #if SOL_IS_OFF(SOL_EXCEPTIONS_I_)
 | |
| 			std::abort();
 | |
| #else
 | |
| 			throw bad_optional_access();
 | |
| #endif // No exceptions allowed
 | |
| 		}
 | |
| 
 | |
| 		/// \returns the stored value if there is one, otherwise returns `u`
 | |
| 		/// \group value_or
 | |
| 		template <class U>
 | |
| 		constexpr T& value_or(U&& u) const {
 | |
| 			static_assert(std::is_convertible<U&&, T&>::value, "T must be convertible from U");
 | |
| 			return has_value() ? const_cast<T&>(**this) : static_cast<T&>(std::forward<U>(u));
 | |
| 		}
 | |
| 
 | |
| 		/// Destroys the stored value if one exists, making the optional empty
 | |
| 		void reset() noexcept {
 | |
| 			m_value = nullptr;
 | |
| 		}
 | |
| 
 | |
| 	private:
 | |
| 		T* m_value;
 | |
| 	};
 | |
| 
 | |
| } // namespace sol
 | |
| 
 | |
| namespace std {
 | |
| 	// TODO SFINAE
 | |
| 	template <class T>
 | |
| 	struct hash<::sol::optional<T>> {
 | |
| 		::std::size_t operator()(const ::sol::optional<T>& o) const {
 | |
| 			if (!o.has_value())
 | |
| 				return 0;
 | |
| 
 | |
| 			return ::std::hash<::sol::detail::remove_const_t<T>>()(*o);
 | |
| 		}
 | |
| 	};
 | |
| } // namespace std
 | |
| 
 | |
| // end of sol/optional_implementation.hpp
 | |
| 
 | |
| #endif // Boost vs. Better optional
 | |
| 
 | |
| #include <optional>
 | |
| 
 | |
| namespace sol {
 | |
| 
 | |
| #if SOL_IS_ON(SOL_USE_BOOST_I_)
 | |
| 	template <typename T>
 | |
| 	using optional = boost::optional<T>;
 | |
| 	using nullopt_t = boost::none_t;
 | |
| 	const nullopt_t nullopt = boost::none;
 | |
| #endif // Boost vs. Better optional
 | |
| 
 | |
| 	namespace meta {
 | |
| 		template <typename T>
 | |
| 		using is_optional = any<is_specialization_of<T, optional>, is_specialization_of<T, std::optional>>;
 | |
| 
 | |
| 		template <typename T>
 | |
| 		constexpr inline bool is_optional_v = is_optional<T>::value;
 | |
| 	} // namespace meta
 | |
| 
 | |
| 	namespace detail {
 | |
| 		template <typename T>
 | |
| 		struct associated_nullopt {
 | |
| 			inline static constexpr std::nullopt_t value = std::nullopt;
 | |
| 		};
 | |
| 
 | |
| #if SOL_IS_ON(SOL_USE_BOOST_I_)
 | |
| 		template <typename T>
 | |
| 		struct associated_nullopt<boost::optional<T>> {
 | |
| 			inline static constexpr std::nullopt_t value = boost::nullopt;
 | |
| 		};
 | |
| #endif // Boost nullopt
 | |
| 
 | |
| 		template <typename T>
 | |
| 		inline constexpr auto associated_nullopt_v = associated_nullopt<T>::value;
 | |
| 	} // namespace detail
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/optional.hpp
 | |
| 
 | |
| // beginning of sol/raii.hpp
 | |
| 
 | |
| #include <memory>
 | |
| 
 | |
| namespace sol {
 | |
| 	namespace detail {
 | |
| 		struct default_construct {
 | |
| 			template <typename T, typename... Args>
 | |
| 			static void construct(T&& obj, Args&&... args) {
 | |
| 				typedef meta::unqualified_t<T> Tu;
 | |
| 				std::allocator<Tu> alloc{};
 | |
| 				std::allocator_traits<std::allocator<Tu>>::construct(alloc, std::forward<T>(obj), std::forward<Args>(args)...);
 | |
| 			}
 | |
| 
 | |
| 			template <typename T, typename... Args>
 | |
| 			void operator()(T&& obj, Args&&... args) const {
 | |
| 				construct(std::forward<T>(obj), std::forward<Args>(args)...);
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		struct default_destruct {
 | |
| 			template <typename T>
 | |
| 			static void destroy(T&& obj) {
 | |
| 				std::allocator<meta::unqualified_t<T>> alloc{};
 | |
| 				alloc.destroy(obj);
 | |
| 			}
 | |
| 
 | |
| 			template <typename T>
 | |
| 			void operator()(T&& obj) const {
 | |
| 				destroy(std::forward<T>(obj));
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		struct deleter {
 | |
| 			template <typename T>
 | |
| 			void operator()(T* p) const {
 | |
| 				delete p;
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		struct state_deleter {
 | |
| 			void operator()(lua_State* L) const {
 | |
| 				lua_close(L);
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename Dx, typename... Args>
 | |
| 		inline std::unique_ptr<T, Dx> make_unique_deleter(Args&&... args) {
 | |
| 			return std::unique_ptr<T, Dx>(new T(std::forward<Args>(args)...));
 | |
| 		}
 | |
| 
 | |
| 		template <typename Tag, typename T>
 | |
| 		struct tagged {
 | |
| 		private:
 | |
| 			T value_;
 | |
| 		
 | |
| 		public:
 | |
| 			template <typename Arg, typename... Args, meta::disable<std::is_same<meta::unqualified_t<Arg>, tagged>> = meta::enabler>
 | |
| 			tagged(Arg&& arg, Args&&... args)
 | |
| 			: value_(std::forward<Arg>(arg), std::forward<Args>(args)...) {
 | |
| 			}
 | |
| 
 | |
| 			T& value() & {
 | |
| 				return value_;
 | |
| 			}
 | |
| 
 | |
| 			T const& value() const& {
 | |
| 				return value_;
 | |
| 			}
 | |
| 
 | |
| 			T&& value() && {
 | |
| 				return std::move(value_);
 | |
| 			}
 | |
| 		};
 | |
| 	} // namespace detail
 | |
| 
 | |
| 	template <typename... Args>
 | |
| 	struct constructor_list {};
 | |
| 
 | |
| 	template <typename... Args>
 | |
| 	using constructors = constructor_list<Args...>;
 | |
| 
 | |
| 	const auto default_constructor = constructors<types<>>{};
 | |
| 
 | |
| 	struct no_construction {};
 | |
| 	const auto no_constructor = no_construction{};
 | |
| 
 | |
| 	struct call_construction {};
 | |
| 	const auto call_constructor = call_construction{};
 | |
| 
 | |
| 	template <typename... Functions>
 | |
| 	struct constructor_wrapper {
 | |
| 		std::tuple<Functions...> functions;
 | |
| 		template <typename Arg, typename... Args, meta::disable<std::is_same<meta::unqualified_t<Arg>, constructor_wrapper>> = meta::enabler>
 | |
| 		constructor_wrapper(Arg&& arg, Args&&... args)
 | |
| 		: functions(std::forward<Arg>(arg), std::forward<Args>(args)...) {
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename... Functions>
 | |
| 	inline auto initializers(Functions&&... functions) {
 | |
| 		return constructor_wrapper<std::decay_t<Functions>...>(std::forward<Functions>(functions)...);
 | |
| 	}
 | |
| 
 | |
| 	template <typename... Functions>
 | |
| 	struct factory_wrapper {
 | |
| 		std::tuple<Functions...> functions;
 | |
| 		template <typename Arg, typename... Args, meta::disable<std::is_same<meta::unqualified_t<Arg>, factory_wrapper>> = meta::enabler>
 | |
| 		factory_wrapper(Arg&& arg, Args&&... args)
 | |
| 		: functions(std::forward<Arg>(arg), std::forward<Args>(args)...) {
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename... Functions>
 | |
| 	inline auto factories(Functions&&... functions) {
 | |
| 		return factory_wrapper<std::decay_t<Functions>...>(std::forward<Functions>(functions)...);
 | |
| 	}
 | |
| 
 | |
| 	template <typename Function>
 | |
| 	struct destructor_wrapper {
 | |
| 		Function fx;
 | |
| 		destructor_wrapper(Function f)
 | |
| 		: fx(std::move(f)) {
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct destructor_wrapper<void> {};
 | |
| 
 | |
| 	const destructor_wrapper<void> default_destructor{};
 | |
| 
 | |
| 	template <typename Fx>
 | |
| 	inline auto destructor(Fx&& fx) {
 | |
| 		return destructor_wrapper<std::decay_t<Fx>>(std::forward<Fx>(fx));
 | |
| 	}
 | |
| 
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/raii.hpp
 | |
| 
 | |
| // beginning of sol/policies.hpp
 | |
| 
 | |
| #include <array>
 | |
| 
 | |
| namespace sol {
 | |
| 	namespace detail {
 | |
| 		struct policy_base_tag {};
 | |
| 	} // namespace detail
 | |
| 
 | |
| 	template <int Target, int... In>
 | |
| 	struct static_stack_dependencies : detail::policy_base_tag {};
 | |
| 	typedef static_stack_dependencies<-1, 1> self_dependency;
 | |
| 	template <int... In>
 | |
| 	struct returns_self_with : detail::policy_base_tag {};
 | |
| 	typedef returns_self_with<> returns_self;
 | |
| 
 | |
| 	struct stack_dependencies : detail::policy_base_tag {
 | |
| 		int target;
 | |
| 		std::array<int, 64> stack_indices;
 | |
| 		std::size_t len;
 | |
| 
 | |
| 		template <typename... Args>
 | |
| 		stack_dependencies(int stack_target, Args&&... args) : target(stack_target), stack_indices(), len(sizeof...(Args)) {
 | |
| 			std::size_t i = 0;
 | |
| 			(void)detail::swallow{ int(), (stack_indices[i++] = static_cast<int>(std::forward<Args>(args)), int())... };
 | |
| 		}
 | |
| 
 | |
| 		int& operator[](std::size_t i) {
 | |
| 			return stack_indices[i];
 | |
| 		}
 | |
| 
 | |
| 		const int& operator[](std::size_t i) const {
 | |
| 			return stack_indices[i];
 | |
| 		}
 | |
| 
 | |
| 		std::size_t size() const {
 | |
| 			return len;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename F, typename... Policies>
 | |
| 	struct policy_wrapper {
 | |
| 		typedef std::index_sequence_for<Policies...> indices;
 | |
| 
 | |
| 		F value;
 | |
| 		std::tuple<Policies...> policies;
 | |
| 
 | |
| 		template <typename Fx, typename... Args, meta::enable<meta::neg<std::is_same<meta::unqualified_t<Fx>, policy_wrapper>>> = meta::enabler>
 | |
| 		policy_wrapper(Fx&& fx, Args&&... args) : value(std::forward<Fx>(fx)), policies(std::forward<Args>(args)...) {
 | |
| 		}
 | |
| 
 | |
| 		policy_wrapper(const policy_wrapper&) = default;
 | |
| 		policy_wrapper& operator=(const policy_wrapper&) = default;
 | |
| 		policy_wrapper(policy_wrapper&&) = default;
 | |
| 		policy_wrapper& operator=(policy_wrapper&&) = default;
 | |
| 	};
 | |
| 
 | |
| 	template <typename F, typename... Args>
 | |
| 	auto policies(F&& f, Args&&... args) {
 | |
| 		return policy_wrapper<std::decay_t<F>, std::decay_t<Args>...>(std::forward<F>(f), std::forward<Args>(args)...);
 | |
| 	}
 | |
| 
 | |
| 	namespace detail {
 | |
| 		template <typename T>
 | |
| 		using is_policy = meta::is_specialization_of<T, policy_wrapper>;
 | |
| 
 | |
| 		template <typename T>
 | |
| 		inline constexpr bool is_policy_v = is_policy<T>::value;
 | |
| 	} // namespace detail
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/policies.hpp
 | |
| 
 | |
| // beginning of sol/ebco.hpp
 | |
| 
 | |
| #include <type_traits>
 | |
| #include <utility>
 | |
| 
 | |
| namespace sol { namespace detail {
 | |
| 
 | |
| 	template <typename T, std::size_t tag = 0, typename = void>
 | |
| 	struct ebco {
 | |
| 		T value_;
 | |
| 
 | |
| 		ebco() = default;
 | |
| 		ebco(const ebco&) = default;
 | |
| 		ebco(ebco&&) = default;
 | |
| 		ebco& operator=(const ebco&) = default;
 | |
| 		ebco& operator=(ebco&&) = default;
 | |
| 		ebco(const T& v) : value_(v){};
 | |
| 		ebco(T&& v) : value_(std::move(v)){};
 | |
| 		ebco& operator=(const T& v) {
 | |
| 			value_ = v;
 | |
| 			return *this;
 | |
| 		}
 | |
| 		ebco& operator=(T&& v) {
 | |
| 			value_ = std::move(v);
 | |
| 			return *this;
 | |
| 		};
 | |
| 		template <typename Arg, typename... Args,
 | |
| 		     typename = std::enable_if_t<!std::is_same_v<std::remove_reference_t<std::remove_cv_t<Arg>>,
 | |
| 		                                      ebco> && !std::is_same_v<std::remove_reference_t<std::remove_cv_t<Arg>>, T>>>
 | |
| 		ebco(Arg&& arg, Args&&... args) : T(std::forward<Arg>(arg), std::forward<Args>(args)...){}
 | |
| 
 | |
| 		T& value() & {
 | |
| 			return value_;
 | |
| 		}
 | |
| 
 | |
| 		T const& value() const & {
 | |
| 			return value_;
 | |
| 		}
 | |
| 
 | |
| 		T&& value() && {
 | |
| 			return std::move(value_);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T, std::size_t tag>
 | |
| 	struct ebco<T, tag, std::enable_if_t<!std::is_reference_v<T> && std::is_class_v<T> && !std::is_final_v<T>>> : T {
 | |
| 		ebco() = default;
 | |
| 		ebco(const ebco&) = default;
 | |
| 		ebco(ebco&&) = default;
 | |
| 		ebco(const T& v) : T(v){};
 | |
| 		ebco(T&& v) : T(std::move(v)){};
 | |
| 		template <typename Arg, typename... Args,
 | |
| 			typename = std::enable_if_t<!std::is_same_v<std::remove_reference_t<std::remove_cv_t<Arg>>,
 | |
| 			                                 ebco> && !std::is_same_v<std::remove_reference_t<std::remove_cv_t<Arg>>, T>>>
 | |
| 		ebco(Arg&& arg, Args&&... args) : T(std::forward<Arg>(arg), std::forward<Args>(args)...) {
 | |
| 		}
 | |
| 
 | |
| 		ebco& operator=(const ebco&) = default;
 | |
| 		ebco& operator=(ebco&&) = default;
 | |
| 		ebco& operator=(const T& v) {
 | |
| 			static_cast<T&>(*this) = v;
 | |
| 			return *this;
 | |
| 		}
 | |
| 		ebco& operator=(T&& v) {
 | |
| 			static_cast<T&>(*this) = std::move(v);
 | |
| 			return *this;
 | |
| 		};
 | |
| 
 | |
| 		T& value() & {
 | |
| 			return static_cast<T&>(*this);
 | |
| 		}
 | |
| 
 | |
| 		T const& value() const & {
 | |
| 			return static_cast<T const&>(*this);
 | |
| 		}
 | |
| 
 | |
| 		T&& value() && {
 | |
| 			return std::move(static_cast<T&>(*this));
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T, std::size_t tag>
 | |
| 	struct ebco<T&, tag> {
 | |
| 		T& ref;
 | |
| 
 | |
| 		ebco() = default;
 | |
| 		ebco(const ebco&) = default;
 | |
| 		ebco(ebco&&) = default;
 | |
| 		ebco(T& v) : ref(v){};
 | |
| 
 | |
| 		ebco& operator=(const ebco&) = default;
 | |
| 		ebco& operator=(ebco&&) = default;
 | |
| 		ebco& operator=(T& v) {
 | |
| 			ref = v;
 | |
| 			return *this;
 | |
| 		}
 | |
| 
 | |
| 		T& value() const {
 | |
| 			return const_cast<ebco<T&, tag>&>(*this).ref;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T, std::size_t tag>
 | |
| 	struct ebco<T&&, tag> {
 | |
| 		T&& ref;
 | |
| 
 | |
| 		ebco() = default;
 | |
| 		ebco(const ebco&) = default;
 | |
| 		ebco(ebco&&) = default;
 | |
| 		ebco(T&& v) : ref(v){};
 | |
| 
 | |
| 		ebco& operator=(const ebco&) = default;
 | |
| 		ebco& operator=(ebco&&) = default;
 | |
| 		ebco& operator=(T&& v) {
 | |
| 			ref = std::move(v);
 | |
| 			return *this;
 | |
| 		}
 | |
| 
 | |
| 		T& value() & {
 | |
| 			return ref;
 | |
| 		}
 | |
| 
 | |
| 		const T& value() const & {
 | |
| 			return ref;
 | |
| 		}
 | |
| 
 | |
| 		T&& value() && {
 | |
| 			return std::move(ref);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| }} // namespace sol::detail
 | |
| 
 | |
| // end of sol/ebco.hpp
 | |
| 
 | |
| #include <array>
 | |
| #include <initializer_list>
 | |
| #include <string>
 | |
| #include <string_view>
 | |
| #include <optional>
 | |
| #if SOL_IS_ON(SOL_STD_VARIANT_I_)
 | |
| #include <variant>
 | |
| #endif // variant shenanigans (thanks, Mac OSX)
 | |
| 
 | |
| namespace sol {
 | |
| 	namespace detail {
 | |
| #if SOL_IS_ON(SOL_USE_NOEXCEPT_FUNCTION_TYPE_I_)
 | |
| 		typedef int (*lua_CFunction_noexcept)(lua_State* L) noexcept;
 | |
| #else
 | |
| 		typedef int (*lua_CFunction_noexcept)(lua_State* L);
 | |
| #endif // noexcept function type for lua_CFunction
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct unique_usertype { };
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct implicit_wrapper {
 | |
| 			T& item;
 | |
| 			implicit_wrapper(T* item) : item(*item) {
 | |
| 			}
 | |
| 			implicit_wrapper(T& item) : item(item) {
 | |
| 			}
 | |
| 			operator T&() {
 | |
| 				return item;
 | |
| 			}
 | |
| 			operator T*() {
 | |
| 				return std::addressof(item);
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		struct yield_tag_t { };
 | |
| 		const yield_tag_t yield_tag = yield_tag_t {};
 | |
| 	} // namespace detail
 | |
| 
 | |
| 	struct lua_nil_t { };
 | |
| 	inline constexpr lua_nil_t lua_nil {};
 | |
| 	inline bool operator==(lua_nil_t, lua_nil_t) {
 | |
| 		return true;
 | |
| 	}
 | |
| 	inline bool operator!=(lua_nil_t, lua_nil_t) {
 | |
| 		return false;
 | |
| 	}
 | |
| #if SOL_IS_ON(SOL_NIL_I_)
 | |
| 	using nil_t = lua_nil_t;
 | |
| 	inline constexpr const nil_t& nil = lua_nil;
 | |
| #endif
 | |
| 
 | |
| 	namespace detail {
 | |
| 		struct non_lua_nil_t { };
 | |
| 	} // namespace detail
 | |
| 
 | |
| 	struct metatable_key_t { };
 | |
| 	const metatable_key_t metatable_key = {};
 | |
| 
 | |
| 	struct env_key_t { };
 | |
| 	const env_key_t env_key = {};
 | |
| 
 | |
| 	struct no_metatable_t { };
 | |
| 	const no_metatable_t no_metatable = {};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct yielding_t {
 | |
| 		T func;
 | |
| 
 | |
| 		yielding_t() = default;
 | |
| 		yielding_t(const yielding_t&) = default;
 | |
| 		yielding_t(yielding_t&&) = default;
 | |
| 		yielding_t& operator=(const yielding_t&) = default;
 | |
| 		yielding_t& operator=(yielding_t&&) = default;
 | |
| 		template <typename Arg,
 | |
| 		     meta::enable<meta::neg<std::is_same<meta::unqualified_t<Arg>, yielding_t>>,
 | |
| 		          meta::neg<std::is_base_of<proxy_base_tag, meta::unqualified_t<Arg>>>> = meta::enabler>
 | |
| 		yielding_t(Arg&& arg) : func(std::forward<Arg>(arg)) {
 | |
| 		}
 | |
| 		template <typename Arg0, typename Arg1, typename... Args>
 | |
| 		yielding_t(Arg0&& arg0, Arg1&& arg1, Args&&... args) : func(std::forward<Arg0>(arg0), std::forward<Arg1>(arg1), std::forward<Args>(args)...) {
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename F>
 | |
| 	inline yielding_t<std::decay_t<F>> yielding(F&& f) {
 | |
| 		return yielding_t<std::decay_t<F>>(std::forward<F>(f));
 | |
| 	}
 | |
| 
 | |
| 	typedef std::remove_pointer_t<lua_CFunction> lua_CFunction_ref;
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct non_null { };
 | |
| 
 | |
| 	template <typename... Args>
 | |
| 	struct function_sig { };
 | |
| 
 | |
| 	struct upvalue_index {
 | |
| 		int index;
 | |
| 		upvalue_index(int idx) : index(lua_upvalueindex(idx)) {
 | |
| 		}
 | |
| 
 | |
| 		operator int() const {
 | |
| 			return index;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	struct raw_index {
 | |
| 		int index;
 | |
| 		raw_index(int i) : index(i) {
 | |
| 		}
 | |
| 
 | |
| 		operator int() const {
 | |
| 			return index;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	struct absolute_index {
 | |
| 		int index;
 | |
| 		absolute_index(lua_State* L, int idx) : index(lua_absindex(L, idx)) {
 | |
| 		}
 | |
| 
 | |
| 		operator int() const {
 | |
| 			return index;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	struct ref_index {
 | |
| 		int index;
 | |
| 		ref_index(int idx) : index(idx) {
 | |
| 		}
 | |
| 
 | |
| 		operator int() const {
 | |
| 			return index;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	struct stack_count {
 | |
| 		int count;
 | |
| 
 | |
| 		stack_count(int cnt) : count(cnt) {
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	struct lightuserdata_value {
 | |
| 		void* value;
 | |
| 		lightuserdata_value(void* data) : value(data) {
 | |
| 		}
 | |
| 		operator void*() const {
 | |
| 			return value;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	struct userdata_value {
 | |
| 		void* value;
 | |
| 		userdata_value(void* data) : value(data) {
 | |
| 		}
 | |
| 		operator void*() const {
 | |
| 			return value;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename L>
 | |
| 	struct light {
 | |
| 		L* value;
 | |
| 
 | |
| 		light(L& x) : value(std::addressof(x)) {
 | |
| 		}
 | |
| 		light(L* x) : value(x) {
 | |
| 		}
 | |
| 		light(void* x) : value(static_cast<L*>(x)) {
 | |
| 		}
 | |
| 		operator L*() const {
 | |
| 			return value;
 | |
| 		}
 | |
| 		operator L&() const {
 | |
| 			return *value;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	auto make_light(T& l) {
 | |
| 		typedef meta::unwrapped_t<std::remove_pointer_t<std::remove_pointer_t<T>>> L;
 | |
| 		return light<L>(l);
 | |
| 	}
 | |
| 
 | |
| 	template <typename U>
 | |
| 	struct user {
 | |
| 		U value;
 | |
| 
 | |
| 		user(U&& x) : value(std::forward<U>(x)) {
 | |
| 		}
 | |
| 		operator std::add_pointer_t<std::remove_reference_t<U>>() {
 | |
| 			return std::addressof(value);
 | |
| 		}
 | |
| 		operator std::add_lvalue_reference_t<U>() {
 | |
| 			return value;
 | |
| 		}
 | |
| 		operator std::add_const_t<std::add_lvalue_reference_t<U>> &() const {
 | |
| 			return value;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	auto make_user(T&& u) {
 | |
| 		typedef meta::unwrapped_t<meta::unqualified_t<T>> U;
 | |
| 		return user<U>(std::forward<T>(u));
 | |
| 	}
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct metatable_registry_key {
 | |
| 		T key;
 | |
| 
 | |
| 		metatable_registry_key(T key) : key(std::forward<T>(key)) {
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	auto meta_registry_key(T&& key) {
 | |
| 		typedef meta::unqualified_t<T> K;
 | |
| 		return metatable_registry_key<K>(std::forward<T>(key));
 | |
| 	}
 | |
| 
 | |
| 	template <typename... Upvalues>
 | |
| 	struct closure {
 | |
| 		lua_CFunction c_function;
 | |
| 		std::tuple<Upvalues...> upvalues;
 | |
| 		closure(lua_CFunction f, Upvalues... targetupvalues) : c_function(f), upvalues(std::forward<Upvalues>(targetupvalues)...) {
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct closure<> {
 | |
| 		lua_CFunction c_function;
 | |
| 		int upvalues;
 | |
| 		closure(lua_CFunction f, int upvalue_count = 0) : c_function(f), upvalues(upvalue_count) {
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	typedef closure<> c_closure;
 | |
| 
 | |
| 	template <typename... Args>
 | |
| 	closure<Args...> make_closure(lua_CFunction f, Args&&... args) {
 | |
| 		return closure<Args...>(f, std::forward<Args>(args)...);
 | |
| 	}
 | |
| 
 | |
| 	template <typename Sig, typename... Ps>
 | |
| 	struct function_arguments {
 | |
| 		std::tuple<Ps...> arguments;
 | |
| 		template <typename Arg, typename... Args, meta::disable<std::is_same<meta::unqualified_t<Arg>, function_arguments>> = meta::enabler>
 | |
| 		function_arguments(Arg&& arg, Args&&... args) : arguments(std::forward<Arg>(arg), std::forward<Args>(args)...) {
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename Sig = function_sig<>, typename... Args>
 | |
| 	auto as_function(Args&&... args) {
 | |
| 		return function_arguments<Sig, std::decay_t<Args>...>(std::forward<Args>(args)...);
 | |
| 	}
 | |
| 
 | |
| 	template <typename Sig = function_sig<>, typename... Args>
 | |
| 	auto as_function_reference(Args&&... args) {
 | |
| 		return function_arguments<Sig, Args...>(std::forward<Args>(args)...);
 | |
| 	}
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct as_table_t {
 | |
| 	private:
 | |
| 		T value_;
 | |
| 
 | |
| 	public:
 | |
| 		as_table_t() = default;
 | |
| 		as_table_t(const as_table_t&) = default;
 | |
| 		as_table_t(as_table_t&&) = default;
 | |
| 		as_table_t& operator=(const as_table_t&) = default;
 | |
| 		as_table_t& operator=(as_table_t&&) = default;
 | |
| 		template <typename Arg,
 | |
| 		     meta::enable<meta::neg<std::is_same<meta::unqualified_t<Arg>, as_table_t>>,
 | |
| 		          meta::neg<std::is_base_of<proxy_base_tag, meta::unqualified_t<Arg>>>> = meta::enabler>
 | |
| 		as_table_t(Arg&& arg) : value_(std::forward<Arg>(arg)) {
 | |
| 		}
 | |
| 		template <typename Arg0, typename Arg1, typename... Args>
 | |
| 		as_table_t(Arg0&& arg0, Arg1&& arg1, Args&&... args) : value_(std::forward<Arg0>(arg0), std::forward<Arg1>(arg1), std::forward<Args>(args)...) {
 | |
| 		}
 | |
| 
 | |
| 		T& value() & {
 | |
| 			return value_;
 | |
| 		}
 | |
| 
 | |
| 		T&& value() && {
 | |
| 			return std::move(value_);
 | |
| 		}
 | |
| 
 | |
| 		const T& value() const& {
 | |
| 			return value_;
 | |
| 		}
 | |
| 
 | |
| 		operator std::add_lvalue_reference_t<T>() {
 | |
| 			return value_;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct nested {
 | |
| 	private:
 | |
| 		T value_;
 | |
| 
 | |
| 	public:
 | |
| 		using nested_type = T;
 | |
| 
 | |
| 		nested() = default;
 | |
| 		nested(const nested&) = default;
 | |
| 		nested(nested&&) = default;
 | |
| 		nested& operator=(const nested&) = default;
 | |
| 		nested& operator=(nested&&) = default;
 | |
| 		template <typename Arg,
 | |
| 		     meta::enable<meta::neg<std::is_same<meta::unqualified_t<Arg>, nested>>,
 | |
| 		          meta::neg<std::is_base_of<proxy_base_tag, meta::unqualified_t<Arg>>>> = meta::enabler>
 | |
| 		nested(Arg&& arg) : value_(std::forward<Arg>(arg)) {
 | |
| 		}
 | |
| 		template <typename Arg0, typename Arg1, typename... Args>
 | |
| 		nested(Arg0&& arg0, Arg1&& arg1, Args&&... args) : value_(std::forward<Arg0>(arg0), std::forward<Arg1>(arg1), std::forward<Args>(args)...) {
 | |
| 		}
 | |
| 
 | |
| 		T& value() & {
 | |
| 			return value_;
 | |
| 		}
 | |
| 
 | |
| 		T&& value() && {
 | |
| 			return std::move(value_);
 | |
| 		}
 | |
| 
 | |
| 		const T& value() const& {
 | |
| 			return value_;
 | |
| 		}
 | |
| 
 | |
| 		operator std::add_lvalue_reference_t<T>() {
 | |
| 			return value_;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	struct nested_tag_t { };
 | |
| 	constexpr inline nested_tag_t nested_tag {};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	as_table_t<T> as_table_ref(T&& container) {
 | |
| 		return as_table_t<T>(std::forward<T>(container));
 | |
| 	}
 | |
| 
 | |
| 	template <typename T>
 | |
| 	as_table_t<meta::unqualified_t<T>> as_table(T&& container) {
 | |
| 		return as_table_t<meta::unqualified_t<T>>(std::forward<T>(container));
 | |
| 	}
 | |
| 
 | |
| 	template <typename T>
 | |
| 	nested<T> as_nested_ref(T&& container) {
 | |
| 		return nested<T>(std::forward<T>(container));
 | |
| 	}
 | |
| 
 | |
| 	template <typename T>
 | |
| 	nested<meta::unqualified_t<T>> as_nested(T&& container) {
 | |
| 		return nested<meta::unqualified_t<T>>(std::forward<T>(container));
 | |
| 	}
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct as_container_t {
 | |
| 	private:
 | |
| 		T value_;
 | |
| 
 | |
| 	public:
 | |
| 		using type = T;
 | |
| 
 | |
| 		as_container_t() = default;
 | |
| 		as_container_t(const as_container_t&) = default;
 | |
| 		as_container_t(as_container_t&&) = default;
 | |
| 		as_container_t& operator=(const as_container_t&) = default;
 | |
| 		as_container_t& operator=(as_container_t&&) = default;
 | |
| 		template <typename Arg,
 | |
| 		     meta::enable<meta::neg<std::is_same<meta::unqualified_t<Arg>, as_container_t>>,
 | |
| 		          meta::neg<std::is_base_of<proxy_base_tag, meta::unqualified_t<Arg>>>> = meta::enabler>
 | |
| 		as_container_t(Arg&& arg) : value_(std::forward<Arg>(arg)) {
 | |
| 		}
 | |
| 		template <typename Arg0, typename Arg1, typename... Args>
 | |
| 		as_container_t(Arg0&& arg0, Arg1&& arg1, Args&&... args) : value_(std::forward<Arg0>(arg0), std::forward<Arg1>(arg1), std::forward<Args>(args)...) {
 | |
| 		}
 | |
| 
 | |
| 		T& value() & {
 | |
| 			return value_;
 | |
| 		}
 | |
| 
 | |
| 		T&& value() && {
 | |
| 			return std::move(value_);
 | |
| 		}
 | |
| 
 | |
| 		const T& value() const& {
 | |
| 			return value_;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct as_container_t<T&> {
 | |
| 	private:
 | |
| 		std::reference_wrapper<T> value_;
 | |
| 
 | |
| 	public:
 | |
| 		as_container_t(T& value) : value_(value) {
 | |
| 		}
 | |
| 
 | |
| 		T& value() {
 | |
| 			return value_;
 | |
| 		}
 | |
| 
 | |
| 		operator T&() {
 | |
| 			return value();
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	auto as_container(T&& value) {
 | |
| 		return as_container_t<T>(std::forward<T>(value));
 | |
| 	}
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct push_invoke_t {
 | |
| 	private:
 | |
| 		T value_;
 | |
| 
 | |
| 	public:
 | |
| 		push_invoke_t() = default;
 | |
| 		push_invoke_t(const push_invoke_t&) = default;
 | |
| 		push_invoke_t(push_invoke_t&&) = default;
 | |
| 		push_invoke_t& operator=(const push_invoke_t&) = default;
 | |
| 		push_invoke_t& operator=(push_invoke_t&&) = default;
 | |
| 		template <typename Arg,
 | |
| 		     meta::enable<meta::neg<std::is_same<meta::unqualified_t<Arg>, push_invoke_t>>,
 | |
| 		          meta::neg<std::is_base_of<proxy_base_tag, meta::unqualified_t<Arg>>>> = meta::enabler>
 | |
| 		push_invoke_t(Arg&& arg) : value_(std::forward<Arg>(arg)) {
 | |
| 		}
 | |
| 		template <typename Arg0, typename Arg1, typename... Args>
 | |
| 		push_invoke_t(Arg0&& arg0, Arg1&& arg1, Args&&... args) : value_(std::forward<Arg0>(arg0), std::forward<Arg1>(arg1), std::forward<Args>(args)...) {
 | |
| 		}
 | |
| 
 | |
| 		T& value() & {
 | |
| 			return value_;
 | |
| 		}
 | |
| 
 | |
| 		T&& value() && {
 | |
| 			return std::move(value_);
 | |
| 		}
 | |
| 
 | |
| 		const T& value() const& {
 | |
| 			return value_;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct push_invoke_t<T&> {
 | |
| 		std::reference_wrapper<T> value_;
 | |
| 
 | |
| 		push_invoke_t(T& value) : value_(value) {
 | |
| 		}
 | |
| 
 | |
| 		T& value() {
 | |
| 			return value_;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename Fx>
 | |
| 	auto push_invoke(Fx&& fx) {
 | |
| 		return push_invoke_t<Fx>(std::forward<Fx>(fx));
 | |
| 	}
 | |
| 
 | |
| 	struct override_value_t { };
 | |
| 	constexpr inline override_value_t override_value = override_value_t();
 | |
| 	struct update_if_empty_t { };
 | |
| 	constexpr inline update_if_empty_t update_if_empty = update_if_empty_t();
 | |
| 	struct create_if_nil_t { };
 | |
| 	constexpr inline create_if_nil_t create_if_nil = create_if_nil_t();
 | |
| 
 | |
| 	namespace detail {
 | |
| 		enum insert_mode { none = 0x0, update_if_empty = 0x01, override_value = 0x02, create_if_nil = 0x04 };
 | |
| 
 | |
| 		template <typename T, typename...>
 | |
| 		using is_insert_mode = std::integral_constant<bool,
 | |
| 		     std::is_same_v<T, override_value_t> || std::is_same_v<T, update_if_empty_t> || std::is_same_v<T, create_if_nil_t>>;
 | |
| 
 | |
| 		template <typename T, typename...>
 | |
| 		using is_not_insert_mode = meta::neg<is_insert_mode<T>>;
 | |
| 	} // namespace detail
 | |
| 
 | |
| 	struct this_state {
 | |
| 		lua_State* L;
 | |
| 
 | |
| 		this_state(lua_State* Ls) : L(Ls) {
 | |
| 		}
 | |
| 
 | |
| 		operator lua_State*() const noexcept {
 | |
| 			return lua_state();
 | |
| 		}
 | |
| 
 | |
| 		lua_State* operator->() const noexcept {
 | |
| 			return lua_state();
 | |
| 		}
 | |
| 
 | |
| 		lua_State* lua_state() const noexcept {
 | |
| 			return L;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	struct this_main_state {
 | |
| 		lua_State* L;
 | |
| 
 | |
| 		this_main_state(lua_State* Ls) : L(Ls) {
 | |
| 		}
 | |
| 
 | |
| 		operator lua_State*() const noexcept {
 | |
| 			return lua_state();
 | |
| 		}
 | |
| 
 | |
| 		lua_State* operator->() const noexcept {
 | |
| 			return lua_state();
 | |
| 		}
 | |
| 
 | |
| 		lua_State* lua_state() const noexcept {
 | |
| 			return L;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	struct new_table {
 | |
| 		int sequence_hint = 0;
 | |
| 		int map_hint = 0;
 | |
| 
 | |
| 		new_table() = default;
 | |
| 		new_table(const new_table&) = default;
 | |
| 		new_table(new_table&&) = default;
 | |
| 		new_table& operator=(const new_table&) = default;
 | |
| 		new_table& operator=(new_table&&) = default;
 | |
| 
 | |
| 		new_table(int sequence_hint, int map_hint = 0) : sequence_hint(sequence_hint), map_hint(map_hint) {
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	const new_table create = {};
 | |
| 
 | |
| 	enum class lib : char {
 | |
| 		// print, assert, and other base functions
 | |
| 		base,
 | |
| 		// require and other package functions
 | |
| 		package,
 | |
| 		// coroutine functions and utilities
 | |
| 		coroutine,
 | |
| 		// string library
 | |
| 		string,
 | |
| 		// functionality from the OS
 | |
| 		os,
 | |
| 		// all things math
 | |
| 		math,
 | |
| 		// the table manipulator and observer functions
 | |
| 		table,
 | |
| 		// the debug library
 | |
| 		debug,
 | |
| 		// the bit library: different based on which you're using
 | |
| 		bit32,
 | |
| 		// input/output library
 | |
| 		io,
 | |
| 		// LuaJIT only
 | |
| 		ffi,
 | |
| 		// LuaJIT only
 | |
| 		jit,
 | |
| 		// library for handling utf8: new to Lua
 | |
| 		utf8,
 | |
| 		// do not use
 | |
| 		count
 | |
| 	};
 | |
| 
 | |
| 	enum class call_syntax { dot = 0, colon = 1 };
 | |
| 
 | |
| 	enum class load_mode {
 | |
| 		any = 0,
 | |
| 		text = 1,
 | |
| 		binary = 2,
 | |
| 	};
 | |
| 
 | |
| 	enum class call_status : int {
 | |
| 		ok = LUA_OK,
 | |
| 		yielded = LUA_YIELD,
 | |
| 		runtime = LUA_ERRRUN,
 | |
| 		memory = LUA_ERRMEM,
 | |
| 		handler = LUA_ERRERR,
 | |
| 		gc = LUA_ERRGCMM,
 | |
| 		syntax = LUA_ERRSYNTAX,
 | |
| 		file = LUA_ERRFILE,
 | |
| 	};
 | |
| 
 | |
| 	enum class thread_status : int {
 | |
| 		ok = LUA_OK,
 | |
| 		yielded = LUA_YIELD,
 | |
| 		runtime = LUA_ERRRUN,
 | |
| 		memory = LUA_ERRMEM,
 | |
| 		gc = LUA_ERRGCMM,
 | |
| 		handler = LUA_ERRERR,
 | |
| 		dead = -1,
 | |
| 	};
 | |
| 
 | |
| 	enum class load_status : int {
 | |
| 		ok = LUA_OK,
 | |
| 		syntax = LUA_ERRSYNTAX,
 | |
| 		memory = LUA_ERRMEM,
 | |
| 		gc = LUA_ERRGCMM,
 | |
| 		file = LUA_ERRFILE,
 | |
| 	};
 | |
| 
 | |
| 	enum class gc_mode : int {
 | |
| 		incremental = 0,
 | |
| 		generational = 1,
 | |
| 		default_value = incremental,
 | |
| 	};
 | |
| 
 | |
| 	enum class type : int {
 | |
| 		none = LUA_TNONE,
 | |
| 		lua_nil = LUA_TNIL,
 | |
| #if SOL_IS_ON(SOL_NIL_I_)
 | |
| 		nil = lua_nil,
 | |
| #endif // Objective C/C++ Keyword that's found in OSX SDK and OBJC -- check for all forms to protect
 | |
| 		string = LUA_TSTRING,
 | |
| 		number = LUA_TNUMBER,
 | |
| 		thread = LUA_TTHREAD,
 | |
| 		boolean = LUA_TBOOLEAN,
 | |
| 		function = LUA_TFUNCTION,
 | |
| 		userdata = LUA_TUSERDATA,
 | |
| 		lightuserdata = LUA_TLIGHTUSERDATA,
 | |
| 		table = LUA_TTABLE,
 | |
| 		poly = -0xFFFF
 | |
| 	};
 | |
| 
 | |
| 	inline const std::string& to_string(call_status c) {
 | |
| 		static const std::array<std::string, 10> names { { "ok",
 | |
| 			"yielded",
 | |
| 			"runtime",
 | |
| 			"memory",
 | |
| 			"handler",
 | |
| 			"gc",
 | |
| 			"syntax",
 | |
| 			"file",
 | |
| 			"CRITICAL_EXCEPTION_FAILURE",
 | |
| 			"CRITICAL_INDETERMINATE_STATE_FAILURE" } };
 | |
| 		switch (c) {
 | |
| 		case call_status::ok:
 | |
| 			return names[0];
 | |
| 		case call_status::yielded:
 | |
| 			return names[1];
 | |
| 		case call_status::runtime:
 | |
| 			return names[2];
 | |
| 		case call_status::memory:
 | |
| 			return names[3];
 | |
| 		case call_status::handler:
 | |
| 			return names[4];
 | |
| 		case call_status::gc:
 | |
| 			return names[5];
 | |
| 		case call_status::syntax:
 | |
| 			return names[6];
 | |
| 		case call_status::file:
 | |
| 			return names[7];
 | |
| 		}
 | |
| 		if (static_cast<std::ptrdiff_t>(c) == -1) {
 | |
| 			// One of the many cases where a critical exception error has occurred
 | |
| 			return names[8];
 | |
| 		}
 | |
| 		return names[9];
 | |
| 	}
 | |
| 
 | |
| 	inline bool is_indeterminate_call_failure(call_status c) {
 | |
| 		switch (c) {
 | |
| 		case call_status::ok:
 | |
| 		case call_status::yielded:
 | |
| 		case call_status::runtime:
 | |
| 		case call_status::memory:
 | |
| 		case call_status::handler:
 | |
| 		case call_status::gc:
 | |
| 		case call_status::syntax:
 | |
| 		case call_status::file:
 | |
| 			return false;
 | |
| 		}
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	inline const std::string& to_string(load_status c) {
 | |
| 		static const std::array<std::string, 7> names {
 | |
| 			{ "ok", "memory", "gc", "syntax", "file", "CRITICAL_EXCEPTION_FAILURE", "CRITICAL_INDETERMINATE_STATE_FAILURE" }
 | |
| 		};
 | |
| 		switch (c) {
 | |
| 		case load_status::ok:
 | |
| 			return names[0];
 | |
| 		case load_status::memory:
 | |
| 			return names[1];
 | |
| 		case load_status::gc:
 | |
| 			return names[2];
 | |
| 		case load_status::syntax:
 | |
| 			return names[3];
 | |
| 		case load_status::file:
 | |
| 			return names[4];
 | |
| 		}
 | |
| 		if (static_cast<int>(c) == -1) {
 | |
| 			// One of the many cases where a critical exception error has occurred
 | |
| 			return names[5];
 | |
| 		}
 | |
| 		return names[6];
 | |
| 	}
 | |
| 
 | |
| 	inline const std::string& to_string(load_mode c) {
 | |
| 		static const std::array<std::string, 3> names { {
 | |
| 			"bt",
 | |
| 			"t",
 | |
| 			"b",
 | |
| 		} };
 | |
| 		return names[static_cast<std::size_t>(c)];
 | |
| 	}
 | |
| 
 | |
| 	enum class meta_function {
 | |
| 		construct,
 | |
| 		index,
 | |
| 		new_index,
 | |
| 		mode,
 | |
| 		call,
 | |
| 		call_function = call,
 | |
| 		metatable,
 | |
| 		to_string,
 | |
| 		length,
 | |
| 		unary_minus,
 | |
| 		addition,
 | |
| 		subtraction,
 | |
| 		multiplication,
 | |
| 		division,
 | |
| 		modulus,
 | |
| 		power_of,
 | |
| 		involution = power_of,
 | |
| 		concatenation,
 | |
| 		equal_to,
 | |
| 		less_than,
 | |
| 		less_than_or_equal_to,
 | |
| 		garbage_collect,
 | |
| 		floor_division,
 | |
| 		bitwise_left_shift,
 | |
| 		bitwise_right_shift,
 | |
| 		bitwise_not,
 | |
| 		bitwise_and,
 | |
| 		bitwise_or,
 | |
| 		bitwise_xor,
 | |
| 		pairs,
 | |
| 		ipairs,
 | |
| 		next,
 | |
| 		type,
 | |
| 		type_info,
 | |
| 		call_construct,
 | |
| 		storage,
 | |
| 		gc_names,
 | |
| 		static_index,
 | |
| 		static_new_index,
 | |
| 	};
 | |
| 
 | |
| 	typedef meta_function meta_method;
 | |
| 
 | |
| 	inline const std::array<std::string, 37>& meta_function_names() {
 | |
| 		static const std::array<std::string, 37> names = { { "new",
 | |
| 			"__index",
 | |
| 			"__newindex",
 | |
| 			"__mode",
 | |
| 			"__call",
 | |
| 			"__metatable",
 | |
| 			"__tostring",
 | |
| 			"__len",
 | |
| 			"__unm",
 | |
| 			"__add",
 | |
| 			"__sub",
 | |
| 			"__mul",
 | |
| 			"__div",
 | |
| 			"__mod",
 | |
| 			"__pow",
 | |
| 			"__concat",
 | |
| 			"__eq",
 | |
| 			"__lt",
 | |
| 			"__le",
 | |
| 			"__gc",
 | |
| 
 | |
| 			"__idiv",
 | |
| 			"__shl",
 | |
| 			"__shr",
 | |
| 			"__bnot",
 | |
| 			"__band",
 | |
| 			"__bor",
 | |
| 			"__bxor",
 | |
| 
 | |
| 			"__pairs",
 | |
| 			"__ipairs",
 | |
| 			"next",
 | |
| 
 | |
| 			"__type",
 | |
| 			"__typeinfo",
 | |
| 			"__sol.call_new",
 | |
| 			"__sol.storage",
 | |
| 			"__sol.gc_names",
 | |
| 			"__sol.static_index",
 | |
| 			"__sol.static_new_index" } };
 | |
| 		return names;
 | |
| 	}
 | |
| 
 | |
| 	inline const std::string& to_string(meta_function mf) {
 | |
| 		return meta_function_names()[static_cast<int>(mf)];
 | |
| 	}
 | |
| 
 | |
| 	inline type type_of(lua_State* L, int index) {
 | |
| 		return static_cast<type>(lua_type(L, index));
 | |
| 	}
 | |
| 
 | |
| 	inline std::string type_name(lua_State* L, type t) {
 | |
| 		return lua_typename(L, static_cast<int>(t));
 | |
| 	}
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct is_lua_reference
 | |
| 	: std::integral_constant<bool, std::is_base_of_v<reference, T> || std::is_base_of_v<main_reference, T> || std::is_base_of_v<stack_reference, T>> { };
 | |
| 
 | |
| 	template <typename T>
 | |
| 	inline constexpr bool is_lua_reference_v = is_lua_reference<T>::value;
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct is_lua_reference_or_proxy : std::integral_constant<bool, is_lua_reference_v<T> || meta::is_specialization_of_v<T, table_proxy>> { };
 | |
| 
 | |
| 	template <typename T>
 | |
| 	inline constexpr bool is_lua_reference_or_proxy_v = is_lua_reference_or_proxy<T>::value;
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct is_transparent_argument : std::false_type { };
 | |
| 
 | |
| 	template <typename T>
 | |
| 	constexpr inline bool is_transparent_argument_v = is_transparent_argument<T>::value;
 | |
| 
 | |
| 	template <>
 | |
| 	struct is_transparent_argument<this_state> : std::true_type { };
 | |
| 	template <>
 | |
| 	struct is_transparent_argument<this_main_state> : std::true_type { };
 | |
| 	template <>
 | |
| 	struct is_transparent_argument<this_environment> : std::true_type { };
 | |
| 	template <>
 | |
| 	struct is_transparent_argument<variadic_args> : std::true_type { };
 | |
| 	template <typename T>
 | |
| 	struct is_variadic_arguments : std::is_same<T, variadic_args> { };
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct is_container
 | |
| 	: std::integral_constant<bool,
 | |
| 	       !std::is_same_v<state_view,
 | |
| 	            T> && !std::is_same_v<state, T> && !meta::is_initializer_list_v<T> && !meta::is_string_like_v<T> && !meta::is_string_literal_array_v<T> && !is_transparent_argument_v<T> && !is_lua_reference_v<T> && (meta::has_begin_end_v<T> || std::is_array_v<T>)> {
 | |
| 	};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	constexpr inline bool is_container_v = is_container<T>::value;
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct is_to_stringable : meta::any<meta::supports_to_string_member<meta::unqualified_t<T>>, meta::supports_adl_to_string<meta::unqualified_t<T>>,
 | |
| 	                               meta::supports_op_left_shift<std::ostream, meta::unqualified_t<T>>> { };
 | |
| 
 | |
| 	namespace detail {
 | |
| 		template <typename T, typename = void>
 | |
| 		struct lua_type_of : std::integral_constant<type, type::userdata> { };
 | |
| 
 | |
| 		template <typename C, typename T, typename A>
 | |
| 		struct lua_type_of<std::basic_string<C, T, A>> : std::integral_constant<type, type::string> { };
 | |
| 
 | |
| 		template <typename C, typename T>
 | |
| 		struct lua_type_of<basic_string_view<C, T>> : std::integral_constant<type, type::string> { };
 | |
| 
 | |
| 		template <std::size_t N>
 | |
| 		struct lua_type_of<char[N]> : std::integral_constant<type, type::string> { };
 | |
| 
 | |
| 		template <std::size_t N>
 | |
| 		struct lua_type_of<wchar_t[N]> : std::integral_constant<type, type::string> { };
 | |
| 
 | |
| 		template <std::size_t N>
 | |
| 		struct lua_type_of<char16_t[N]> : std::integral_constant<type, type::string> { };
 | |
| 
 | |
| 		template <std::size_t N>
 | |
| 		struct lua_type_of<char32_t[N]> : std::integral_constant<type, type::string> { };
 | |
| 
 | |
| 		template <>
 | |
| 		struct lua_type_of<char> : std::integral_constant<type, type::string> { };
 | |
| 
 | |
| 		template <>
 | |
| 		struct lua_type_of<wchar_t> : std::integral_constant<type, type::string> { };
 | |
| 
 | |
| 		template <>
 | |
| 		struct lua_type_of<char16_t> : std::integral_constant<type, type::string> { };
 | |
| 
 | |
| 		template <>
 | |
| 		struct lua_type_of<char32_t> : std::integral_constant<type, type::string> { };
 | |
| 
 | |
| 		template <>
 | |
| 		struct lua_type_of<const char*> : std::integral_constant<type, type::string> { };
 | |
| 
 | |
| 		template <>
 | |
| 		struct lua_type_of<const char16_t*> : std::integral_constant<type, type::string> { };
 | |
| 
 | |
| 		template <>
 | |
| 		struct lua_type_of<const char32_t*> : std::integral_constant<type, type::string> { };
 | |
| 
 | |
| 		template <>
 | |
| 		struct lua_type_of<bool> : std::integral_constant<type, type::boolean> { };
 | |
| 
 | |
| 		template <>
 | |
| 		struct lua_type_of<lua_nil_t> : std::integral_constant<type, type::lua_nil> { };
 | |
| 
 | |
| 		template <>
 | |
| 		struct lua_type_of<nullopt_t> : std::integral_constant<type, type::lua_nil> { };
 | |
| 
 | |
| 		template <>
 | |
| 		struct lua_type_of<lua_value> : std::integral_constant<type, type::poly> { };
 | |
| 
 | |
| 		template <>
 | |
| 		struct lua_type_of<detail::non_lua_nil_t> : std::integral_constant<type, type::poly> { };
 | |
| 
 | |
| 		template <>
 | |
| 		struct lua_type_of<std::nullptr_t> : std::integral_constant<type, type::lua_nil> { };
 | |
| 
 | |
| 		template <>
 | |
| 		struct lua_type_of<error> : std::integral_constant<type, type::string> { };
 | |
| 
 | |
| 		template <bool b, typename Base>
 | |
| 		struct lua_type_of<basic_table_core<b, Base>> : std::integral_constant<type, type::table> { };
 | |
| 
 | |
| 		template <typename Base>
 | |
| 		struct lua_type_of<basic_lua_table<Base>> : std::integral_constant<type, type::table> { };
 | |
| 
 | |
| 		template <typename Base>
 | |
| 		struct lua_type_of<basic_metatable<Base>> : std::integral_constant<type, type::table> { };
 | |
| 
 | |
| 		template <typename T, typename Base>
 | |
| 		struct lua_type_of<basic_usertype<T, Base>> : std::integral_constant<type, type::table> { };
 | |
| 
 | |
| 		template <>
 | |
| 		struct lua_type_of<metatable_key_t> : std::integral_constant<type, type::table> { };
 | |
| 
 | |
| 		template <typename B>
 | |
| 		struct lua_type_of<basic_environment<B>> : std::integral_constant<type, type::poly> { };
 | |
| 
 | |
| 		template <>
 | |
| 		struct lua_type_of<env_key_t> : std::integral_constant<type, type::poly> { };
 | |
| 
 | |
| 		template <>
 | |
| 		struct lua_type_of<new_table> : std::integral_constant<type, type::table> { };
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct lua_type_of<as_table_t<T>> : std::integral_constant<type, type::table> { };
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct lua_type_of<std::initializer_list<T>> : std::integral_constant<type, type::table> { };
 | |
| 
 | |
| 		template <bool b>
 | |
| 		struct lua_type_of<basic_reference<b>> : std::integral_constant<type, type::poly> { };
 | |
| 
 | |
| 		template <>
 | |
| 		struct lua_type_of<stack_reference> : std::integral_constant<type, type::poly> { };
 | |
| 
 | |
| 		template <typename Base>
 | |
| 		struct lua_type_of<basic_object<Base>> : std::integral_constant<type, type::poly> { };
 | |
| 
 | |
| 		template <typename... Args>
 | |
| 		struct lua_type_of<std::tuple<Args...>> : std::integral_constant<type, type::poly> { };
 | |
| 
 | |
| 		template <typename A, typename B>
 | |
| 		struct lua_type_of<std::pair<A, B>> : std::integral_constant<type, type::poly> { };
 | |
| 
 | |
| 		template <>
 | |
| 		struct lua_type_of<void*> : std::integral_constant<type, type::lightuserdata> { };
 | |
| 
 | |
| 		template <>
 | |
| 		struct lua_type_of<const void*> : std::integral_constant<type, type::lightuserdata> { };
 | |
| 
 | |
| 		template <>
 | |
| 		struct lua_type_of<lightuserdata_value> : std::integral_constant<type, type::lightuserdata> { };
 | |
| 
 | |
| 		template <>
 | |
| 		struct lua_type_of<userdata_value> : std::integral_constant<type, type::userdata> { };
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct lua_type_of<light<T>> : std::integral_constant<type, type::lightuserdata> { };
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct lua_type_of<user<T>> : std::integral_constant<type, type::userdata> { };
 | |
| 
 | |
| 		template <typename Base>
 | |
| 		struct lua_type_of<basic_lightuserdata<Base>> : std::integral_constant<type, type::lightuserdata> { };
 | |
| 
 | |
| 		template <typename Base>
 | |
| 		struct lua_type_of<basic_userdata<Base>> : std::integral_constant<type, type::userdata> { };
 | |
| 
 | |
| 		template <>
 | |
| 		struct lua_type_of<lua_CFunction> : std::integral_constant<type, type::function> { };
 | |
| 
 | |
| 		template <>
 | |
| 		struct lua_type_of<std::remove_pointer_t<lua_CFunction>> : std::integral_constant<type, type::function> { };
 | |
| 
 | |
| 		template <typename Base, bool aligned>
 | |
| 		struct lua_type_of<basic_function<Base, aligned>> : std::integral_constant<type, type::function> { };
 | |
| 
 | |
| 		template <typename Base, bool aligned, typename Handler>
 | |
| 		struct lua_type_of<basic_protected_function<Base, aligned, Handler>> : std::integral_constant<type, type::function> { };
 | |
| 
 | |
| 		template <typename Base>
 | |
| 		struct lua_type_of<basic_coroutine<Base>> : std::integral_constant<type, type::function> { };
 | |
| 
 | |
| 		template <typename Base>
 | |
| 		struct lua_type_of<basic_thread<Base>> : std::integral_constant<type, type::thread> { };
 | |
| 
 | |
| 		template <typename Signature>
 | |
| 		struct lua_type_of<std::function<Signature>> : std::integral_constant<type, type::function> { };
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct lua_type_of<optional<T>> : std::integral_constant<type, type::poly> { };
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct lua_type_of<std::optional<T>> : std::integral_constant<type, type::poly> { };
 | |
| 
 | |
| 		template <>
 | |
| 		struct lua_type_of<variadic_args> : std::integral_constant<type, type::poly> { };
 | |
| 
 | |
| 		template <>
 | |
| 		struct lua_type_of<variadic_results> : std::integral_constant<type, type::poly> { };
 | |
| 
 | |
| 		template <>
 | |
| 		struct lua_type_of<stack_count> : std::integral_constant<type, type::poly> { };
 | |
| 
 | |
| 		template <>
 | |
| 		struct lua_type_of<this_state> : std::integral_constant<type, type::poly> { };
 | |
| 
 | |
| 		template <>
 | |
| 		struct lua_type_of<this_main_state> : std::integral_constant<type, type::poly> { };
 | |
| 
 | |
| 		template <>
 | |
| 		struct lua_type_of<this_environment> : std::integral_constant<type, type::poly> { };
 | |
| 
 | |
| 		template <>
 | |
| 		struct lua_type_of<type> : std::integral_constant<type, type::poly> { };
 | |
| 
 | |
| #if SOL_IS_ON(SOL_GET_FUNCTION_POINTER_UNSAFE_I_)
 | |
| 		template <typename T>
 | |
| 		struct lua_type_of<T*> : std::integral_constant<type, std::is_function_v<T> ? type::function : type::userdata> { };
 | |
| #else
 | |
| 		template <typename T>
 | |
| 		struct lua_type_of<T*> : std::integral_constant<type, type::userdata> { };
 | |
| #endif
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct lua_type_of<T, std::enable_if_t<std::is_arithmetic_v<T> || std::is_same_v<T, lua_Number> || std::is_same_v<T, lua_Integer>>>
 | |
| 		: std::integral_constant<type, type::number> { };
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct lua_type_of<T, std::enable_if_t<std::is_function_v<T>>> : std::integral_constant<type, type::function> { };
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct lua_type_of<T, std::enable_if_t<std::is_enum_v<T>>> : std::integral_constant<type, type::number> { };
 | |
| 
 | |
| 		template <>
 | |
| 		struct lua_type_of<meta_function> : std::integral_constant<type, type::string> { };
 | |
| 
 | |
| #if SOL_IS_ON(SOL_STD_VARIANT_I_)
 | |
| 		template <typename... Tn>
 | |
| 		struct lua_type_of<std::variant<Tn...>> : std::integral_constant<type, type::poly> { };
 | |
| #endif // std::variant deployment sucks on Clang
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct lua_type_of<nested<T>> : meta::conditional_t<::sol::is_container_v<T>, std::integral_constant<type, type::table>, lua_type_of<T>> { };
 | |
| 
 | |
| 		template <typename C, C v, template <typename...> class V, typename... Args>
 | |
| 		struct accumulate : std::integral_constant<C, v> { };
 | |
| 
 | |
| 		template <typename C, C v, template <typename...> class V, typename T, typename... Args>
 | |
| 		struct accumulate<C, v, V, T, Args...> : accumulate<C, v + V<T>::value, V, Args...> { };
 | |
| 
 | |
| 		template <typename C, C v, template <typename...> class V, typename List>
 | |
| 		struct accumulate_list;
 | |
| 
 | |
| 		template <typename C, C v, template <typename...> class V, typename... Args>
 | |
| 		struct accumulate_list<C, v, V, types<Args...>> : accumulate<C, v, V, Args...> { };
 | |
| 	} // namespace detail
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct lua_type_of : detail::lua_type_of<T> {
 | |
| 		typedef int SOL_INTERNAL_UNSPECIALIZED_MARKER_;
 | |
| 	};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	inline constexpr type lua_type_of_v = lua_type_of<T>::value;
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct lua_size : std::integral_constant<int, 1> {
 | |
| 		typedef int SOL_INTERNAL_UNSPECIALIZED_MARKER_;
 | |
| 	};
 | |
| 
 | |
| 	template <typename A, typename B>
 | |
| 	struct lua_size<std::pair<A, B>> : std::integral_constant<int, lua_size<A>::value + lua_size<B>::value> { };
 | |
| 
 | |
| 	template <typename... Args>
 | |
| 	struct lua_size<std::tuple<Args...>> : std::integral_constant<int, detail::accumulate<int, 0, lua_size, Args...>::value> { };
 | |
| 
 | |
| 	template <typename T>
 | |
| 	inline constexpr int lua_size_v = lua_size<T>::value;
 | |
| 
 | |
| 	namespace detail {
 | |
| 		template <typename...>
 | |
| 		struct void_ {
 | |
| 			typedef void type;
 | |
| 		};
 | |
| 		template <typename T, typename = void>
 | |
| 		struct has_internal_marker_impl : std::false_type { };
 | |
| 		template <typename T>
 | |
| 		struct has_internal_marker_impl<T, typename void_<typename T::SOL_INTERNAL_UNSPECIALIZED_MARKER_>::type> : std::true_type { };
 | |
| 
 | |
| 		template <typename T>
 | |
| 		using has_internal_marker = has_internal_marker_impl<T>;
 | |
| 
 | |
| 		template <typename T>
 | |
| 		constexpr inline bool has_internal_marker_v = has_internal_marker<T>::value;
 | |
| 	} // namespace detail
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct is_lua_primitive
 | |
| 	: std::integral_constant<bool,
 | |
| 	       type::userdata
 | |
| 	                 != lua_type_of_v<
 | |
| 	                      T> || ((type::userdata == lua_type_of_v<T>)&&detail::has_internal_marker_v<lua_type_of<T>> && !detail::has_internal_marker_v<lua_size<T>>)
 | |
| 	            || is_lua_reference_or_proxy_v<T> || meta::is_specialization_of_v<T, std::tuple> || meta::is_specialization_of_v<T, std::pair>> { };
 | |
| 
 | |
| 	template <typename T>
 | |
| 	constexpr inline bool is_lua_primitive_v = is_lua_primitive<T>::value;
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct is_main_threaded : std::is_base_of<main_reference, T> { };
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct is_stack_based : std::is_base_of<stack_reference, T> { };
 | |
| 	template <>
 | |
| 	struct is_stack_based<variadic_args> : std::true_type { };
 | |
| 	template <>
 | |
| 	struct is_stack_based<unsafe_function_result> : std::true_type { };
 | |
| 	template <>
 | |
| 	struct is_stack_based<protected_function_result> : std::true_type { };
 | |
| 	template <>
 | |
| 	struct is_stack_based<stack_proxy> : std::true_type { };
 | |
| 	template <>
 | |
| 	struct is_stack_based<stack_proxy_base> : std::true_type { };
 | |
| 	template <>
 | |
| 	struct is_stack_based<stack_count> : std::true_type { };
 | |
| 
 | |
| 	template <typename T>
 | |
| 	constexpr inline bool is_stack_based_v = is_stack_based<T>::value;
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct is_lua_primitive<T*> : std::true_type { };
 | |
| 	template <>
 | |
| 	struct is_lua_primitive<unsafe_function_result> : std::true_type { };
 | |
| 	template <>
 | |
| 	struct is_lua_primitive<protected_function_result> : std::true_type { };
 | |
| 	template <typename T>
 | |
| 	struct is_lua_primitive<std::reference_wrapper<T>> : std::true_type { };
 | |
| 	template <typename T>
 | |
| 	struct is_lua_primitive<user<T>> : std::true_type { };
 | |
| 	template <typename T>
 | |
| 	struct is_lua_primitive<light<T>> : is_lua_primitive<T*> { };
 | |
| 	template <typename T>
 | |
| 	struct is_lua_primitive<optional<T>> : std::true_type { };
 | |
| 	template <typename T>
 | |
| 	struct is_lua_primitive<std::optional<T>> : std::true_type { };
 | |
| 	template <typename T>
 | |
| 	struct is_lua_primitive<as_table_t<T>> : std::true_type { };
 | |
| 	template <typename T>
 | |
| 	struct is_lua_primitive<nested<T>> : std::true_type { };
 | |
| 	template <>
 | |
| 	struct is_lua_primitive<userdata_value> : std::true_type { };
 | |
| 	template <>
 | |
| 	struct is_lua_primitive<lightuserdata_value> : std::true_type { };
 | |
| 	template <>
 | |
| 	struct is_lua_primitive<stack_proxy> : std::true_type { };
 | |
| 	template <>
 | |
| 	struct is_lua_primitive<stack_proxy_base> : std::true_type { };
 | |
| 	template <typename T>
 | |
| 	struct is_lua_primitive<non_null<T>> : is_lua_primitive<T*> { };
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct is_lua_index : std::is_integral<T> { };
 | |
| 	template <>
 | |
| 	struct is_lua_index<raw_index> : std::true_type { };
 | |
| 	template <>
 | |
| 	struct is_lua_index<absolute_index> : std::true_type { };
 | |
| 	template <>
 | |
| 	struct is_lua_index<ref_index> : std::true_type { };
 | |
| 	template <>
 | |
| 	struct is_lua_index<upvalue_index> : std::true_type { };
 | |
| 
 | |
| 	template <typename Signature>
 | |
| 	struct lua_bind_traits : meta::bind_traits<Signature> {
 | |
| 	private:
 | |
| 		typedef meta::bind_traits<Signature> base_t;
 | |
| 
 | |
| 	public:
 | |
| 		typedef std::integral_constant<bool, meta::count_for<is_variadic_arguments, typename base_t::args_list>::value != 0> runtime_variadics_t;
 | |
| 		static const std::size_t true_arity = base_t::arity;
 | |
| 		static const std::size_t arity = detail::accumulate_list<std::size_t, 0, lua_size, typename base_t::args_list>::value
 | |
| 		     - meta::count_for<is_transparent_argument, typename base_t::args_list>::value;
 | |
| 		static const std::size_t true_free_arity = base_t::free_arity;
 | |
| 		static const std::size_t free_arity = detail::accumulate_list<std::size_t, 0, lua_size, typename base_t::free_args_list>::value
 | |
| 		     - meta::count_for<is_transparent_argument, typename base_t::args_list>::value;
 | |
| 	};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct is_table : std::false_type { };
 | |
| 	template <bool x, typename T>
 | |
| 	struct is_table<basic_table_core<x, T>> : std::true_type { };
 | |
| 	template <typename T>
 | |
| 	struct is_table<basic_lua_table<T>> : std::true_type { };
 | |
| 
 | |
| 	template <typename T>
 | |
| 	inline constexpr bool is_table_v = is_table<T>::value;
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct is_stack_table : std::false_type { };
 | |
| 	template <bool x, typename T>
 | |
| 	struct is_stack_table<basic_table_core<x, T>> : std::integral_constant<bool, std::is_base_of_v<stack_reference, T>> { };
 | |
| 	template <typename T>
 | |
| 	struct is_stack_table<basic_lua_table<T>> : std::integral_constant<bool, std::is_base_of_v<stack_reference, T>> { };
 | |
| 
 | |
| 	template <typename T>
 | |
| 	inline constexpr bool is_stack_table_v = is_stack_table<T>::value;
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct is_function : std::false_type { };
 | |
| 	template <typename T, bool aligned>
 | |
| 	struct is_function<basic_function<T, aligned>> : std::true_type { };
 | |
| 	template <typename T, bool aligned, typename Handler>
 | |
| 	struct is_function<basic_protected_function<T, aligned, Handler>> : std::true_type { };
 | |
| 
 | |
| 	template <typename T>
 | |
| 	using is_lightuserdata = meta::is_specialization_of<T, basic_lightuserdata>;
 | |
| 
 | |
| 	template <typename T>
 | |
| 	inline constexpr bool is_lightuserdata_v = is_lightuserdata<T>::value;
 | |
| 
 | |
| 	template <typename T>
 | |
| 	using is_userdata = meta::is_specialization_of<T, basic_userdata>;
 | |
| 
 | |
| 	template <typename T>
 | |
| 	inline constexpr bool is_userdata_v = is_userdata<T>::value;
 | |
| 
 | |
| 	template <typename T>
 | |
| 	using is_environment = std::integral_constant<bool, is_userdata_v<T> || is_table_v<T> || meta::is_specialization_of_v<T, basic_environment>>;
 | |
| 
 | |
| 	template <typename T>
 | |
| 	inline constexpr bool is_environment_v = is_environment<T>::value;
 | |
| 
 | |
| 	template <typename T>
 | |
| 	using is_table_like = std::integral_constant<bool, is_table_v<T> || is_environment_v<T> || is_userdata_v<T>>;
 | |
| 
 | |
| 	template <typename T>
 | |
| 	inline constexpr bool is_table_like_v = is_table_like<T>::value;
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct is_automagical
 | |
| 	: std::integral_constant<bool,
 | |
| 	       (SOL_IS_ON(SOL_DEFAULT_AUTOMAGICAL_USERTYPES_I_))
 | |
| 	            || (std::is_array_v<
 | |
| 	                     meta::unqualified_t<T>> || (!std::is_same_v<meta::unqualified_t<T>, state> && !std::is_same_v<meta::unqualified_t<T>, state_view>))> {
 | |
| 	};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	inline type type_of() {
 | |
| 		return lua_type_of<meta::unqualified_t<T>>::value;
 | |
| 	}
 | |
| 
 | |
| 	namespace detail {
 | |
| 		template <typename T>
 | |
| 		struct is_non_factory_constructor : std::false_type { };
 | |
| 
 | |
| 		template <typename... Args>
 | |
| 		struct is_non_factory_constructor<constructors<Args...>> : std::true_type { };
 | |
| 
 | |
| 		template <typename... Args>
 | |
| 		struct is_non_factory_constructor<constructor_wrapper<Args...>> : std::true_type { };
 | |
| 
 | |
| 		template <>
 | |
| 		struct is_non_factory_constructor<no_construction> : std::true_type { };
 | |
| 
 | |
| 		template <typename T>
 | |
| 		inline constexpr bool is_non_factory_constructor_v = is_non_factory_constructor<T>::value;
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct is_constructor : is_non_factory_constructor<T> { };
 | |
| 
 | |
| 		template <typename... Args>
 | |
| 		struct is_constructor<factory_wrapper<Args...>> : std::true_type { };
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct is_constructor<protect_t<T>> : is_constructor<meta::unqualified_t<T>> { };
 | |
| 
 | |
| 		template <typename F, typename... Policies>
 | |
| 		struct is_constructor<policy_wrapper<F, Policies...>> : is_constructor<meta::unqualified_t<F>> { };
 | |
| 
 | |
| 		template <typename T>
 | |
| 		inline constexpr bool is_constructor_v = is_constructor<T>::value;
 | |
| 
 | |
| 		template <typename... Args>
 | |
| 		using any_is_constructor = meta::any<is_constructor<meta::unqualified_t<Args>>...>;
 | |
| 
 | |
| 		template <typename... Args>
 | |
| 		inline constexpr bool any_is_constructor_v = any_is_constructor<Args...>::value;
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct is_destructor : std::false_type { };
 | |
| 
 | |
| 		template <typename Fx>
 | |
| 		struct is_destructor<destructor_wrapper<Fx>> : std::true_type { };
 | |
| 
 | |
| 		template <typename... Args>
 | |
| 		using any_is_destructor = meta::any<is_destructor<meta::unqualified_t<Args>>...>;
 | |
| 
 | |
| 		template <typename... Args>
 | |
| 		inline constexpr bool any_is_destructor_v = any_is_destructor<Args...>::value;
 | |
| 	} // namespace detail
 | |
| 
 | |
| 	template <typename T>
 | |
| 	using is_lua_c_function = meta::any<std::is_same<lua_CFunction, T>, std::is_same<detail::lua_CFunction_noexcept, T>, std::is_same<lua_CFunction_ref, T>>;
 | |
| 
 | |
| 	template <typename T>
 | |
| 	inline constexpr bool is_lua_c_function_v = is_lua_c_function<T>::value;
 | |
| 
 | |
| 	struct automagic_enrollments {
 | |
| 		bool default_constructor = true;
 | |
| 		bool destructor = true;
 | |
| 		bool pairs_operator = true;
 | |
| 		bool to_string_operator = true;
 | |
| 		bool call_operator = true;
 | |
| 		bool less_than_operator = true;
 | |
| 		bool less_than_or_equal_to_operator = true;
 | |
| 		bool length_operator = true;
 | |
| 		bool equal_to_operator = true;
 | |
| 	};
 | |
| 
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/types.hpp
 | |
| 
 | |
| #include <exception>
 | |
| #include <cstring>
 | |
| 
 | |
| #if SOL_IS_ON(SOL_PRINT_ERRORS_I_)
 | |
| #include <iostream>
 | |
| #endif
 | |
| 
 | |
| namespace sol {
 | |
| 	// must push a single object to be the error object
 | |
| 	// NOTE: the VAST MAJORITY of all Lua libraries -- C or otherwise -- expect a string for the type of error
 | |
| 	// break this convention at your own risk
 | |
| 	using exception_handler_function = int (*)(lua_State*, optional<const std::exception&>, string_view);
 | |
| 
 | |
| 	namespace detail {
 | |
| 		inline const char (&default_exception_handler_name())[11] {
 | |
| 			static const char name[11] = "sol.\xE2\x98\xA2\xE2\x98\xA2";
 | |
| 			return name;
 | |
| 		}
 | |
| 
 | |
| 		// must push at least 1 object on the stack
 | |
| 		inline int default_exception_handler(lua_State* L, optional<const std::exception&>, string_view what) {
 | |
| #if SOL_IS_ON(SOL_PRINT_ERRORS_I_)
 | |
| 			std::cerr << "[sol3] An exception occurred: ";
 | |
| 			std::cerr.write(what.data(), what.size());
 | |
| 			std::cerr << std::endl;
 | |
| #endif
 | |
| 			lua_pushlstring(L, what.data(), what.size());
 | |
| 			return 1;
 | |
| 		}
 | |
| 
 | |
| 		inline int call_exception_handler(lua_State* L, optional<const std::exception&> maybe_ex, string_view what) {
 | |
| 			lua_getglobal(L, default_exception_handler_name());
 | |
| 			type t = static_cast<type>(lua_type(L, -1));
 | |
| 			if (t != type::lightuserdata) {
 | |
| 				lua_pop(L, 1);
 | |
| 				return default_exception_handler(L, std::move(maybe_ex), std::move(what));
 | |
| 			}
 | |
| 			void* vfunc = lua_touserdata(L, -1);
 | |
| 			lua_pop(L, 1);
 | |
| 			if (vfunc == nullptr) {
 | |
| 				return default_exception_handler(L, std::move(maybe_ex), std::move(what));
 | |
| 			}
 | |
| 			exception_handler_function exfunc = reinterpret_cast<exception_handler_function>(vfunc);
 | |
| 			return exfunc(L, std::move(maybe_ex), std::move(what));
 | |
| 		}
 | |
| 
 | |
| #if SOL_IS_OFF(SOL_EXCEPTIONS_I_)
 | |
| 		template <lua_CFunction f>
 | |
| 		int static_trampoline(lua_State* L) noexcept {
 | |
| 			return f(L);
 | |
| 		}
 | |
| 
 | |
| #if SOL_IS_ON(SOL_USE_NOEXCEPT_FUNCTION_TYPE_I_)
 | |
| 		template <lua_CFunction_noexcept f>
 | |
| 		int static_trampoline_noexcept(lua_State* L) noexcept {
 | |
| 			return f(L);
 | |
| 		}
 | |
| #else
 | |
| 		template <lua_CFunction f>
 | |
| 		int static_trampoline_noexcept(lua_State* L) noexcept {
 | |
| 			return f(L);
 | |
| 		}
 | |
| #endif
 | |
| 
 | |
| 		template <typename Fx, typename... Args>
 | |
| 		int trampoline(lua_State* L, Fx&& f, Args&&... args) noexcept {
 | |
| 			return f(L, std::forward<Args>(args)...);
 | |
| 		}
 | |
| 
 | |
| 		inline int c_trampoline(lua_State* L, lua_CFunction f) noexcept {
 | |
| 			return trampoline(L, f);
 | |
| 		}
 | |
| #else
 | |
| 
 | |
| 		inline int lua_cfunction_trampoline(lua_State* L, lua_CFunction f) {
 | |
| #if SOL_IS_ON(SOL_PROPAGATE_EXCEPTIONS_I_)
 | |
| 			return f(L);
 | |
| 
 | |
| #else
 | |
| 			try {
 | |
| 				return f(L);
 | |
| 			}
 | |
| 			catch (const char* cs) {
 | |
| 				call_exception_handler(L, optional<const std::exception&>(nullopt), string_view(cs));
 | |
| 			}
 | |
| 			catch (const std::string& s) {
 | |
| 				call_exception_handler(L, optional<const std::exception&>(nullopt), string_view(s.c_str(), s.size()));
 | |
| 			}
 | |
| 			catch (const std::exception& e) {
 | |
| 				call_exception_handler(L, optional<const std::exception&>(e), e.what());
 | |
| 			}
 | |
| #if SOL_IS_OFF(SOL_USE_LUAJIT_I_)
 | |
| 			// LuaJIT cannot have the catchall when the safe propagation is on
 | |
| 			// but LuaJIT will swallow all C++ errors
 | |
| 			// if we don't at least catch std::exception ones
 | |
| 			catch (...) {
 | |
| 				call_exception_handler(L, optional<const std::exception&>(nullopt), "caught (...) exception");
 | |
| 			}
 | |
| #endif // LuaJIT cannot have the catchall, but we must catch std::exceps for it
 | |
| 			return lua_error(L);
 | |
| #endif // Safe exceptions
 | |
| 		}
 | |
| 
 | |
| 		template <lua_CFunction f>
 | |
| 		int static_trampoline(lua_State* L) {
 | |
| 			return lua_cfunction_trampoline(L, f);
 | |
| 		}
 | |
| 
 | |
| #if SOL_IS_ON(SOL_USE_NOEXCEPT_FUNCTION_TYPE_I_)
 | |
| 		template <lua_CFunction_noexcept f>
 | |
| 		int static_trampoline_noexcept(lua_State* L) noexcept {
 | |
| 			return f(L);
 | |
| 		}
 | |
| #else
 | |
| 		template <lua_CFunction f>
 | |
| 		int static_trampoline_noexcept(lua_State* L) noexcept {
 | |
| 			return f(L);
 | |
| 		}
 | |
| #endif
 | |
| 
 | |
| 		template <typename Fx, typename... Args>
 | |
| 		int trampoline(lua_State* L, Fx&& f, Args&&... args) {
 | |
| 			if constexpr (meta::bind_traits<meta::unqualified_t<Fx>>::is_noexcept) {
 | |
| 				return f(L, std::forward<Args>(args)...);
 | |
| 			}
 | |
| 			else {
 | |
| #if SOL_IS_ON(SOL_PROPAGATE_EXCEPTIONS_I_)
 | |
| 				return f(L, std::forward<Args>(args)...);
 | |
| #else
 | |
| 				try {
 | |
| 					return f(L, std::forward<Args>(args)...);
 | |
| 				}
 | |
| 				catch (const char* cs) {
 | |
| 					call_exception_handler(L, optional<const std::exception&>(nullopt), string_view(cs));
 | |
| 				}
 | |
| 				catch (const std::string& s) {
 | |
| 					call_exception_handler(L, optional<const std::exception&>(nullopt), string_view(s.c_str(), s.size()));
 | |
| 				}
 | |
| 				catch (const std::exception& e) {
 | |
| 					call_exception_handler(L, optional<const std::exception&>(e), e.what());
 | |
| 				}
 | |
| #if SOL_IS_OFF(SOL_USE_LUAJIT_I_)
 | |
| 				// LuaJIT cannot have the catchall when the safe propagation is on
 | |
| 				// but LuaJIT will swallow all C++ errors
 | |
| 				// if we don't at least catch std::exception ones
 | |
| 				catch (...) {
 | |
| 					call_exception_handler(L, optional<const std::exception&>(nullopt), "caught (...) exception");
 | |
| 				}
 | |
| #endif
 | |
| 				return lua_error(L);
 | |
| #endif
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		inline int c_trampoline(lua_State* L, lua_CFunction f) {
 | |
| 			return trampoline(L, f);
 | |
| 		}
 | |
| #endif // Exceptions vs. No Exceptions
 | |
| 
 | |
| 		template <typename F, F fx>
 | |
| 		inline int typed_static_trampoline(lua_State* L) {
 | |
| 			if constexpr (meta::bind_traits<F>::is_noexcept) {
 | |
| 				return static_trampoline_noexcept<fx>(L);
 | |
| 			}
 | |
| 			else {
 | |
| 				return static_trampoline<fx>(L);
 | |
| 			}
 | |
| 		}
 | |
| 	} // namespace detail
 | |
| 
 | |
| 	inline void set_default_exception_handler(lua_State* L, exception_handler_function exf = &detail::default_exception_handler) {
 | |
| 		static_assert(sizeof(void*) >= sizeof(exception_handler_function),
 | |
| 		     "void* storage is too small to transport the exception handler: please file a bug on the sol2 issue tracker to get this looked at!");
 | |
| 		void* storage;
 | |
| 		std::memcpy(&storage, &exf, sizeof(exception_handler_function));
 | |
| 		lua_pushlightuserdata(L, storage);
 | |
| 		lua_setglobal(L, detail::default_exception_handler_name());
 | |
| 	}
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/trampoline.hpp
 | |
| 
 | |
| // beginning of sol/stack_core.hpp
 | |
| 
 | |
| // beginning of sol/inheritance.hpp
 | |
| 
 | |
| // beginning of sol/usertype_traits.hpp
 | |
| 
 | |
| // beginning of sol/demangle.hpp
 | |
| 
 | |
| #include <string>
 | |
| #include <array>
 | |
| #include <cctype>
 | |
| #if SOL_IS_ON(SOL_MINGW_CCTYPE_IS_POISONED_I_)
 | |
| extern "C" {
 | |
| #include <ctype.h>
 | |
| }
 | |
| #endif // MinGW is on some stuff
 | |
| #include <locale>
 | |
| 
 | |
| namespace sol { namespace detail {
 | |
| 	inline constexpr std::array<string_view, 9> removals { { "{anonymous}",
 | |
| 		"(anonymous namespace)",
 | |
| 		"public:",
 | |
| 		"private:",
 | |
| 		"protected:",
 | |
| 		"struct ",
 | |
| 		"class ",
 | |
| 		"`anonymous-namespace'",
 | |
| 		"`anonymous namespace'" } };
 | |
| 
 | |
| #if SOL_IS_ON(SOL_COMPILER_GCC_I_) || SOL_IS_ON(SOL_COMPILER_CLANG_I_)
 | |
| 	inline std::string ctti_get_type_name_from_sig(std::string name) {
 | |
| 		// cardinal sins from MINGW
 | |
| 		using namespace std;
 | |
| 		std::size_t start = name.find_first_of('[');
 | |
| 		start = name.find_first_of('=', start);
 | |
| 		std::size_t end = name.find_last_of(']');
 | |
| 		if (end == std::string::npos)
 | |
| 			end = name.size();
 | |
| 		if (start == std::string::npos)
 | |
| 			start = 0;
 | |
| 		if (start < name.size() - 1)
 | |
| 			start += 1;
 | |
| 		name = name.substr(start, end - start);
 | |
| 		start = name.rfind("seperator_mark");
 | |
| 		if (start != std::string::npos) {
 | |
| 			name.erase(start - 2, name.length());
 | |
| 		}
 | |
| 		while (!name.empty() && isblank(name.front()))
 | |
| 			name.erase(name.begin());
 | |
| 		while (!name.empty() && isblank(name.back()))
 | |
| 			name.pop_back();
 | |
| 
 | |
| 		for (std::size_t r = 0; r < removals.size(); ++r) {
 | |
| 			auto found = name.find(removals[r]);
 | |
| 			while (found != std::string::npos) {
 | |
| 				name.erase(found, removals[r].size());
 | |
| 				found = name.find(removals[r]);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		return name;
 | |
| 	}
 | |
| 
 | |
| 	template <typename T, class seperator_mark = int>
 | |
| 	inline std::string ctti_get_type_name() {
 | |
| 		return ctti_get_type_name_from_sig(__PRETTY_FUNCTION__);
 | |
| 	}
 | |
| #elif SOL_IS_ON(SOL_COMPILER_VCXX_I_)
 | |
| 	inline std::string ctti_get_type_name_from_sig(std::string name) {
 | |
| 		std::size_t start = name.find("get_type_name");
 | |
| 		if (start == std::string::npos)
 | |
| 			start = 0;
 | |
| 		else
 | |
| 			start += 13;
 | |
| 		if (start < name.size() - 1)
 | |
| 			start += 1;
 | |
| 		std::size_t end = name.find_last_of('>');
 | |
| 		if (end == std::string::npos)
 | |
| 			end = name.size();
 | |
| 		name = name.substr(start, end - start);
 | |
| 		if (name.find("struct", 0) == 0)
 | |
| 			name.replace(0, 6, "", 0);
 | |
| 		if (name.find("class", 0) == 0)
 | |
| 			name.replace(0, 5, "", 0);
 | |
| 		while (!name.empty() && isblank(name.front()))
 | |
| 			name.erase(name.begin());
 | |
| 		while (!name.empty() && isblank(name.back()))
 | |
| 			name.pop_back();
 | |
| 
 | |
| 		for (std::size_t r = 0; r < removals.size(); ++r) {
 | |
| 			auto found = name.find(removals[r]);
 | |
| 			while (found != std::string::npos) {
 | |
| 				name.erase(found, removals[r].size());
 | |
| 				found = name.find(removals[r]);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		return name;
 | |
| 	}
 | |
| 
 | |
| 	template <typename T>
 | |
| 	std::string ctti_get_type_name() {
 | |
| 		return ctti_get_type_name_from_sig(__FUNCSIG__);
 | |
| 	}
 | |
| #else
 | |
| #error Compiler not supported for demangling
 | |
| #endif // compilers
 | |
| 
 | |
| 	template <typename T>
 | |
| 	std::string demangle_once() {
 | |
| 		std::string realname = ctti_get_type_name<T>();
 | |
| 		return realname;
 | |
| 	}
 | |
| 
 | |
| 	inline std::string short_demangle_from_type_name(std::string realname) {
 | |
| 		// This isn't the most complete but it'll do for now...?
 | |
| 		static const std::array<std::string, 10> ops = {
 | |
| 			{ "operator<", "operator<<", "operator<<=", "operator<=", "operator>", "operator>>", "operator>>=", "operator>=", "operator->", "operator->*" }
 | |
| 		};
 | |
| 		int level = 0;
 | |
| 		std::ptrdiff_t idx = 0;
 | |
| 		for (idx = static_cast<std::ptrdiff_t>(realname.empty() ? 0 : realname.size() - 1); idx > 0; --idx) {
 | |
| 			if (level == 0 && realname[idx] == ':') {
 | |
| 				break;
 | |
| 			}
 | |
| 			bool isleft = realname[idx] == '<';
 | |
| 			bool isright = realname[idx] == '>';
 | |
| 			if (!isleft && !isright)
 | |
| 				continue;
 | |
| 			bool earlybreak = false;
 | |
| 			for (const auto& op : ops) {
 | |
| 				std::size_t nisop = realname.rfind(op, idx);
 | |
| 				if (nisop == std::string::npos)
 | |
| 					continue;
 | |
| 				std::size_t nisopidx = idx - op.size() + 1;
 | |
| 				if (nisop == nisopidx) {
 | |
| 					idx = static_cast<std::ptrdiff_t>(nisopidx);
 | |
| 					earlybreak = true;
 | |
| 				}
 | |
| 				break;
 | |
| 			}
 | |
| 			if (earlybreak) {
 | |
| 				continue;
 | |
| 			}
 | |
| 			level += isleft ? -1 : 1;
 | |
| 		}
 | |
| 		if (idx > 0) {
 | |
| 			realname.erase(0, realname.length() < static_cast<std::size_t>(idx) ? realname.length() : idx + 1);
 | |
| 		}
 | |
| 		return realname;
 | |
| 	}
 | |
| 
 | |
| 	template <typename T>
 | |
| 	std::string short_demangle_once() {
 | |
| 		std::string realname = ctti_get_type_name<T>();
 | |
| 		return short_demangle_from_type_name(realname);
 | |
| 	}
 | |
| 
 | |
| 	template <typename T>
 | |
| 	const std::string& demangle() {
 | |
| 		static const std::string d = demangle_once<T>();
 | |
| 		return d;
 | |
| 	}
 | |
| 
 | |
| 	template <typename T>
 | |
| 	const std::string& short_demangle() {
 | |
| 		static const std::string d = short_demangle_once<T>();
 | |
| 		return d;
 | |
| 	}
 | |
| }} // namespace sol::detail
 | |
| 
 | |
| // end of sol/demangle.hpp
 | |
| 
 | |
| namespace sol {
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct usertype_traits {
 | |
| 		static const std::string& name() {
 | |
| 			static const std::string& n = detail::short_demangle<T>();
 | |
| 			return n;
 | |
| 		}
 | |
| 		static const std::string& qualified_name() {
 | |
| 			static const std::string& q_n = detail::demangle<T>();
 | |
| 			return q_n;
 | |
| 		}
 | |
| 		static const std::string& metatable() {
 | |
| 			static const std::string m = std::string("sol.").append(detail::demangle<T>());
 | |
| 			return m;
 | |
| 		}
 | |
| 		static const std::string& user_metatable() {
 | |
| 			static const std::string u_m = std::string("sol.").append(detail::demangle<T>()).append(".user");
 | |
| 			return u_m;
 | |
| 		}
 | |
| 		static const std::string& user_gc_metatable() {
 | |
| 			static const std::string u_g_m = std::string("sol.").append(detail::demangle<T>()).append(".user\xE2\x99\xBB");
 | |
| 			return u_g_m;
 | |
| 		}
 | |
| 		static const std::string& gc_table() {
 | |
| 			static const std::string g_t = std::string("sol.").append(detail::demangle<T>()).append(".\xE2\x99\xBB");
 | |
| 			return g_t;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/usertype_traits.hpp
 | |
| 
 | |
| // beginning of sol/unique_usertype_traits.hpp
 | |
| 
 | |
| #include <memory>
 | |
| 
 | |
| namespace sol {
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct unique_usertype_traits {
 | |
| 		typedef T type;
 | |
| 		typedef T actual_type;
 | |
| 		template <typename X>
 | |
| 		using rebind_base = void;
 | |
| 
 | |
| 		static const bool value = false;
 | |
| 
 | |
| 		template <typename U>
 | |
| 		static bool is_null(U&&) {
 | |
| 			return false;
 | |
| 		}
 | |
| 
 | |
| 		template <typename U>
 | |
| 		static auto get(U&& value) {
 | |
| 			return std::addressof(detail::deref(value));
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct unique_usertype_traits<std::shared_ptr<T>> {
 | |
| 		typedef T type;
 | |
| 		typedef std::shared_ptr<T> actual_type;
 | |
| 		// rebind is non-void
 | |
| 		// if and only if unique usertype
 | |
| 		// is cast-capable
 | |
| 		template <typename X>
 | |
| 		using rebind_base = std::shared_ptr<X>;
 | |
| 
 | |
| 		static const bool value = true;
 | |
| 
 | |
| 		static bool is_null(const actual_type& p) {
 | |
| 			return p == nullptr;
 | |
| 		}
 | |
| 
 | |
| 		static type* get(const actual_type& p) {
 | |
| 			return p.get();
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T, typename D>
 | |
| 	struct unique_usertype_traits<std::unique_ptr<T, D>> {
 | |
| 		using type = T;
 | |
| 		using actual_type = std::unique_ptr<T, D>;
 | |
| 
 | |
| 		static const bool value = true;
 | |
| 
 | |
| 		static bool is_null(const actual_type& p) {
 | |
| 			return p == nullptr;
 | |
| 		}
 | |
| 
 | |
| 		static type* get(const actual_type& p) {
 | |
| 			return p.get();
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct is_unique_usertype : std::integral_constant<bool, unique_usertype_traits<T>::value> {};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	inline constexpr bool is_unique_usertype_v = is_unique_usertype<T>::value;
 | |
| 
 | |
| 	namespace detail {
 | |
| 		template <typename T, typename Rebind = void>
 | |
| 		using is_base_rebindable_test = typename T::template rebind_base<Rebind>;
 | |
| 	}
 | |
| 
 | |
| 	template <typename T>
 | |
| 	using is_base_rebindable = meta::is_detected<detail::is_base_rebindable_test, T>;
 | |
| 
 | |
| 	template <typename T>
 | |
| 	inline constexpr bool is_base_rebindable_v = is_base_rebindable<T>::value;
 | |
| 
 | |
| 	namespace detail {
 | |
| 		template <typename T, typename = void>
 | |
| 		struct is_base_rebindable_non_void_sfinae : std::false_type {};
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct is_base_rebindable_non_void_sfinae<T, std::enable_if_t<is_base_rebindable_v<T>>>
 | |
| 		: std::integral_constant<bool, !std::is_void_v<typename T::template rebind_base<void>>> {};
 | |
| 	} // namespace detail
 | |
| 
 | |
| 	template <typename T>
 | |
| 	using is_base_rebindable_non_void = meta::is_detected<detail::is_base_rebindable_test, T>;
 | |
| 
 | |
| 	template <typename T>
 | |
| 	inline constexpr bool is_base_rebindable_non_void_v = is_base_rebindable_non_void<T>::value;
 | |
| 
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/unique_usertype_traits.hpp
 | |
| 
 | |
| namespace sol {
 | |
| 	template <typename... Args>
 | |
| 	struct base_list {};
 | |
| 	template <typename... Args>
 | |
| 	using bases = base_list<Args...>;
 | |
| 
 | |
| 	typedef bases<> base_classes_tag;
 | |
| 	const auto base_classes = base_classes_tag();
 | |
| 
 | |
| 	template <typename... Args>
 | |
| 	struct is_to_stringable<base_list<Args...>> : std::false_type {};
 | |
| 
 | |
| 	namespace detail {
 | |
| 
 | |
| 		inline decltype(auto) base_class_check_key() {
 | |
| 			static const auto& key = "class_check";
 | |
| 			return key;
 | |
| 		}
 | |
| 
 | |
| 		inline decltype(auto) base_class_cast_key() {
 | |
| 			static const auto& key = "class_cast";
 | |
| 			return key;
 | |
| 		}
 | |
| 
 | |
| 		inline decltype(auto) base_class_index_propogation_key() {
 | |
| 			static const auto& key = u8"\xF0\x9F\x8C\xB2.index";
 | |
| 			return key;
 | |
| 		}
 | |
| 
 | |
| 		inline decltype(auto) base_class_new_index_propogation_key() {
 | |
| 			static const auto& key = u8"\xF0\x9F\x8C\xB2.new_index";
 | |
| 			return key;
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct inheritance {
 | |
| 			typedef typename base<T>::type bases_t;
 | |
| 
 | |
| 			static bool type_check_bases(types<>, const string_view&) {
 | |
| 				return false;
 | |
| 			}
 | |
| 
 | |
| 			template <typename Base, typename... Args>
 | |
| 			static bool type_check_bases(types<Base, Args...>, const string_view& ti) {
 | |
| 				return ti == usertype_traits<Base>::qualified_name() || type_check_bases(types<Args...>(), ti);
 | |
| 			}
 | |
| 
 | |
| 			static bool type_check(const string_view& ti) {
 | |
| 				return ti == usertype_traits<T>::qualified_name() || type_check_bases(bases_t(), ti);
 | |
| 			}
 | |
| 
 | |
| 			template <typename ...Bases>
 | |
| 			static bool type_check_with(const string_view& ti) {
 | |
| 				return ti == usertype_traits<T>::qualified_name() || type_check_bases(types<Bases...>(), ti);
 | |
| 			}
 | |
| 
 | |
| 			static void* type_cast_bases(types<>, T*, const string_view&) {
 | |
| 				return nullptr;
 | |
| 			}
 | |
| 
 | |
| 			template <typename Base, typename... Args>
 | |
| 			static void* type_cast_bases(types<Base, Args...>, T* data, const string_view& ti) {
 | |
| 				// Make sure to convert to T first, and then dynamic cast to the proper type
 | |
| 				return ti != usertype_traits<Base>::qualified_name() ? type_cast_bases(types<Args...>(), data, ti) : static_cast<void*>(static_cast<Base*>(data));
 | |
| 			}
 | |
| 
 | |
| 			static void* type_cast(void* voiddata, const string_view& ti) {
 | |
| 				T* data = static_cast<T*>(voiddata);
 | |
| 				return static_cast<void*>(ti != usertype_traits<T>::qualified_name() ? type_cast_bases(bases_t(), data, ti) : data);
 | |
| 			}
 | |
| 
 | |
| 			template <typename... Bases>
 | |
| 			static void* type_cast_with(void* voiddata, const string_view& ti) {
 | |
| 				T* data = static_cast<T*>(voiddata);
 | |
| 				return static_cast<void*>(ti != usertype_traits<T>::qualified_name() ? type_cast_bases(types<Bases...>(), data, ti) : data);
 | |
| 			}
 | |
| 
 | |
| 			template <typename U>
 | |
| 			static bool type_unique_cast_bases(types<>, void*, void*, const string_view&) {
 | |
| 				return 0;
 | |
| 			}
 | |
| 
 | |
| 			template <typename U, typename Base, typename... Args>
 | |
| 			static int type_unique_cast_bases(types<Base, Args...>, void* source_data, void* target_data, const string_view& ti) {
 | |
| 				using uu_traits = unique_usertype_traits<U>;
 | |
| 				using base_ptr = typename uu_traits::template rebind_base<Base>;
 | |
| 				string_view base_ti = usertype_traits<Base>::qualified_name();
 | |
| 				if (base_ti == ti) {
 | |
| 					if (target_data != nullptr) {
 | |
| 						U* source = static_cast<U*>(source_data);
 | |
| 						base_ptr* target = static_cast<base_ptr*>(target_data);
 | |
| 						// perform proper derived -> base conversion
 | |
| 						*target = *source;
 | |
| 					}
 | |
| 					return 2;
 | |
| 				}
 | |
| 				return type_unique_cast_bases<U>(types<Args...>(), source_data, target_data, ti);
 | |
| 			}
 | |
| 
 | |
| 			template <typename U>
 | |
| 			static int type_unique_cast(void* source_data, void* target_data, const string_view& ti, const string_view& rebind_ti) {
 | |
| 				typedef unique_usertype_traits<U> uu_traits;
 | |
| 				if constexpr (is_base_rebindable_v<uu_traits>) {
 | |
| 					typedef typename uu_traits::template rebind_base<void> rebind_t;
 | |
| 					typedef meta::conditional_t<std::is_void<rebind_t>::value, types<>, bases_t> cond_bases_t;
 | |
| 					string_view this_rebind_ti = usertype_traits<rebind_t>::qualified_name();
 | |
| 					if (rebind_ti != this_rebind_ti) {
 | |
| 						// this is not even of the same unique type
 | |
| 						return 0;
 | |
| 					}
 | |
| 					string_view this_ti = usertype_traits<T>::qualified_name();
 | |
| 					if (ti == this_ti) {
 | |
| 						// direct match, return 1
 | |
| 						return 1;
 | |
| 					}
 | |
| 					return type_unique_cast_bases<U>(cond_bases_t(), source_data, target_data, ti);
 | |
| 				}
 | |
| 				else {
 | |
| 					(void)rebind_ti;
 | |
| 					string_view this_ti = usertype_traits<T>::qualified_name();
 | |
| 					if (ti == this_ti) {
 | |
| 						// direct match, return 1
 | |
| 						return 1;
 | |
| 					}
 | |
| 					return type_unique_cast_bases<U>(types<>(), source_data, target_data, ti);
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			template <typename U, typename... Bases>
 | |
| 			static int type_unique_cast_with(void* source_data, void* target_data, const string_view& ti, const string_view& rebind_ti) {
 | |
| 				using uc_bases_t = types<Bases...>;
 | |
| 				typedef unique_usertype_traits<U> uu_traits;
 | |
| 				if constexpr (is_base_rebindable_v<uu_traits>) {
 | |
| 					using rebind_t = typename uu_traits::template rebind_base<void>;
 | |
| 					using cond_bases_t = meta::conditional_t<std::is_void<rebind_t>::value, types<>, uc_bases_t>;
 | |
| 					string_view this_rebind_ti = usertype_traits<rebind_t>::qualified_name();
 | |
| 					if (rebind_ti != this_rebind_ti) {
 | |
| 						// this is not even of the same unique type
 | |
| 						return 0;
 | |
| 					}
 | |
| 					string_view this_ti = usertype_traits<T>::qualified_name();
 | |
| 					if (ti == this_ti) {
 | |
| 						// direct match, return 1
 | |
| 						return 1;
 | |
| 					}
 | |
| 					return type_unique_cast_bases<U>(cond_bases_t(), source_data, target_data, ti);
 | |
| 				}
 | |
| 				else {
 | |
| 					(void)rebind_ti;
 | |
| 					string_view this_ti = usertype_traits<T>::qualified_name();
 | |
| 					if (ti == this_ti) {
 | |
| 						// direct match, return 1
 | |
| 						return 1;
 | |
| 					}
 | |
| 					return type_unique_cast_bases<U>(types<>(), source_data, target_data, ti);
 | |
| 				}
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		using inheritance_check_function = decltype(&inheritance<void>::type_check);
 | |
| 		using inheritance_cast_function = decltype(&inheritance<void>::type_cast);
 | |
| 		using inheritance_unique_cast_function = decltype(&inheritance<void>::type_unique_cast<void>);
 | |
| 	} // namespace detail
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/inheritance.hpp
 | |
| 
 | |
| // beginning of sol/error_handler.hpp
 | |
| 
 | |
| #include <cstdio>
 | |
| 
 | |
| namespace sol {
 | |
| 
 | |
| 	namespace detail {
 | |
| 		constexpr const char* not_a_number = "not a numeric type";
 | |
| 		constexpr const char* not_a_number_or_number_string = "not a numeric type or numeric string";
 | |
| 		constexpr const char* not_a_number_integral = "not a numeric type that fits exactly an integer (number maybe has significant decimals)";
 | |
| 		constexpr const char* not_a_number_or_number_string_integral
 | |
| 		     = "not a numeric type or a numeric string that fits exactly an integer (e.g. number maybe has significant decimals)";
 | |
| 
 | |
| 		constexpr const char* not_enough_stack_space = "not enough space left on Lua stack";
 | |
| 		constexpr const char* not_enough_stack_space_floating = "not enough space left on Lua stack for a floating point number";
 | |
| 		constexpr const char* not_enough_stack_space_integral = "not enough space left on Lua stack for an integral number";
 | |
| 		constexpr const char* not_enough_stack_space_string = "not enough space left on Lua stack for a string";
 | |
| 		constexpr const char* not_enough_stack_space_meta_function_name = "not enough space left on Lua stack for the name of a meta_function";
 | |
| 		constexpr const char* not_enough_stack_space_userdata = "not enough space left on Lua stack to create a sol3 userdata";
 | |
| 		constexpr const char* not_enough_stack_space_generic = "not enough space left on Lua stack to push valuees";
 | |
| 		constexpr const char* not_enough_stack_space_environment = "not enough space left on Lua stack to retrieve environment";
 | |
| 		constexpr const char* protected_function_error = "caught (...) unknown error during protected_function call";
 | |
| 
 | |
| 		inline void accumulate_and_mark(const std::string& n, std::string& aux_message, int& marker) {
 | |
| 			if (marker > 0) {
 | |
| 				aux_message += ", ";
 | |
| 			}
 | |
| 			aux_message += n;
 | |
| 			++marker;
 | |
| 		}
 | |
| 	} // namespace detail
 | |
| 
 | |
| 	inline std::string associated_type_name(lua_State* L, int index, type t) {
 | |
| 		switch (t) {
 | |
| 		case type::poly:
 | |
| 			return "anything";
 | |
| 		case type::userdata: {
 | |
| #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
 | |
| 			luaL_checkstack(L, 2, "not enough space to push get the type name");
 | |
| #endif // make sure stack doesn't overflow
 | |
| 			if (lua_getmetatable(L, index) == 0) {
 | |
| 				break;
 | |
| 			}
 | |
| 			lua_pushlstring(L, "__name", 6);
 | |
| 			lua_rawget(L, -2);
 | |
| 			size_t sz;
 | |
| 			const char* name = lua_tolstring(L, -1, &sz);
 | |
| 			std::string tn(name, static_cast<std::string::size_type>(sz));
 | |
| 			lua_pop(L, 2);
 | |
| 			return tn;
 | |
| 		}
 | |
| 		default:
 | |
| 			break;
 | |
| 		}
 | |
| 		return lua_typename(L, static_cast<int>(t));
 | |
| 	}
 | |
| 
 | |
| 	inline int push_type_panic_string(lua_State* L, int index, type expected, type actual, string_view message, string_view aux_message) noexcept {
 | |
| 		const char* err = message.size() == 0
 | |
| 		     ? (aux_message.size() == 0 ? "stack index %d, expected %s, received %s" : "stack index %d, expected %s, received %s: %s")
 | |
| 		     : "stack index %d, expected %s, received %s: %s %s";
 | |
| 		const char* type_name = expected == type::poly ? "anything" : lua_typename(L, static_cast<int>(expected));
 | |
| 		{
 | |
| 			std::string actual_name = associated_type_name(L, index, actual);
 | |
| 			lua_pushfstring(L, err, index, type_name, actual_name.c_str(), message.data(), aux_message.data());
 | |
| 		}
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	inline int type_panic_string(lua_State* L, int index, type expected, type actual, string_view message = "") noexcept(false) {
 | |
| 		push_type_panic_string(L, index, expected, actual, message, "");
 | |
| 		return lua_error(L);
 | |
| 	}
 | |
| 
 | |
| 	inline int type_panic_c_str(lua_State* L, int index, type expected, type actual, const char* message = nullptr) noexcept(false) {
 | |
| 		push_type_panic_string(L, index, expected, actual, message == nullptr ? "" : message, "");
 | |
| 		return lua_error(L);
 | |
| 	}
 | |
| 
 | |
| 	struct type_panic_t {
 | |
| 		int operator()(lua_State* L, int index, type expected, type actual) const noexcept(false) {
 | |
| 			return type_panic_c_str(L, index, expected, actual, nullptr);
 | |
| 		}
 | |
| 		int operator()(lua_State* L, int index, type expected, type actual, string_view message) const noexcept(false) {
 | |
| 			return type_panic_c_str(L, index, expected, actual, message.data());
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	const type_panic_t type_panic = {};
 | |
| 
 | |
| 	struct constructor_handler {
 | |
| 		int operator()(lua_State* L, int index, type expected, type actual, string_view message) const noexcept(false) {
 | |
| 			push_type_panic_string(L, index, expected, actual, message, "(type check failed in constructor)");
 | |
| 			return lua_error(L);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename F = void>
 | |
| 	struct argument_handler {
 | |
| 		int operator()(lua_State* L, int index, type expected, type actual, string_view message) const noexcept(false) {
 | |
| 			push_type_panic_string(L, index, expected, actual, message, "(bad argument to variable or function call)");
 | |
| 			return lua_error(L);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename R, typename... Args>
 | |
| 	struct argument_handler<types<R, Args...>> {
 | |
| 		int operator()(lua_State* L, int index, type expected, type actual, string_view message) const noexcept(false) {
 | |
| 			{
 | |
| 				std::string aux_message = "(bad argument into '";
 | |
| 				aux_message += detail::demangle<R>();
 | |
| 				aux_message += "(";
 | |
| 				int marker = 0;
 | |
| 				(void)detail::swallow { int(), (detail::accumulate_and_mark(detail::demangle<Args>(), aux_message, marker), int())... };
 | |
| 				aux_message += ")')";
 | |
| 				push_type_panic_string(L, index, expected, actual, message, aux_message);
 | |
| 			}
 | |
| 			return lua_error(L);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	// Specify this function as the handler for lua::check if you know there's nothing wrong
 | |
| 	inline int no_panic(lua_State*, int, type, type, const char* = nullptr) noexcept {
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	inline void type_error(lua_State* L, int expected, int actual) noexcept(false) {
 | |
| 		luaL_error(L, "expected %s, received %s", lua_typename(L, expected), lua_typename(L, actual));
 | |
| 	}
 | |
| 
 | |
| 	inline void type_error(lua_State* L, type expected, type actual) noexcept(false) {
 | |
| 		type_error(L, static_cast<int>(expected), static_cast<int>(actual));
 | |
| 	}
 | |
| 
 | |
| 	inline void type_assert(lua_State* L, int index, type expected, type actual) noexcept(false) {
 | |
| 		if (expected != type::poly && expected != actual) {
 | |
| 			type_panic_c_str(L, index, expected, actual, nullptr);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	inline void type_assert(lua_State* L, int index, type expected) {
 | |
| 		type actual = type_of(L, index);
 | |
| 		type_assert(L, index, expected, actual);
 | |
| 	}
 | |
| 
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/error_handler.hpp
 | |
| 
 | |
| // beginning of sol/reference.hpp
 | |
| 
 | |
| // beginning of sol/stack_reference.hpp
 | |
| 
 | |
| namespace sol {
 | |
| 	namespace detail {
 | |
| 		inline bool xmovable(lua_State* leftL, lua_State* rightL) {
 | |
| 			if (rightL == nullptr || leftL == nullptr || leftL == rightL) {
 | |
| 				return false;
 | |
| 			}
 | |
| 			const void* leftregistry = lua_topointer(leftL, LUA_REGISTRYINDEX);
 | |
| 			const void* rightregistry = lua_topointer(rightL, LUA_REGISTRYINDEX);
 | |
| 			return leftregistry == rightregistry;
 | |
| 		}
 | |
| 	} // namespace detail
 | |
| 
 | |
| 	class stateless_stack_reference {
 | |
| 	private:
 | |
| 		friend class stack_reference;
 | |
| 		
 | |
| 		int index = 0;
 | |
| 
 | |
| 		int registry_index() const noexcept {
 | |
| 			return LUA_NOREF;
 | |
| 		}
 | |
| 
 | |
| 	public:
 | |
| 		stateless_stack_reference() noexcept = default;
 | |
| 		stateless_stack_reference(lua_nil_t) noexcept : stateless_stack_reference(){};
 | |
| 		stateless_stack_reference(lua_State* L, int i) noexcept : stateless_stack_reference(absolute_index(L, i)) {
 | |
| 		}
 | |
| 		stateless_stack_reference(lua_State*, absolute_index i) noexcept : stateless_stack_reference(i) {
 | |
| 		}
 | |
| 		stateless_stack_reference(lua_State*, raw_index i) noexcept : stateless_stack_reference(i) {
 | |
| 		}
 | |
| 		stateless_stack_reference(absolute_index i) noexcept : index(i) {
 | |
| 		}
 | |
| 		stateless_stack_reference(raw_index i) noexcept : index(i) {
 | |
| 		}
 | |
| 		stateless_stack_reference(lua_State*, ref_index) noexcept = delete;
 | |
| 		stateless_stack_reference(ref_index) noexcept = delete;
 | |
| 		stateless_stack_reference(const reference&) noexcept = delete;
 | |
| 		stateless_stack_reference(const stateless_stack_reference&) noexcept = default;
 | |
| 		stateless_stack_reference(stateless_stack_reference&& o) noexcept = default;
 | |
| 		stateless_stack_reference& operator=(stateless_stack_reference&&) noexcept = default;
 | |
| 		stateless_stack_reference& operator=(const stateless_stack_reference&) noexcept = default;
 | |
| 
 | |
| 		int push(lua_State* L) const noexcept {
 | |
| #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
 | |
| 			luaL_checkstack(L, 1, "not enough Lua stack space to push a single reference value");
 | |
| #endif // make sure stack doesn't overflow
 | |
| 			lua_pushvalue(L, index);
 | |
| 			return 1;
 | |
| 		}
 | |
| 
 | |
| 		void pop(lua_State* L, int n = 1) const noexcept {
 | |
| 			lua_pop(L, n);
 | |
| 		}
 | |
| 
 | |
| 		int stack_index() const noexcept {
 | |
| 			return index;
 | |
| 		}
 | |
| 
 | |
| 		const void* pointer(lua_State* L) const noexcept {
 | |
| 			const void* vp = lua_topointer(L, stack_index());
 | |
| 			return vp;
 | |
| 		}
 | |
| 
 | |
| 		type get_type(lua_State* L) const noexcept {
 | |
| 			int result = lua_type(L, index);
 | |
| 			return static_cast<type>(result);
 | |
| 		}
 | |
| 
 | |
| 		bool valid(lua_State* L) const noexcept {
 | |
| 			type t = get_type(L);
 | |
| 			return t != type::lua_nil && t != type::none;
 | |
| 		}
 | |
| 
 | |
| 		void abandon(lua_State* = nullptr) {
 | |
| 			index = 0;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	class stack_reference : public stateless_stack_reference {
 | |
| 	private:
 | |
| 		lua_State* luastate = nullptr;
 | |
| 
 | |
| 	public:
 | |
| 		stack_reference() noexcept = default;
 | |
| 		stack_reference(lua_nil_t) noexcept
 | |
| 		: stack_reference() {};
 | |
| 		stack_reference(lua_State* L, lua_nil_t) noexcept : stateless_stack_reference(L, 0), luastate(L) {
 | |
| 		}
 | |
| 		stack_reference(lua_State* L, int i) noexcept : stateless_stack_reference(L, i), luastate(L) {
 | |
| 		}
 | |
| 		stack_reference(lua_State* L, absolute_index i) noexcept : stateless_stack_reference(L, i), luastate(L) {
 | |
| 		}
 | |
| 		stack_reference(lua_State* L, raw_index i) noexcept : stateless_stack_reference(L, i), luastate(L) {
 | |
| 		}
 | |
| 		stack_reference(lua_State* L, ref_index i) noexcept = delete;
 | |
| 		stack_reference(lua_State* L, const reference& r) noexcept = delete;
 | |
| 		stack_reference(lua_State* L, const stack_reference& r) noexcept
 | |
| 		: luastate(L) {
 | |
| 			if (!r.valid()) {
 | |
| 				index = 0;
 | |
| 				return;
 | |
| 			}
 | |
| 			int i = r.stack_index();
 | |
| 			if (detail::xmovable(lua_state(), r.lua_state())) {
 | |
| #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
 | |
| 				luaL_checkstack(L, 1, "not enough Lua stack space to push a single reference value");
 | |
| #endif // make sure stack doesn't overflow
 | |
| 				lua_pushvalue(r.lua_state(), r.index);
 | |
| 				lua_xmove(r.lua_state(), luastate, 1);
 | |
| 				i = absolute_index(luastate, -1);
 | |
| 			}
 | |
| 			index = i;
 | |
| 		}
 | |
| 		stack_reference(stack_reference&& o) noexcept = default;
 | |
| 		stack_reference& operator=(stack_reference&&) noexcept = default;
 | |
| 		stack_reference(const stack_reference&) noexcept = default;
 | |
| 		stack_reference& operator=(const stack_reference&) noexcept = default;
 | |
| 
 | |
| 		int push() const noexcept {
 | |
| 			return push(lua_state());
 | |
| 		}
 | |
| 
 | |
| 		int push(lua_State* Ls) const noexcept {
 | |
| 			return stateless_stack_reference::push(Ls);
 | |
| 		}
 | |
| 
 | |
| 		void pop() const noexcept {
 | |
| 			pop(lua_state());
 | |
| 		}
 | |
| 
 | |
| 		void pop(lua_State* Ls, int n = 1) const noexcept {
 | |
| 			stateless_stack_reference::pop(Ls, n);
 | |
| 		}
 | |
| 
 | |
| 		const void* pointer() const noexcept {
 | |
| 			return stateless_stack_reference::pointer(lua_state());
 | |
| 		}
 | |
| 
 | |
| 		type get_type() const noexcept {
 | |
| 			return stateless_stack_reference::get_type(lua_state());
 | |
| 		}
 | |
| 
 | |
| 		lua_State* lua_state() const noexcept {
 | |
| 			return luastate;
 | |
| 		}
 | |
| 
 | |
| 		bool valid() const noexcept {
 | |
| 			return stateless_stack_reference::valid(lua_state());
 | |
| 		}
 | |
| 
 | |
| 		void abandon () {
 | |
| 			stateless_stack_reference::abandon(lua_state());
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	inline bool operator==(const stack_reference& l, const stack_reference& r) {
 | |
| 		return lua_compare(l.lua_state(), l.stack_index(), r.stack_index(), LUA_OPEQ) == 0;
 | |
| 	}
 | |
| 
 | |
| 	inline bool operator!=(const stack_reference& l, const stack_reference& r) {
 | |
| 		return !operator==(l, r);
 | |
| 	}
 | |
| 
 | |
| 	inline bool operator==(const stack_reference& lhs, const lua_nil_t&) {
 | |
| 		return !lhs.valid();
 | |
| 	}
 | |
| 
 | |
| 	inline bool operator==(const lua_nil_t&, const stack_reference& rhs) {
 | |
| 		return !rhs.valid();
 | |
| 	}
 | |
| 
 | |
| 	inline bool operator!=(const stack_reference& lhs, const lua_nil_t&) {
 | |
| 		return lhs.valid();
 | |
| 	}
 | |
| 
 | |
| 	inline bool operator!=(const lua_nil_t&, const stack_reference& rhs) {
 | |
| 		return rhs.valid();
 | |
| 	}
 | |
| 
 | |
| 	struct stack_reference_equals {
 | |
| 		bool operator()(const lua_nil_t& lhs, const stack_reference& rhs) const {
 | |
| 			return lhs == rhs;
 | |
| 		}
 | |
| 
 | |
| 		bool operator()(const stack_reference& lhs, const lua_nil_t& rhs) const {
 | |
| 			return lhs == rhs;
 | |
| 		}
 | |
| 
 | |
| 		bool operator()(const stack_reference& lhs, const stack_reference& rhs) const {
 | |
| 			return lhs == rhs;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	struct stack_reference_hash {
 | |
| 		typedef stack_reference argument_type;
 | |
| 		typedef std::size_t result_type;
 | |
| 
 | |
| 		result_type operator()(const argument_type& lhs) const {
 | |
| 			std::hash<const void*> h;
 | |
| 			return h(lhs.pointer());
 | |
| 		}
 | |
| 	};
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/stack_reference.hpp
 | |
| 
 | |
| #include <functional>
 | |
| 
 | |
| namespace sol {
 | |
| 	namespace detail {
 | |
| 		inline const char (&default_main_thread_name())[9] {
 | |
| 			static const char name[9] = "sol.\xF0\x9F\x93\x8C";
 | |
| 			return name;
 | |
| 		}
 | |
| 	} // namespace detail
 | |
| 
 | |
| 	namespace stack {
 | |
| 		inline void remove(lua_State* L, int rawindex, int count) {
 | |
| 			if (count < 1)
 | |
| 				return;
 | |
| 			int top = lua_gettop(L);
 | |
| 			if (top < 1) {
 | |
| 				return;
 | |
| 			}
 | |
| 			if (rawindex == -count || top == rawindex) {
 | |
| 				// Slice them right off the top
 | |
| 				lua_pop(L, static_cast<int>(count));
 | |
| 				return;
 | |
| 			}
 | |
| 
 | |
| 			// Remove each item one at a time using stack operations
 | |
| 			// Probably slower, maybe, haven't benchmarked,
 | |
| 			// but necessary
 | |
| 			int index = lua_absindex(L, rawindex);
 | |
| 			if (index < 0) {
 | |
| 				index = lua_gettop(L) + (index + 1);
 | |
| 			}
 | |
| 			int last = index + count;
 | |
| 			for (int i = index; i < last; ++i) {
 | |
| 				lua_remove(L, index);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		struct push_popper_at {
 | |
| 			lua_State* L;
 | |
| 			int index;
 | |
| 			int count;
 | |
| 			push_popper_at(lua_State* luastate, int index = -1, int count = 1) : L(luastate), index(index), count(count) {
 | |
| 			}
 | |
| 			~push_popper_at() {
 | |
| 				remove(L, index, count);
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <bool top_level>
 | |
| 		struct push_popper_n {
 | |
| 			lua_State* L;
 | |
| 			int t;
 | |
| 			push_popper_n(lua_State* luastate, int x) : L(luastate), t(x) {
 | |
| 			}
 | |
| 			push_popper_n(const push_popper_n&) = delete;
 | |
| 			push_popper_n(push_popper_n&&) = default;
 | |
| 			push_popper_n& operator=(const push_popper_n&) = delete;
 | |
| 			push_popper_n& operator=(push_popper_n&&) = default;
 | |
| 			~push_popper_n() {
 | |
| 				lua_pop(L, t);
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <>
 | |
| 		struct push_popper_n<true> {
 | |
| 			push_popper_n(lua_State*, int) {
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <bool, typename T, typename = void>
 | |
| 		struct push_popper {
 | |
| 			using Tu = meta::unqualified_t<T>;
 | |
| 			T t;
 | |
| 			int idx;
 | |
| 
 | |
| 			push_popper(T x) : t(x), idx(lua_absindex(t.lua_state(), -t.push())) {
 | |
| 			}
 | |
| 
 | |
| 			int index_of(const Tu&) {
 | |
| 				return idx;
 | |
| 			}
 | |
| 
 | |
| 			~push_popper() {
 | |
| 				t.pop();
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename C>
 | |
| 		struct push_popper<true, T, C> {
 | |
| 			using Tu = meta::unqualified_t<T>;
 | |
| 
 | |
| 			push_popper(T) {
 | |
| 			}
 | |
| 
 | |
| 			int index_of(const Tu&) {
 | |
| 				return -1;
 | |
| 			}
 | |
| 
 | |
| 			~push_popper() {
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct push_popper<false, T, std::enable_if_t<is_stack_based_v<meta::unqualified_t<T>>>> {
 | |
| 			using Tu = meta::unqualified_t<T>;
 | |
| 
 | |
| 			push_popper(T) {
 | |
| 			}
 | |
| 
 | |
| 			int index_of(const Tu& r) {
 | |
| 				return r.stack_index();
 | |
| 			}
 | |
| 
 | |
| 			~push_popper() {
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <bool top_level = false, typename T>
 | |
| 		push_popper<top_level, T> push_pop(T&& x) {
 | |
| 			return push_popper<top_level, T>(std::forward<T>(x));
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		push_popper_at push_pop_at(T&& x) {
 | |
| 			int c = x.push();
 | |
| 			lua_State* L = x.lua_state();
 | |
| 			return push_popper_at(L, lua_absindex(L, -c), c);
 | |
| 		}
 | |
| 
 | |
| 		template <bool top_level = false>
 | |
| 		push_popper_n<top_level> pop_n(lua_State* L, int x) {
 | |
| 			return push_popper_n<top_level>(L, x);
 | |
| 		}
 | |
| 	} // namespace stack
 | |
| 
 | |
| 	inline lua_State* main_thread(lua_State* L, lua_State* backup_if_unsupported = nullptr) {
 | |
| #if SOL_LUA_VESION_I_ < 502
 | |
| 		if (L == nullptr)
 | |
| 			return backup_if_unsupported;
 | |
| 		lua_getglobal(L, detail::default_main_thread_name());
 | |
| 		auto pp = stack::pop_n(L, 1);
 | |
| 		if (type_of(L, -1) == type::thread) {
 | |
| 			return lua_tothread(L, -1);
 | |
| 		}
 | |
| 		return backup_if_unsupported;
 | |
| #else
 | |
| 		if (L == nullptr)
 | |
| 			return backup_if_unsupported;
 | |
| 		lua_rawgeti(L, LUA_REGISTRYINDEX, LUA_RIDX_MAINTHREAD);
 | |
| 		lua_State* Lmain = lua_tothread(L, -1);
 | |
| 		lua_pop(L, 1);
 | |
| 		return Lmain;
 | |
| #endif // Lua 5.2+ has the main thread unqualified_getter
 | |
| 	}
 | |
| 
 | |
| 	namespace detail {
 | |
| 		struct global_tag {
 | |
| 		} const global_ {};
 | |
| 		struct no_safety_tag {
 | |
| 		} const no_safety {};
 | |
| 
 | |
| 		template <bool b>
 | |
| 		inline lua_State* pick_main_thread(lua_State* L, lua_State* backup_if_unsupported = nullptr) {
 | |
| 			(void)L;
 | |
| 			(void)backup_if_unsupported;
 | |
| 			if (b) {
 | |
| 				return main_thread(L, backup_if_unsupported);
 | |
| 			}
 | |
| 			return L;
 | |
| 		}
 | |
| 	} // namespace detail
 | |
| 
 | |
| 	class stateless_reference {
 | |
| 	private:
 | |
| 		template <bool o_main_only>
 | |
| 		friend class basic_reference;
 | |
| 
 | |
| 		int ref = LUA_NOREF;
 | |
| 
 | |
| 		int copy(lua_State* L) const noexcept {
 | |
| 			if (ref == LUA_NOREF)
 | |
| 				return LUA_NOREF;
 | |
| 			push(L);
 | |
| 			return luaL_ref(L, LUA_REGISTRYINDEX);
 | |
| 		}
 | |
| 
 | |
| 		lua_State* copy_assign(lua_State* L, lua_State* rL, const stateless_reference& r) {
 | |
| 			if (valid(L)) {
 | |
| 				deref(L);
 | |
| 			}
 | |
| 			ref = r.copy(L);
 | |
| 			return rL;
 | |
| 		}
 | |
| 
 | |
| 		lua_State* move_assign(lua_State* L, lua_State* rL, stateless_reference&& r) {
 | |
| 			if (valid(L)) {
 | |
| 				deref(L);
 | |
| 			}
 | |
| 			ref = r.ref;
 | |
| 			r.ref = LUA_NOREF;
 | |
| 			return rL;
 | |
| 		}
 | |
| 
 | |
| 	protected:
 | |
| 		int stack_index() const noexcept {
 | |
| 			return -1;
 | |
| 		}
 | |
| 
 | |
| 		stateless_reference(lua_State* L, detail::global_tag) noexcept {
 | |
| #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
 | |
| 			luaL_checkstack(L, 1, "not enough Lua stack space to push this reference value");
 | |
| #endif // make sure stack doesn't overflow
 | |
| 			lua_pushglobaltable(L);
 | |
| 			ref = luaL_ref(L, LUA_REGISTRYINDEX);
 | |
| 		}
 | |
| 
 | |
| 		stateless_reference(int raw_ref_index) noexcept : ref(raw_ref_index) {
 | |
| 		}
 | |
| 
 | |
| 	public:
 | |
| 		stateless_reference() noexcept = default;
 | |
| 		stateless_reference(lua_nil_t) noexcept : stateless_reference() {
 | |
| 		}
 | |
| 		stateless_reference(const stack_reference& r) noexcept : stateless_reference(r.lua_state(), r.stack_index()) {
 | |
| 		}
 | |
| 		stateless_reference(stack_reference&& r) noexcept : stateless_reference(r.lua_state(), r.stack_index()) {
 | |
| 		}
 | |
| 		stateless_reference(lua_State* L, const stateless_reference& r) noexcept {
 | |
| 			if (r.ref == LUA_REFNIL) {
 | |
| 				ref = LUA_REFNIL;
 | |
| 				return;
 | |
| 			}
 | |
| 			if (r.ref == LUA_NOREF || L == nullptr) {
 | |
| 				ref = LUA_NOREF;
 | |
| 				return;
 | |
| 			}
 | |
| 			ref = r.copy(L);
 | |
| 		}
 | |
| 
 | |
| 		stateless_reference(lua_State* L, stateless_reference&& r) noexcept {
 | |
| 			if (r.ref == LUA_REFNIL) {
 | |
| 				ref = LUA_REFNIL;
 | |
| 				return;
 | |
| 			}
 | |
| 			if (r.ref == LUA_NOREF || L == nullptr) {
 | |
| 				ref = LUA_NOREF;
 | |
| 				return;
 | |
| 			}
 | |
| 			ref = r.ref;
 | |
| 			r.ref = LUA_NOREF;
 | |
| 		}
 | |
| 
 | |
| 		stateless_reference(lua_State* L, const stack_reference& r) noexcept {
 | |
| 			if (L == nullptr || r.lua_state() == nullptr || r.get_type() == type::none) {
 | |
| 				ref = LUA_NOREF;
 | |
| 				return;
 | |
| 			}
 | |
| 			if (r.get_type() == type::lua_nil) {
 | |
| 				ref = LUA_REFNIL;
 | |
| 				return;
 | |
| 			}
 | |
| 			if (L != r.lua_state() && !detail::xmovable(L, r.lua_state())) {
 | |
| 				return;
 | |
| 			}
 | |
| 			r.push(L);
 | |
| 			ref = luaL_ref(L, LUA_REGISTRYINDEX);
 | |
| 		}
 | |
| 
 | |
| 		stateless_reference(lua_State* L, int index = -1) noexcept {
 | |
| 			// use L to stick with that state's execution stack
 | |
| #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
 | |
| 			luaL_checkstack(L, 1, "not enough Lua stack space to push this reference value");
 | |
| #endif // make sure stack doesn't overflow
 | |
| 			lua_pushvalue(L, index);
 | |
| 			ref = luaL_ref(L, LUA_REGISTRYINDEX);
 | |
| 		}
 | |
| 		stateless_reference(lua_State* L, ref_index index) noexcept {
 | |
| 			lua_rawgeti(L, LUA_REGISTRYINDEX, index.index);
 | |
| 			ref = luaL_ref(L, LUA_REGISTRYINDEX);
 | |
| 		}
 | |
| 		stateless_reference(lua_State*, lua_nil_t) noexcept {
 | |
| 		}
 | |
| 
 | |
| 		~stateless_reference() noexcept = default;
 | |
| 
 | |
| 		stateless_reference(const stateless_reference& o) noexcept = delete;
 | |
| 		stateless_reference& operator=(const stateless_reference& r) noexcept = delete;
 | |
| 
 | |
| 		stateless_reference(stateless_reference&& o) noexcept : ref(o.ref) {
 | |
| 			o.ref = LUA_NOREF;
 | |
| 		}
 | |
| 
 | |
| 		stateless_reference& operator=(stateless_reference&& o) noexcept {
 | |
| 			ref = o.ref;
 | |
| 			o.ref = LUA_NOREF;
 | |
| 			return *this;
 | |
| 		}
 | |
| 
 | |
| 		int push(lua_State* L) const noexcept {
 | |
| #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
 | |
| 			luaL_checkstack(L, 1, "not enough Lua stack space to push this reference value");
 | |
| #endif // make sure stack doesn't overflow
 | |
| 			lua_rawgeti(L, LUA_REGISTRYINDEX, ref);
 | |
| 			return 1;
 | |
| 		}
 | |
| 
 | |
| 		void pop(lua_State* L, int n = 1) const noexcept {
 | |
| 			lua_pop(L, n);
 | |
| 		}
 | |
| 
 | |
| 		int registry_index() const noexcept {
 | |
| 			return ref;
 | |
| 		}
 | |
| 
 | |
| 		bool valid(lua_State*) const noexcept {
 | |
| 			return !(ref == LUA_NOREF || ref == LUA_REFNIL);
 | |
| 		}
 | |
| 
 | |
| 		const void* pointer(lua_State* L) const noexcept {
 | |
| 			int si = push(L);
 | |
| 			const void* vp = lua_topointer(L, -si);
 | |
| 			lua_pop(L, si);
 | |
| 			return vp;
 | |
| 		}
 | |
| 
 | |
| 		type get_type(lua_State* L) const noexcept {
 | |
| 			int p = push(L);
 | |
| 			int result = lua_type(L, -1);
 | |
| 			pop(L, p);
 | |
| 			return static_cast<type>(result);
 | |
| 		}
 | |
| 
 | |
| 		void abandon(lua_State* = nullptr) {
 | |
| 			ref = LUA_NOREF;
 | |
| 		}
 | |
| 
 | |
| 		void deref(lua_State* L) const noexcept {
 | |
| 			luaL_unref(L, LUA_REGISTRYINDEX, ref);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <bool main_only = false>
 | |
| 	class basic_reference : public stateless_reference {
 | |
| 	private:
 | |
| 		template <bool o_main_only>
 | |
| 		friend class basic_reference;
 | |
| 		lua_State* luastate = nullptr; // non-owning
 | |
| 
 | |
| 		template <bool r_main_only>
 | |
| 		void copy_assign(const basic_reference<r_main_only>& r) {
 | |
| 			if (valid()) {
 | |
| 				deref();
 | |
| 			}
 | |
| 			if (r.ref == LUA_REFNIL) {
 | |
| 				luastate = detail::pick_main_thread < main_only && !r_main_only > (r.lua_state(), r.lua_state());
 | |
| 				ref = LUA_REFNIL;
 | |
| 				return;
 | |
| 			}
 | |
| 			if (r.ref == LUA_NOREF) {
 | |
| 				luastate = r.luastate;
 | |
| 				ref = LUA_NOREF;
 | |
| 				return;
 | |
| 			}
 | |
| 			if (detail::xmovable(lua_state(), r.lua_state())) {
 | |
| 				r.push(lua_state());
 | |
| 				ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX);
 | |
| 				return;
 | |
| 			}
 | |
| 			luastate = detail::pick_main_thread < main_only && !r_main_only > (r.lua_state(), r.lua_state());
 | |
| 			ref = r.copy();
 | |
| 		}
 | |
| 
 | |
| 		template <bool r_main_only>
 | |
| 		void move_assign(basic_reference<r_main_only>&& r) {
 | |
| 			if (valid()) {
 | |
| 				deref();
 | |
| 			}
 | |
| 			if (r.ref == LUA_REFNIL) {
 | |
| 				luastate = detail::pick_main_thread < main_only && !r_main_only > (r.lua_state(), r.lua_state());
 | |
| 				ref = LUA_REFNIL;
 | |
| 				return;
 | |
| 			}
 | |
| 			if (r.ref == LUA_NOREF) {
 | |
| 				luastate = r.luastate;
 | |
| 				ref = LUA_NOREF;
 | |
| 				return;
 | |
| 			}
 | |
| 			if (detail::xmovable(lua_state(), r.lua_state())) {
 | |
| 				r.push(lua_state());
 | |
| 				ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX);
 | |
| 				return;
 | |
| 			}
 | |
| 
 | |
| 			luastate = detail::pick_main_thread < main_only && !r_main_only > (r.lua_state(), r.lua_state());
 | |
| 			ref = r.ref;
 | |
| 			r.ref = LUA_NOREF;
 | |
| 			r.luastate = nullptr;
 | |
| 		}
 | |
| 
 | |
| 	protected:
 | |
| 		basic_reference(lua_State* L, detail::global_tag) noexcept
 | |
| 		: basic_reference(detail::pick_main_thread<main_only>(L, L), detail::global_, detail::global_) {
 | |
| 		}
 | |
| 
 | |
| 		basic_reference(lua_State* L, detail::global_tag, detail::global_tag) noexcept : stateless_reference(L, detail::global_), luastate(L) {
 | |
| 		}
 | |
| 
 | |
| 		basic_reference(lua_State* oL, const basic_reference<!main_only>& o) noexcept : stateless_reference(oL, o), luastate(oL) {
 | |
| 		}
 | |
| 
 | |
| 		void deref() const noexcept {
 | |
| 			return stateless_reference::deref(lua_state());
 | |
| 		}
 | |
| 
 | |
| 		int copy() const noexcept {
 | |
| 			return copy(lua_state());
 | |
| 		}
 | |
| 
 | |
| 		int copy(lua_State* L) const noexcept {
 | |
| 			return stateless_reference::copy(L);
 | |
| 		}
 | |
| 
 | |
| 	public:
 | |
| 		basic_reference() noexcept = default;
 | |
| 		basic_reference(lua_nil_t) noexcept : basic_reference() {
 | |
| 		}
 | |
| 		basic_reference(const stack_reference& r) noexcept : basic_reference(r.lua_state(), r.stack_index()) {
 | |
| 		}
 | |
| 		basic_reference(stack_reference&& r) noexcept : basic_reference(r.lua_state(), r.stack_index()) {
 | |
| 		}
 | |
| 		template <bool r_main_only>
 | |
| 		basic_reference(lua_State* L, const basic_reference<r_main_only>& r) noexcept : luastate(detail::pick_main_thread<main_only>(L, L)) {
 | |
| 			if (r.ref == LUA_REFNIL) {
 | |
| 				ref = LUA_REFNIL;
 | |
| 				return;
 | |
| 			}
 | |
| 			if (r.ref == LUA_NOREF || lua_state() == nullptr) {
 | |
| 				ref = LUA_NOREF;
 | |
| 				return;
 | |
| 			}
 | |
| 			if (detail::xmovable(lua_state(), r.lua_state())) {
 | |
| 				r.push(lua_state());
 | |
| 				ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX);
 | |
| 				return;
 | |
| 			}
 | |
| 			ref = r.copy();
 | |
| 		}
 | |
| 
 | |
| 		template <bool r_main_only>
 | |
| 		basic_reference(lua_State* L, basic_reference<r_main_only>&& r) noexcept : luastate(detail::pick_main_thread<main_only>(L, L)) {
 | |
| 			if (r.ref == LUA_REFNIL) {
 | |
| 				ref = LUA_REFNIL;
 | |
| 				return;
 | |
| 			}
 | |
| 			if (r.ref == LUA_NOREF || lua_state() == nullptr) {
 | |
| 				ref = LUA_NOREF;
 | |
| 				return;
 | |
| 			}
 | |
| 			if (detail::xmovable(lua_state(), r.lua_state())) {
 | |
| 				r.push(lua_state());
 | |
| 				ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX);
 | |
| 				return;
 | |
| 			}
 | |
| 			ref = r.ref;
 | |
| 			r.ref = LUA_NOREF;
 | |
| 			r.luastate = nullptr;
 | |
| 		}
 | |
| 
 | |
| 		basic_reference(lua_State* L, const stack_reference& r) noexcept : luastate(detail::pick_main_thread<main_only>(L, L)) {
 | |
| 			if (lua_state() == nullptr || r.lua_state() == nullptr || r.get_type() == type::none) {
 | |
| 				ref = LUA_NOREF;
 | |
| 				return;
 | |
| 			}
 | |
| 			if (r.get_type() == type::lua_nil) {
 | |
| 				ref = LUA_REFNIL;
 | |
| 				return;
 | |
| 			}
 | |
| 			if (lua_state() != r.lua_state() && !detail::xmovable(lua_state(), r.lua_state())) {
 | |
| 				return;
 | |
| 			}
 | |
| 			r.push(lua_state());
 | |
| 			ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX);
 | |
| 		}
 | |
| 		basic_reference(lua_State* L, int index = -1) noexcept : luastate(detail::pick_main_thread<main_only>(L, L)) {
 | |
| 			// use L to stick with that state's execution stack
 | |
| #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
 | |
| 			luaL_checkstack(L, 1, "not enough Lua stack space to push this reference value");
 | |
| #endif // make sure stack doesn't overflow
 | |
| 			lua_pushvalue(L, index);
 | |
| 			ref = luaL_ref(L, LUA_REGISTRYINDEX);
 | |
| 		}
 | |
| 		basic_reference(lua_State* L, ref_index index) noexcept : luastate(detail::pick_main_thread<main_only>(L, L)) {
 | |
| 			lua_rawgeti(lua_state(), LUA_REGISTRYINDEX, index.index);
 | |
| 			ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX);
 | |
| 		}
 | |
| 		basic_reference(lua_State* L, lua_nil_t) noexcept : luastate(detail::pick_main_thread<main_only>(L, L)) {
 | |
| 		}
 | |
| 
 | |
| 		~basic_reference() noexcept {
 | |
| 			if (lua_state() == nullptr || ref == LUA_NOREF)
 | |
| 				return;
 | |
| 			deref();
 | |
| 		}
 | |
| 
 | |
| 		basic_reference(const basic_reference& o) noexcept : stateless_reference(o.copy()), luastate(o.lua_state()) {
 | |
| 		}
 | |
| 
 | |
| 		basic_reference(basic_reference&& o) noexcept : stateless_reference(std::move(o)), luastate(o.lua_state()) {
 | |
| 			o.luastate = nullptr;
 | |
| 		}
 | |
| 
 | |
| 		basic_reference(const basic_reference<!main_only>& o) noexcept
 | |
| 		: basic_reference(detail::pick_main_thread<main_only>(o.lua_state(), o.lua_state()), o) {
 | |
| 		}
 | |
| 
 | |
| 		basic_reference(basic_reference<!main_only>&& o) noexcept
 | |
| 		: stateless_reference(std::move(o)), luastate(detail::pick_main_thread<main_only>(o.lua_state(), o.lua_state())) {
 | |
| 			o.luastate = nullptr;
 | |
| 			o.ref = LUA_NOREF;
 | |
| 		}
 | |
| 
 | |
| 		basic_reference& operator=(basic_reference&& r) noexcept {
 | |
| 			move_assign(std::move(r));
 | |
| 			return *this;
 | |
| 		}
 | |
| 
 | |
| 		basic_reference& operator=(const basic_reference& r) noexcept {
 | |
| 			copy_assign(r);
 | |
| 			return *this;
 | |
| 		}
 | |
| 
 | |
| 		basic_reference& operator=(basic_reference<!main_only>&& r) noexcept {
 | |
| 			move_assign(std::move(r));
 | |
| 			return *this;
 | |
| 		}
 | |
| 
 | |
| 		basic_reference& operator=(const basic_reference<!main_only>& r) noexcept {
 | |
| 			copy_assign(r);
 | |
| 			return *this;
 | |
| 		}
 | |
| 
 | |
| 		basic_reference& operator=(const lua_nil_t&) noexcept {
 | |
| 			if (valid()) {
 | |
| 				deref();
 | |
| 			}
 | |
| 			luastate = nullptr;
 | |
| 			ref = LUA_NOREF;
 | |
| 			return *this;
 | |
| 		}
 | |
| 
 | |
| 		template <typename Super>
 | |
| 		basic_reference& operator=(proxy_base<Super>&& r);
 | |
| 
 | |
| 		template <typename Super>
 | |
| 		basic_reference& operator=(const proxy_base<Super>& r);
 | |
| 
 | |
| 		int push() const noexcept {
 | |
| 			return push(lua_state());
 | |
| 		}
 | |
| 
 | |
| 		int push(lua_State* L) const noexcept {
 | |
| #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
 | |
| 			luaL_checkstack(L, 1, "not enough Lua stack space to push this reference value");
 | |
| #endif // make sure stack doesn't overflow
 | |
| 			if (lua_state() == nullptr) {
 | |
| 				lua_pushnil(L);
 | |
| 				return 1;
 | |
| 			}
 | |
| 			lua_rawgeti(lua_state(), LUA_REGISTRYINDEX, ref);
 | |
| 			if (L != lua_state()) {
 | |
| 				lua_xmove(lua_state(), L, 1);
 | |
| 			}
 | |
| 			return 1;
 | |
| 		}
 | |
| 
 | |
| 		void pop() const noexcept {
 | |
| 			pop(lua_state());
 | |
| 		}
 | |
| 
 | |
| 		void pop(lua_State* L, int n = 1) const noexcept {
 | |
| 			stateless_reference::pop(L, n);
 | |
| 		}
 | |
| 
 | |
| 		int registry_index() const noexcept {
 | |
| 			return stateless_reference::registry_index();
 | |
| 		}
 | |
| 
 | |
| 		bool valid() const noexcept {
 | |
| 			return stateless_reference::valid(lua_state());
 | |
| 		}
 | |
| 
 | |
| 		const void* pointer() const noexcept {
 | |
| 			return stateless_reference::pointer(lua_state());
 | |
| 		}
 | |
| 
 | |
| 		explicit operator bool() const noexcept {
 | |
| 			return valid();
 | |
| 		}
 | |
| 
 | |
| 		type get_type() const noexcept {
 | |
| 			return stateless_reference::get_type(lua_state());
 | |
| 		}
 | |
| 
 | |
| 		lua_State* lua_state() const noexcept {
 | |
| 			return luastate;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <bool lb, bool rb>
 | |
| 	inline bool operator==(const basic_reference<lb>& l, const basic_reference<rb>& r) {
 | |
| 		auto ppl = stack::push_pop(l);
 | |
| 		auto ppr = stack::push_pop(r);
 | |
| 		return lua_compare(l.lua_state(), -1, -2, LUA_OPEQ) == 1;
 | |
| 	}
 | |
| 
 | |
| 	template <bool lb, bool rb>
 | |
| 	inline bool operator!=(const basic_reference<lb>& l, const basic_reference<rb>& r) {
 | |
| 		return !operator==(l, r);
 | |
| 	}
 | |
| 
 | |
| 	template <bool lb>
 | |
| 	inline bool operator==(const basic_reference<lb>& l, const stack_reference& r) {
 | |
| 		auto ppl = stack::push_pop(l);
 | |
| 		return lua_compare(l.lua_state(), -1, r.stack_index(), LUA_OPEQ) == 1;
 | |
| 	}
 | |
| 
 | |
| 	template <bool lb>
 | |
| 	inline bool operator!=(const basic_reference<lb>& l, const stack_reference& r) {
 | |
| 		return !operator==(l, r);
 | |
| 	}
 | |
| 
 | |
| 	template <bool rb>
 | |
| 	inline bool operator==(const stack_reference& l, const basic_reference<rb>& r) {
 | |
| 		auto ppr = stack::push_pop(r);
 | |
| 		return lua_compare(l.lua_state(), -1, r.stack_index(), LUA_OPEQ) == 1;
 | |
| 	}
 | |
| 
 | |
| 	template <bool rb>
 | |
| 	inline bool operator!=(const stack_reference& l, const basic_reference<rb>& r) {
 | |
| 		return !operator==(l, r);
 | |
| 	}
 | |
| 
 | |
| 	template <bool lb>
 | |
| 	inline bool operator==(const basic_reference<lb>& lhs, const lua_nil_t&) {
 | |
| 		return !lhs.valid();
 | |
| 	}
 | |
| 
 | |
| 	template <bool rb>
 | |
| 	inline bool operator==(const lua_nil_t&, const basic_reference<rb>& rhs) {
 | |
| 		return !rhs.valid();
 | |
| 	}
 | |
| 
 | |
| 	template <bool lb>
 | |
| 	inline bool operator!=(const basic_reference<lb>& lhs, const lua_nil_t&) {
 | |
| 		return lhs.valid();
 | |
| 	}
 | |
| 
 | |
| 	template <bool rb>
 | |
| 	inline bool operator!=(const lua_nil_t&, const basic_reference<rb>& rhs) {
 | |
| 		return rhs.valid();
 | |
| 	}
 | |
| 
 | |
| 	struct reference_equals : public stack_reference_equals {
 | |
| 		template <bool rb>
 | |
| 		bool operator()(const lua_nil_t& lhs, const basic_reference<rb>& rhs) const {
 | |
| 			return lhs == rhs;
 | |
| 		}
 | |
| 
 | |
| 		template <bool lb>
 | |
| 		bool operator()(const basic_reference<lb>& lhs, const lua_nil_t& rhs) const {
 | |
| 			return lhs == rhs;
 | |
| 		}
 | |
| 
 | |
| 		template <bool lb, bool rb>
 | |
| 		bool operator()(const basic_reference<lb>& lhs, const basic_reference<rb>& rhs) const {
 | |
| 			return lhs == rhs;
 | |
| 		}
 | |
| 
 | |
| 		template <bool lb>
 | |
| 		bool operator()(const basic_reference<lb>& lhs, const stack_reference& rhs) const {
 | |
| 			return lhs == rhs;
 | |
| 		}
 | |
| 
 | |
| 		template <bool rb>
 | |
| 		bool operator()(const stack_reference& lhs, const basic_reference<rb>& rhs) const {
 | |
| 			return lhs == rhs;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	struct reference_hash : public stack_reference_hash {
 | |
| 		typedef reference argument_type;
 | |
| 		typedef std::size_t result_type;
 | |
| 
 | |
| 		template <bool lb>
 | |
| 		result_type operator()(const basic_reference<lb>& lhs) const {
 | |
| 			std::hash<const void*> h;
 | |
| 			return h(lhs.pointer());
 | |
| 		}
 | |
| 	};
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/reference.hpp
 | |
| 
 | |
| // beginning of sol/tie.hpp
 | |
| 
 | |
| namespace sol {
 | |
| 
 | |
| 	namespace detail {
 | |
| 		template <typename T>
 | |
| 		struct is_speshul : std::false_type {};
 | |
| 	} // namespace detail
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct tie_size : std::tuple_size<T> {};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct is_tieable : std::integral_constant<bool, (::sol::tie_size<T>::value > 0)> {};
 | |
| 
 | |
| 	template <typename... Tn>
 | |
| 	struct tie_t : public std::tuple<std::add_lvalue_reference_t<Tn>...> {
 | |
| 	private:
 | |
| 		typedef std::tuple<std::add_lvalue_reference_t<Tn>...> base_t;
 | |
| 
 | |
| 		template <typename T>
 | |
| 		void set(std::false_type, T&& target) {
 | |
| 			std::get<0>(*this) = std::forward<T>(target);
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		void set(std::true_type, T&& target) {
 | |
| 			typedef tie_size<meta::unqualified_t<T>> value_size;
 | |
| 			typedef tie_size<std::tuple<Tn...>> tie_size;
 | |
| 			typedef meta::conditional_t<(value_size::value < tie_size::value), value_size, tie_size> indices_size;
 | |
| 			typedef std::make_index_sequence<indices_size::value> indices;
 | |
| 			set_extra(detail::is_speshul<meta::unqualified_t<T>>(), indices(), std::forward<T>(target));
 | |
| 		}
 | |
| 
 | |
| 		template <std::size_t... I, typename T>
 | |
| 		void set_extra(std::true_type, std::index_sequence<I...>, T&& target) {
 | |
| 			using std::get;
 | |
| 			(void)detail::swallow{0,
 | |
| 				(get<I>(static_cast<base_t&>(*this)) = get<I>(types<Tn...>(), target), 0)..., 0};
 | |
| 		}
 | |
| 
 | |
| 		template <std::size_t... I, typename T>
 | |
| 		void set_extra(std::false_type, std::index_sequence<I...>, T&& target) {
 | |
| 			using std::get;
 | |
| 			(void)detail::swallow{0,
 | |
| 				(get<I>(static_cast<base_t&>(*this)) = get<I>(target), 0)..., 0};
 | |
| 		}
 | |
| 
 | |
| 	public:
 | |
| 		using base_t::base_t;
 | |
| 
 | |
| 		template <typename T>
 | |
| 		tie_t& operator=(T&& value) {
 | |
| 			typedef is_tieable<meta::unqualified_t<T>> tieable;
 | |
| 			set(tieable(), std::forward<T>(value));
 | |
| 			return *this;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename... Tn>
 | |
| 	struct tie_size<tie_t<Tn...>> : std::tuple_size<std::tuple<Tn...>> {};
 | |
| 
 | |
| 	namespace adl_barrier_detail {
 | |
| 		template <typename... Tn>
 | |
| 		inline tie_t<std::remove_reference_t<Tn>...> tie(Tn&&... argn) {
 | |
| 			return tie_t<std::remove_reference_t<Tn>...>(std::forward<Tn>(argn)...);
 | |
| 		}
 | |
| 	} // namespace adl_barrier_detail
 | |
| 
 | |
| 	using namespace adl_barrier_detail;
 | |
| 
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/tie.hpp
 | |
| 
 | |
| // beginning of sol/stack_guard.hpp
 | |
| 
 | |
| #include <functional>
 | |
| 
 | |
| namespace sol {
 | |
| 	namespace detail {
 | |
| 		inline void stack_fail(int, int) {
 | |
| #if !(defined(SOL_NO_EXCEPTIONS) && SOL_NO_EXCEPTIONS)
 | |
| 			throw error(detail::direct_error, "imbalanced stack after operation finish");
 | |
| #else
 | |
| 			// Lol, what do you want, an error printout? :3c
 | |
| 			// There's no sane default here. The right way would be C-style abort(), and that's not acceptable, so
 | |
| 			// hopefully someone will register their own stack_fail thing for the `fx` parameter of stack_guard.
 | |
| #endif // No Exceptions
 | |
| 		}
 | |
| 	} // namespace detail
 | |
| 
 | |
| 	struct stack_guard {
 | |
| 		lua_State* L;
 | |
| 		int top;
 | |
| 		std::function<void(int, int)> on_mismatch;
 | |
| 
 | |
| 		stack_guard(lua_State* L) : stack_guard(L, lua_gettop(L)) {
 | |
| 		}
 | |
| 		stack_guard(lua_State* L, int top, std::function<void(int, int)> fx = detail::stack_fail) : L(L), top(top), on_mismatch(std::move(fx)) {
 | |
| 		}
 | |
| 		bool check_stack(int modification = 0) const {
 | |
| 			int bottom = lua_gettop(L) + modification;
 | |
| 			if (top == bottom) {
 | |
| 				return true;
 | |
| 			}
 | |
| 			on_mismatch(top, bottom);
 | |
| 			return false;
 | |
| 		}
 | |
| 		~stack_guard() {
 | |
| 			check_stack();
 | |
| 		}
 | |
| 	};
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/stack_guard.hpp
 | |
| 
 | |
| #include <vector>
 | |
| #include <bitset>
 | |
| #include <forward_list>
 | |
| #include <string>
 | |
| #include <algorithm>
 | |
| #include <sstream>
 | |
| #include <optional>
 | |
| 
 | |
| namespace sol {
 | |
| 	namespace detail {
 | |
| 		struct with_function_tag { };
 | |
| 		struct as_reference_tag { };
 | |
| 		template <typename T>
 | |
| 		struct as_pointer_tag { };
 | |
| 		template <typename T>
 | |
| 		struct as_value_tag { };
 | |
| 		template <typename T>
 | |
| 		struct as_unique_tag { };
 | |
| 		template <typename T>
 | |
| 		struct as_table_tag { };
 | |
| 
 | |
| 		using lua_reg_table = luaL_Reg[64];
 | |
| 
 | |
| 		using unique_destructor = void (*)(void*);
 | |
| 		using unique_tag = detail::inheritance_unique_cast_function;
 | |
| 
 | |
| 		inline void* align(std::size_t alignment, std::size_t size, void*& ptr, std::size_t& space, std::size_t& required_space) {
 | |
| 			// this handels arbitrary alignments...
 | |
| 			// make this into a power-of-2-only?
 | |
| 			// actually can't: this is a C++14-compatible framework,
 | |
| 			// power of 2 alignment is C++17
 | |
| 			std::uintptr_t initial = reinterpret_cast<std::uintptr_t>(ptr);
 | |
| 			std::uintptr_t offby = static_cast<std::uintptr_t>(initial % alignment);
 | |
| 			std::uintptr_t padding = (alignment - offby) % alignment;
 | |
| 			required_space += size + padding;
 | |
| 			if (space < required_space) {
 | |
| 				return nullptr;
 | |
| 			}
 | |
| 			ptr = static_cast<void*>(static_cast<char*>(ptr) + padding);
 | |
| 			space -= padding;
 | |
| 			return ptr;
 | |
| 		}
 | |
| 
 | |
| 		inline void* align(std::size_t alignment, std::size_t size, void*& ptr, std::size_t& space) {
 | |
| 			std::size_t required_space = 0;
 | |
| 			return align(alignment, size, ptr, space, required_space);
 | |
| 		}
 | |
| 
 | |
| 		inline void align_one(std::size_t a, std::size_t s, void*& target_alignment) {
 | |
| 			std::size_t space = (std::numeric_limits<std::size_t>::max)();
 | |
| 			target_alignment = align(a, s, target_alignment, space);
 | |
| 			target_alignment = static_cast<void*>(static_cast<char*>(target_alignment) + s);
 | |
| 		}
 | |
| 
 | |
| 		template <typename... Args>
 | |
| 		std::size_t aligned_space_for(void* alignment = nullptr) {
 | |
| 			// use temporary storage to prevent strict UB shenanigans
 | |
| 			char alignment_shim[(std::max)({ sizeof(Args)... }) + (std::max)({ alignof(Args)... })] {};
 | |
| 			char* start = alignment == nullptr ? static_cast<char*>(alignment) : alignment_shim;
 | |
| 			(void)detail::swallow { int {}, (align_one(std::alignment_of_v<Args>, sizeof(Args), alignment), int {})... };
 | |
| 			return static_cast<char*>(alignment) - start;
 | |
| 		}
 | |
| 
 | |
| 		inline void* align_usertype_pointer(void* ptr) {
 | |
| 			using use_align = std::integral_constant<bool,
 | |
| #if SOL_IS_OFF(SOL_ALIGN_MEMORY_I_)
 | |
| 			     false
 | |
| #else
 | |
| 			     (std::alignment_of<void*>::value > 1)
 | |
| #endif
 | |
| 			     >;
 | |
| 			if (!use_align::value) {
 | |
| 				return ptr;
 | |
| 			}
 | |
| 			std::size_t space = (std::numeric_limits<std::size_t>::max)();
 | |
| 			return align(std::alignment_of<void*>::value, sizeof(void*), ptr, space);
 | |
| 		}
 | |
| 
 | |
| 		template <bool pre_aligned = false, bool pre_shifted = false>
 | |
| 		void* align_usertype_unique_destructor(void* ptr) {
 | |
| 			using use_align = std::integral_constant<bool,
 | |
| #if SOL_IS_OFF(SOL_ALIGN_MEMORY_I_)
 | |
| 			     false
 | |
| #else
 | |
| 			     (std::alignment_of<unique_destructor>::value > 1)
 | |
| #endif
 | |
| 			     >;
 | |
| 			if (!pre_aligned) {
 | |
| 				ptr = align_usertype_pointer(ptr);
 | |
| 			}
 | |
| 			if (!pre_shifted) {
 | |
| 				ptr = static_cast<void*>(static_cast<char*>(ptr) + sizeof(void*));
 | |
| 			}
 | |
| 			if (!use_align::value) {
 | |
| 				return static_cast<void*>(static_cast<void**>(ptr) + 1);
 | |
| 			}
 | |
| 			std::size_t space = (std::numeric_limits<std::size_t>::max)();
 | |
| 			return align(std::alignment_of<unique_destructor>::value, sizeof(unique_destructor), ptr, space);
 | |
| 		}
 | |
| 
 | |
| 		template <bool pre_aligned = false, bool pre_shifted = false>
 | |
| 		void* align_usertype_unique_tag(void* ptr) {
 | |
| 			using use_align = std::integral_constant<bool,
 | |
| #if SOL_IS_OFF(SOL_ALIGN_MEMORY_I_)
 | |
| 			     false
 | |
| #else
 | |
| 			     (std::alignment_of<unique_tag>::value > 1)
 | |
| #endif
 | |
| 			     >;
 | |
| 			if (!pre_aligned) {
 | |
| 				ptr = align_usertype_unique_destructor(ptr);
 | |
| 			}
 | |
| 			if (!pre_shifted) {
 | |
| 				ptr = static_cast<void*>(static_cast<char*>(ptr) + sizeof(unique_destructor));
 | |
| 			}
 | |
| 			if (!use_align::value) {
 | |
| 				return ptr;
 | |
| 			}
 | |
| 			std::size_t space = (std::numeric_limits<std::size_t>::max)();
 | |
| 			return align(std::alignment_of<unique_tag>::value, sizeof(unique_tag), ptr, space);
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, bool pre_aligned = false, bool pre_shifted = false>
 | |
| 		void* align_usertype_unique(void* ptr) {
 | |
| 			typedef std::integral_constant<bool,
 | |
| #if SOL_IS_OFF(SOL_ALIGN_MEMORY_I_)
 | |
| 			     false
 | |
| #else
 | |
| 			     (std::alignment_of_v<T> > 1)
 | |
| #endif
 | |
| 			     >
 | |
| 			     use_align;
 | |
| 			if (!pre_aligned) {
 | |
| 				ptr = align_usertype_unique_tag(ptr);
 | |
| 			}
 | |
| 			if (!pre_shifted) {
 | |
| 				ptr = static_cast<void*>(static_cast<char*>(ptr) + sizeof(unique_tag));
 | |
| 			}
 | |
| 			if (!use_align::value) {
 | |
| 				return ptr;
 | |
| 			}
 | |
| 			std::size_t space = (std::numeric_limits<std::size_t>::max)();
 | |
| 			return align(std::alignment_of_v<T>, sizeof(T), ptr, space);
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		void* align_user(void* ptr) {
 | |
| 			typedef std::integral_constant<bool,
 | |
| #if SOL_IS_OFF(SOL_ALIGN_MEMORY_I_)
 | |
| 			     false
 | |
| #else
 | |
| 			     (std::alignment_of_v<T> > 1)
 | |
| #endif
 | |
| 			     >
 | |
| 			     use_align;
 | |
| 			if (!use_align::value) {
 | |
| 				return ptr;
 | |
| 			}
 | |
| 			std::size_t space = (std::numeric_limits<std::size_t>::max)();
 | |
| 			return align(std::alignment_of_v<T>, sizeof(T), ptr, space);
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		T** usertype_allocate_pointer(lua_State* L) {
 | |
| 			typedef std::integral_constant<bool,
 | |
| #if SOL_IS_OFF(SOL_ALIGN_MEMORY_I_)
 | |
| 			     false
 | |
| #else
 | |
| 			     (std::alignment_of<T*>::value > 1)
 | |
| #endif
 | |
| 			     >
 | |
| 			     use_align;
 | |
| 			if (!use_align::value) {
 | |
| 				T** pointerpointer = static_cast<T**>(lua_newuserdata(L, sizeof(T*)));
 | |
| 				return pointerpointer;
 | |
| 			}
 | |
| 			static const std::size_t initial_size = aligned_space_for<T*>(nullptr);
 | |
| 			static const std::size_t misaligned_size = aligned_space_for<T*>(reinterpret_cast<void*>(0x1));
 | |
| 
 | |
| 			std::size_t allocated_size = initial_size;
 | |
| 			void* unadjusted = lua_newuserdata(L, initial_size);
 | |
| 			void* adjusted = align(std::alignment_of<T*>::value, sizeof(T*), unadjusted, allocated_size);
 | |
| 			if (adjusted == nullptr) {
 | |
| 				lua_pop(L, 1);
 | |
| 				// what kind of absolute garbage trash allocator are we dealing with?
 | |
| 				// whatever, add some padding in the case of MAXIMAL alignment waste...
 | |
| 				allocated_size = misaligned_size;
 | |
| 				unadjusted = lua_newuserdata(L, allocated_size);
 | |
| 				adjusted = align(std::alignment_of<T*>::value, sizeof(T*), unadjusted, allocated_size);
 | |
| 				if (adjusted == nullptr) {
 | |
| 					// trash allocator can burn in hell
 | |
| 					lua_pop(L, 1);
 | |
| 					// luaL_error(L, "if you are the one that wrote this allocator you should feel bad for doing a
 | |
| 					// worse job than malloc/realloc and should go read some books, yeah?");
 | |
| 					luaL_error(L, "cannot properly align memory for '%s'", detail::demangle<T*>().data());
 | |
| 				}
 | |
| 			}
 | |
| 			return static_cast<T**>(adjusted);
 | |
| 		}
 | |
| 
 | |
| 		inline bool attempt_alloc(lua_State* L, std::size_t ptr_align, std::size_t ptr_size, std::size_t value_align, std::size_t value_size,
 | |
| 		     std::size_t allocated_size, void*& pointer_adjusted, void*& data_adjusted) {
 | |
| 			void* adjusted = lua_newuserdata(L, allocated_size);
 | |
| 			pointer_adjusted = align(ptr_align, ptr_size, adjusted, allocated_size);
 | |
| 			if (pointer_adjusted == nullptr) {
 | |
| 				lua_pop(L, 1);
 | |
| 				return false;
 | |
| 			}
 | |
| 			// subtract size of what we're going to allocate there
 | |
| 			allocated_size -= ptr_size;
 | |
| 			adjusted = static_cast<void*>(static_cast<char*>(pointer_adjusted) + ptr_size);
 | |
| 			data_adjusted = align(value_align, value_size, adjusted, allocated_size);
 | |
| 			if (data_adjusted == nullptr) {
 | |
| 				lua_pop(L, 1);
 | |
| 				return false;
 | |
| 			}
 | |
| 			return true;
 | |
| 		}
 | |
| 
 | |
| 		inline bool attempt_alloc_unique(lua_State* L, std::size_t ptr_align, std::size_t ptr_size, std::size_t real_align, std::size_t real_size,
 | |
| 		     std::size_t allocated_size, void*& pointer_adjusted, void*& dx_adjusted, void*& id_adjusted, void*& data_adjusted) {
 | |
| 			void* adjusted = lua_newuserdata(L, allocated_size);
 | |
| 			pointer_adjusted = align(ptr_align, ptr_size, adjusted, allocated_size);
 | |
| 			if (pointer_adjusted == nullptr) {
 | |
| 				lua_pop(L, 1);
 | |
| 				return false;
 | |
| 			}
 | |
| 			allocated_size -= ptr_size;
 | |
| 
 | |
| 			adjusted = static_cast<void*>(static_cast<char*>(pointer_adjusted) + ptr_size);
 | |
| 			dx_adjusted = align(std::alignment_of_v<unique_destructor>, sizeof(unique_destructor), adjusted, allocated_size);
 | |
| 			if (dx_adjusted == nullptr) {
 | |
| 				lua_pop(L, 1);
 | |
| 				return false;
 | |
| 			}
 | |
| 			allocated_size -= sizeof(unique_destructor);
 | |
| 
 | |
| 			adjusted = static_cast<void*>(static_cast<char*>(dx_adjusted) + sizeof(unique_destructor));
 | |
| 
 | |
| 			id_adjusted = align(std::alignment_of_v<unique_tag>, sizeof(unique_tag), adjusted, allocated_size);
 | |
| 			if (id_adjusted == nullptr) {
 | |
| 				lua_pop(L, 1);
 | |
| 				return false;
 | |
| 			}
 | |
| 			allocated_size -= sizeof(unique_tag);
 | |
| 
 | |
| 			adjusted = static_cast<void*>(static_cast<char*>(id_adjusted) + sizeof(unique_tag));
 | |
| 			data_adjusted = align(real_align, real_size, adjusted, allocated_size);
 | |
| 			if (data_adjusted == nullptr) {
 | |
| 				lua_pop(L, 1);
 | |
| 				return false;
 | |
| 			}
 | |
| 			return true;
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		T* usertype_allocate(lua_State* L) {
 | |
| 			typedef std::integral_constant<bool,
 | |
| #if SOL_IS_OFF(SOL_ALIGN_MEMORY_I_)
 | |
| 			     false
 | |
| #else
 | |
| 			     (std::alignment_of<T*>::value > 1 || std::alignment_of_v<T> > 1)
 | |
| #endif
 | |
| 			     >
 | |
| 			     use_align;
 | |
| 			if (!use_align::value) {
 | |
| 				T** pointerpointer = static_cast<T**>(lua_newuserdata(L, sizeof(T*) + sizeof(T)));
 | |
| 				T*& pointerreference = *pointerpointer;
 | |
| 				T* allocationtarget = reinterpret_cast<T*>(pointerpointer + 1);
 | |
| 				pointerreference = allocationtarget;
 | |
| 				return allocationtarget;
 | |
| 			}
 | |
| 
 | |
| 			/* the assumption is that `lua_newuserdata` -- unless someone
 | |
| 			passes a specific lua_Alloc that gives us bogus, un-aligned pointers
 | |
| 			-- uses malloc, which tends to hand out more or less aligned pointers to memory
 | |
| 			(most of the time, anyhow)
 | |
| 
 | |
| 			but it's not guaranteed, so we have to do a post-adjustment check and increase padding
 | |
| 
 | |
| 			we do this preliminarily with compile-time stuff, to see
 | |
| 			if we strike lucky with the allocator and alignment values
 | |
| 
 | |
| 			otherwise, we have to re-allocate the userdata and
 | |
| 			over-allocate some space for additional padding because
 | |
| 			compilers are optimized for aligned reads/writes
 | |
| 			(and clang will barf UBsan errors on us for not being aligned)
 | |
| 			*/
 | |
| 			static const std::size_t initial_size = aligned_space_for<T*, T>(nullptr);
 | |
| 			static const std::size_t misaligned_size = aligned_space_for<T*, T>(reinterpret_cast<void*>(0x1));
 | |
| 
 | |
| 			void* pointer_adjusted;
 | |
| 			void* data_adjusted;
 | |
| 			bool result
 | |
| 			     = attempt_alloc(L, std::alignment_of_v<T*>, sizeof(T*), std::alignment_of_v<T>, sizeof(T), initial_size, pointer_adjusted, data_adjusted);
 | |
| 			if (!result) {
 | |
| 				// we're likely to get something that fails to perform the proper allocation a second time,
 | |
| 				// so we use the suggested_new_size bump to help us out here
 | |
| 				pointer_adjusted = nullptr;
 | |
| 				data_adjusted = nullptr;
 | |
| 				result = attempt_alloc(
 | |
| 				     L, std::alignment_of_v<T*>, sizeof(T*), std::alignment_of_v<T>, sizeof(T), misaligned_size, pointer_adjusted, data_adjusted);
 | |
| 				if (!result) {
 | |
| 					if (pointer_adjusted == nullptr) {
 | |
| 						luaL_error(L, "aligned allocation of userdata block (pointer section) for '%s' failed", detail::demangle<T>().c_str());
 | |
| 					}
 | |
| 					else {
 | |
| 						luaL_error(L, "aligned allocation of userdata block (data section) for '%s' failed", detail::demangle<T>().c_str());
 | |
| 					}
 | |
| 					return nullptr;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			T** pointerpointer = reinterpret_cast<T**>(pointer_adjusted);
 | |
| 			T*& pointerreference = *pointerpointer;
 | |
| 			T* allocationtarget = reinterpret_cast<T*>(data_adjusted);
 | |
| 			pointerreference = allocationtarget;
 | |
| 			return allocationtarget;
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, typename Real>
 | |
| 		Real* usertype_unique_allocate(lua_State* L, T**& pref, unique_destructor*& dx, unique_tag*& id) {
 | |
| 			typedef std::integral_constant<bool,
 | |
| #if SOL_IS_OFF(SOL_ALIGN_MEMORY_I_)
 | |
| 			     false
 | |
| #else
 | |
| 			     (std::alignment_of<T*>::value > 1 || std::alignment_of<unique_tag>::value > 1 || std::alignment_of<unique_destructor>::value > 1
 | |
| 			          || std::alignment_of<Real>::value > 1)
 | |
| #endif
 | |
| 			     >
 | |
| 			     use_align;
 | |
| 			if (!use_align::value) {
 | |
| 				pref = static_cast<T**>(lua_newuserdata(L, sizeof(T*) + sizeof(detail::unique_destructor) + sizeof(unique_tag) + sizeof(Real)));
 | |
| 				dx = static_cast<detail::unique_destructor*>(static_cast<void*>(pref + 1));
 | |
| 				id = static_cast<unique_tag*>(static_cast<void*>(dx + 1));
 | |
| 				Real* mem = static_cast<Real*>(static_cast<void*>(id + 1));
 | |
| 				return mem;
 | |
| 			}
 | |
| 
 | |
| 			static const std::size_t initial_size = aligned_space_for<T*, unique_destructor, unique_tag, Real>(nullptr);
 | |
| 			static const std::size_t misaligned_size = aligned_space_for<T*, unique_destructor, unique_tag, Real>(reinterpret_cast<void*>(0x1));
 | |
| 
 | |
| 			void* pointer_adjusted;
 | |
| 			void* dx_adjusted;
 | |
| 			void* id_adjusted;
 | |
| 			void* data_adjusted;
 | |
| 			bool result = attempt_alloc_unique(L,
 | |
| 			     std::alignment_of_v<T*>,
 | |
| 			     sizeof(T*),
 | |
| 			     std::alignment_of_v<Real>,
 | |
| 			     sizeof(Real),
 | |
| 			     initial_size,
 | |
| 			     pointer_adjusted,
 | |
| 			     dx_adjusted,
 | |
| 			     id_adjusted,
 | |
| 			     data_adjusted);
 | |
| 			if (!result) {
 | |
| 				// we're likely to get something that fails to perform the proper allocation a second time,
 | |
| 				// so we use the suggested_new_size bump to help us out here
 | |
| 				pointer_adjusted = nullptr;
 | |
| 				dx_adjusted = nullptr;
 | |
| 				id_adjusted = nullptr;
 | |
| 				data_adjusted = nullptr;
 | |
| 				result = attempt_alloc_unique(L,
 | |
| 				     std::alignment_of_v<T*>,
 | |
| 				     sizeof(T*),
 | |
| 				     std::alignment_of_v<Real>,
 | |
| 				     sizeof(Real),
 | |
| 				     misaligned_size,
 | |
| 				     pointer_adjusted,
 | |
| 				     dx_adjusted,
 | |
| 				     id_adjusted,
 | |
| 				     data_adjusted);
 | |
| 				if (!result) {
 | |
| 					if (pointer_adjusted == nullptr) {
 | |
| 						luaL_error(L, "aligned allocation of userdata block (pointer section) for '%s' failed", detail::demangle<T>().c_str());
 | |
| 					}
 | |
| 					else if (dx_adjusted == nullptr) {
 | |
| 						luaL_error(L, "aligned allocation of userdata block (deleter section) for '%s' failed", detail::demangle<T>().c_str());
 | |
| 					}
 | |
| 					else {
 | |
| 						luaL_error(L, "aligned allocation of userdata block (data section) for '%s' failed", detail::demangle<T>().c_str());
 | |
| 					}
 | |
| 					return nullptr;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			pref = static_cast<T**>(pointer_adjusted);
 | |
| 			dx = static_cast<detail::unique_destructor*>(dx_adjusted);
 | |
| 			id = static_cast<unique_tag*>(id_adjusted);
 | |
| 			Real* mem = static_cast<Real*>(data_adjusted);
 | |
| 			return mem;
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		T* user_allocate(lua_State* L) {
 | |
| 			typedef std::integral_constant<bool,
 | |
| #if SOL_IS_OFF(SOL_ALIGN_MEMORY_I_)
 | |
| 			     false
 | |
| #else
 | |
| 			     (std::alignment_of_v<T> > 1)
 | |
| #endif
 | |
| 			     >
 | |
| 			     use_align;
 | |
| 			if (!use_align::value) {
 | |
| 				T* pointer = static_cast<T*>(lua_newuserdata(L, sizeof(T)));
 | |
| 				return pointer;
 | |
| 			}
 | |
| 
 | |
| 			static const std::size_t initial_size = aligned_space_for<T>(nullptr);
 | |
| 			static const std::size_t misaligned_size = aligned_space_for<T>(reinterpret_cast<void*>(0x1));
 | |
| 
 | |
| 			std::size_t allocated_size = initial_size;
 | |
| 			void* unadjusted = lua_newuserdata(L, allocated_size);
 | |
| 			void* adjusted = align(std::alignment_of_v<T>, sizeof(T), unadjusted, allocated_size);
 | |
| 			if (adjusted == nullptr) {
 | |
| 				lua_pop(L, 1);
 | |
| 				// try again, add extra space for alignment padding
 | |
| 				allocated_size = misaligned_size;
 | |
| 				unadjusted = lua_newuserdata(L, allocated_size);
 | |
| 				adjusted = align(std::alignment_of_v<T>, sizeof(T), unadjusted, allocated_size);
 | |
| 				if (adjusted == nullptr) {
 | |
| 					lua_pop(L, 1);
 | |
| 					luaL_error(L, "cannot properly align memory for '%s'", detail::demangle<T>().data());
 | |
| 				}
 | |
| 			}
 | |
| 			return static_cast<T*>(adjusted);
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		int usertype_alloc_destruct(lua_State* L) {
 | |
| 			void* memory = lua_touserdata(L, 1);
 | |
| 			memory = align_usertype_pointer(memory);
 | |
| 			T** pdata = static_cast<T**>(memory);
 | |
| 			T* data = *pdata;
 | |
| 			std::allocator<T> alloc {};
 | |
| 			std::allocator_traits<std::allocator<T>>::destroy(alloc, data);
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		int unique_destruct(lua_State* L) {
 | |
| 			void* memory = lua_touserdata(L, 1);
 | |
| 			memory = align_usertype_unique_destructor(memory);
 | |
| 			unique_destructor& dx = *static_cast<unique_destructor*>(memory);
 | |
| 			memory = align_usertype_unique_tag<true>(memory);
 | |
| 			(dx)(memory);
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		int user_alloc_destruct(lua_State* L) {
 | |
| 			void* memory = lua_touserdata(L, 1);
 | |
| 			memory = align_user<T>(memory);
 | |
| 			T* data = static_cast<T*>(memory);
 | |
| 			std::allocator<T> alloc;
 | |
| 			std::allocator_traits<std::allocator<T>>::destroy(alloc, data);
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, typename Real>
 | |
| 		void usertype_unique_alloc_destroy(void* memory) {
 | |
| 			memory = align_usertype_unique<Real, true>(memory);
 | |
| 			Real* target = static_cast<Real*>(memory);
 | |
| 			std::allocator<Real> alloc;
 | |
| 			std::allocator_traits<std::allocator<Real>>::destroy(alloc, target);
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		int cannot_destruct(lua_State* L) {
 | |
| 			return luaL_error(L,
 | |
| 			     "cannot call the destructor for '%s': it is either hidden (protected/private) or removed with '= "
 | |
| 			     "delete' and thusly this type is being destroyed without properly destructing, invoking undefined "
 | |
| 			     "behavior: please bind a usertype and specify a custom destructor to define the behavior properly",
 | |
| 			     detail::demangle<T>().data());
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		void reserve(T&, std::size_t) {
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, typename Al>
 | |
| 		void reserve(std::vector<T, Al>& vec, std::size_t hint) {
 | |
| 			vec.reserve(hint);
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, typename Tr, typename Al>
 | |
| 		void reserve(std::basic_string<T, Tr, Al>& str, std::size_t hint) {
 | |
| 			str.reserve(hint);
 | |
| 		}
 | |
| 
 | |
| 		inline bool property_always_true(meta_function) {
 | |
| 			return true;
 | |
| 		}
 | |
| 
 | |
| 		struct properties_enrollment_allowed {
 | |
| 			int& times_through;
 | |
| 			std::bitset<64>& properties;
 | |
| 			automagic_enrollments& enrollments;
 | |
| 
 | |
| 			properties_enrollment_allowed(int& times, std::bitset<64>& props, automagic_enrollments& enroll)
 | |
| 			: times_through(times), properties(props), enrollments(enroll) {
 | |
| 			}
 | |
| 
 | |
| 			bool operator()(meta_function mf) const {
 | |
| 				bool p = properties[static_cast<int>(mf)];
 | |
| 				if (times_through > 0) {
 | |
| 					return p;
 | |
| 				}
 | |
| 				switch (mf) {
 | |
| 				case meta_function::length:
 | |
| 					return enrollments.length_operator && !p;
 | |
| 				case meta_function::pairs:
 | |
| 					return enrollments.pairs_operator && !p;
 | |
| 				case meta_function::call:
 | |
| 					return enrollments.call_operator && !p;
 | |
| 				case meta_function::less_than:
 | |
| 					return enrollments.less_than_operator && !p;
 | |
| 				case meta_function::less_than_or_equal_to:
 | |
| 					return enrollments.less_than_or_equal_to_operator && !p;
 | |
| 				case meta_function::equal_to:
 | |
| 					return enrollments.equal_to_operator && !p;
 | |
| 				default:
 | |
| 					break;
 | |
| 				}
 | |
| 				return !p;
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		struct indexed_insert {
 | |
| 			lua_reg_table& l;
 | |
| 			int& index;
 | |
| 
 | |
| 			indexed_insert(lua_reg_table& cont, int& idx) : l(cont), index(idx) {
 | |
| 			}
 | |
| 			void operator()(meta_function mf, lua_CFunction f) {
 | |
| 				l[index] = luaL_Reg { to_string(mf).c_str(), f };
 | |
| 				++index;
 | |
| 			}
 | |
| 		};
 | |
| 	} // namespace detail
 | |
| 
 | |
| 	namespace stack {
 | |
| 
 | |
| 		template <typename T, bool global = false, bool raw = false, typename = void>
 | |
| 		struct field_getter;
 | |
| 		template <typename T, typename P, bool global = false, bool raw = false, typename = void>
 | |
| 		struct probe_field_getter;
 | |
| 
 | |
| 		template <typename T, bool global = false, bool raw = false, typename = void>
 | |
| 		struct field_setter;
 | |
| 
 | |
| 		template <typename T, typename = void>
 | |
| 		struct unqualified_getter;
 | |
| 		template <typename T, typename = void>
 | |
| 		struct qualified_getter;
 | |
| 
 | |
| 		template <typename T, typename = void>
 | |
| 		struct qualified_interop_getter;
 | |
| 		template <typename T, typename = void>
 | |
| 		struct unqualified_interop_getter;
 | |
| 
 | |
| 		template <typename T, typename = void>
 | |
| 		struct popper;
 | |
| 
 | |
| 		template <typename T, typename = void>
 | |
| 		struct unqualified_pusher;
 | |
| 
 | |
| 		template <typename T, type t, typename = void>
 | |
| 		struct unqualified_checker;
 | |
| 		template <typename T, type t, typename = void>
 | |
| 		struct qualified_checker;
 | |
| 
 | |
| 		template <typename T, typename = void>
 | |
| 		struct unqualified_check_getter;
 | |
| 		template <typename T, typename = void>
 | |
| 		struct qualified_check_getter;
 | |
| 
 | |
| 		struct probe {
 | |
| 			bool success;
 | |
| 			int levels;
 | |
| 
 | |
| 			probe(bool s, int l) : success(s), levels(l) {
 | |
| 			}
 | |
| 
 | |
| 			operator bool() const {
 | |
| 				return success;
 | |
| 			};
 | |
| 		};
 | |
| 
 | |
| 		struct record {
 | |
| 			int last;
 | |
| 			int used;
 | |
| 
 | |
| 			record() noexcept : last(), used() {
 | |
| 			}
 | |
| 			void use(int count) noexcept {
 | |
| 				last = count;
 | |
| 				used += count;
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		namespace stack_detail {
 | |
| 			template <typename Function>
 | |
| 			Function* get_function_pointer(lua_State*, int, record&) noexcept;
 | |
| 			template <typename Function, typename Handler>
 | |
| 			bool check_function_pointer(lua_State* L, int index, Handler&& handler, record& tracking) noexcept;
 | |
| 		} // namespace stack_detail
 | |
| 
 | |
| 	} // namespace stack
 | |
| 
 | |
| 	namespace meta { namespace meta_detail {
 | |
| 
 | |
| 		template <typename T>
 | |
| 		using adl_sol_lua_get_test_t = decltype(sol_lua_get(types<T>(), static_cast<lua_State*>(nullptr), -1, std::declval<stack::record&>()));
 | |
| 
 | |
| 		template <typename T>
 | |
| 		using adl_sol_lua_interop_get_test_t
 | |
| 			= decltype(sol_lua_interop_get(types<T>(), static_cast<lua_State*>(nullptr), -1, static_cast<void*>(nullptr), std::declval<stack::record&>()));
 | |
| 
 | |
| 		template <typename T>
 | |
| 		using adl_sol_lua_check_test_t = decltype(sol_lua_check(types<T>(), static_cast<lua_State*>(nullptr), -1, no_panic, std::declval<stack::record&>()));
 | |
| 
 | |
| 		template <typename T>
 | |
| 		using adl_sol_lua_interop_check_test_t
 | |
| 			= decltype(sol_lua_interop_check(types<T>(), static_cast<lua_State*>(nullptr), -1, type::none, no_panic, std::declval<stack::record&>()));
 | |
| 
 | |
| 		template <typename T>
 | |
| 		using adl_sol_lua_check_get_test_t
 | |
| 			= decltype(sol_lua_check_get(types<T>(), static_cast<lua_State*>(nullptr), -1, no_panic, std::declval<stack::record&>()));
 | |
| 
 | |
| 		template <typename... Args>
 | |
| 		using adl_sol_lua_push_test_t = decltype(sol_lua_push(static_cast<lua_State*>(nullptr), std::declval<Args>()...));
 | |
| 
 | |
| 		template <typename T, typename... Args>
 | |
| 		using adl_sol_lua_push_exact_test_t = decltype(sol_lua_push(types<T>(), static_cast<lua_State*>(nullptr), std::declval<Args>()...));
 | |
| 
 | |
| 		template <typename T>
 | |
| 		inline constexpr bool is_adl_sol_lua_get_v = meta::is_detected_v<adl_sol_lua_get_test_t, T>;
 | |
| 
 | |
| 		template <typename T>
 | |
| 		inline constexpr bool is_adl_sol_lua_interop_get_v = meta::is_detected_v<adl_sol_lua_interop_get_test_t, T>;
 | |
| 
 | |
| 		template <typename T>
 | |
| 		inline constexpr bool is_adl_sol_lua_check_v = meta::is_detected_v<adl_sol_lua_check_test_t, T>;
 | |
| 
 | |
| 		template <typename T>
 | |
| 		inline constexpr bool is_adl_sol_lua_interop_check_v = meta::is_detected_v<adl_sol_lua_interop_check_test_t, T>;
 | |
| 
 | |
| 		template <typename T>
 | |
| 		inline constexpr bool is_adl_sol_lua_check_get_v = meta::is_detected_v<adl_sol_lua_check_get_test_t, T>;
 | |
| 
 | |
| 		template <typename... Args>
 | |
| 		inline constexpr bool is_adl_sol_lua_push_v = meta::is_detected_v<adl_sol_lua_push_test_t, Args...>;
 | |
| 
 | |
| 		template <typename T, typename... Args>
 | |
| 		inline constexpr bool is_adl_sol_lua_push_exact_v = meta::is_detected_v<adl_sol_lua_push_exact_test_t, T, Args...>;
 | |
| 	}} // namespace meta::meta_detail
 | |
| 
 | |
| 	namespace stack {
 | |
| 		namespace stack_detail {
 | |
| 			constexpr const char* not_enough_stack_space = "not enough space left on Lua stack";
 | |
| 			constexpr const char* not_enough_stack_space_floating = "not enough space left on Lua stack for a floating point number";
 | |
| 			constexpr const char* not_enough_stack_space_integral = "not enough space left on Lua stack for an integral number";
 | |
| 			constexpr const char* not_enough_stack_space_string = "not enough space left on Lua stack for a string";
 | |
| 			constexpr const char* not_enough_stack_space_meta_function_name = "not enough space left on Lua stack for the name of a meta_function";
 | |
| 			constexpr const char* not_enough_stack_space_userdata = "not enough space left on Lua stack to create a sol3 userdata";
 | |
| 			constexpr const char* not_enough_stack_space_generic = "not enough space left on Lua stack to push valuees";
 | |
| 			constexpr const char* not_enough_stack_space_environment = "not enough space left on Lua stack to retrieve environment";
 | |
| 
 | |
| 			template <typename T>
 | |
| 			struct strip {
 | |
| 				typedef T type;
 | |
| 			};
 | |
| 			template <typename T>
 | |
| 			struct strip<std::reference_wrapper<T>> {
 | |
| 				typedef T& type;
 | |
| 			};
 | |
| 			template <typename T>
 | |
| 			struct strip<user<T>> {
 | |
| 				typedef T& type;
 | |
| 			};
 | |
| 			template <typename T>
 | |
| 			struct strip<non_null<T>> {
 | |
| 				typedef T type;
 | |
| 			};
 | |
| 			template <typename T>
 | |
| 			using strip_t = typename strip<T>::type;
 | |
| 
 | |
| 			template <typename C>
 | |
| 			static int get_size_hint(C& c) {
 | |
| 				return static_cast<int>(c.size());
 | |
| 			}
 | |
| 
 | |
| 			template <typename V, typename Al>
 | |
| 			static int get_size_hint(const std::forward_list<V, Al>&) {
 | |
| 				// forward_list makes me sad
 | |
| 				return static_cast<int>(32);
 | |
| 			}
 | |
| 
 | |
| 			template <typename T>
 | |
| 			decltype(auto) unchecked_unqualified_get(lua_State* L, int index, record& tracking) {
 | |
| 				using Tu = meta::unqualified_t<T>;
 | |
| 				if constexpr (meta::meta_detail::is_adl_sol_lua_get_v<Tu>) {
 | |
| 					return sol_lua_get(types<Tu>(), L, index, tracking);
 | |
| 				}
 | |
| 				else {
 | |
| 					unqualified_getter<Tu> g {};
 | |
| 					(void)g;
 | |
| 					return g.get(L, index, tracking);
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			template <typename T>
 | |
| 			decltype(auto) unchecked_get(lua_State* L, int index, record& tracking) {
 | |
| 				if constexpr (meta::meta_detail::is_adl_sol_lua_get_v<T>) {
 | |
| 					return sol_lua_get(types<T>(), L, index, tracking);
 | |
| 				}
 | |
| 				else {
 | |
| 					qualified_getter<T> g {};
 | |
| 					(void)g;
 | |
| 					return g.get(L, index, tracking);
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			template <typename T>
 | |
| 			decltype(auto) unqualified_interop_get(lua_State* L, int index, void* unadjusted_pointer, record& tracking) {
 | |
| 				using Tu = meta::unqualified_t<T>;
 | |
| 				if constexpr (meta::meta_detail::is_adl_sol_lua_interop_get_v<Tu>) {
 | |
| 					return sol_lua_interop_get(types<Tu>(), L, index, unadjusted_pointer, tracking);
 | |
| 				}
 | |
| 				else {
 | |
| 					(void)L;
 | |
| 					(void)index;
 | |
| 					(void)unadjusted_pointer;
 | |
| 					(void)tracking;
 | |
| 					using Ti = stack_detail::strip_t<Tu>;
 | |
| 					return std::pair<bool, Ti*> { false, nullptr };
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			template <typename T>
 | |
| 			decltype(auto) interop_get(lua_State* L, int index, void* unadjusted_pointer, record& tracking) {
 | |
| 				if constexpr (meta::meta_detail::is_adl_sol_lua_interop_get_v<T>) {
 | |
| 					return sol_lua_interop_get(types<T>(), L, index, unadjusted_pointer, tracking);
 | |
| 				}
 | |
| 				else {
 | |
| 					return unqualified_interop_get<T>(L, index, unadjusted_pointer, tracking);
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			template <typename T, typename Handler>
 | |
| 			bool unqualified_interop_check(lua_State* L, int index, type index_type, Handler&& handler, record& tracking) {
 | |
| 				using Tu = meta::unqualified_t<T>;
 | |
| 				if constexpr (meta::meta_detail::is_adl_sol_lua_interop_check_v<Tu>) {
 | |
| 					return sol_lua_interop_check(types<Tu>(), L, index, index_type, std::forward<Handler>(handler), tracking);
 | |
| 				}
 | |
| 				else {
 | |
| 					(void)L;
 | |
| 					(void)index;
 | |
| 					(void)index_type;
 | |
| 					(void)handler;
 | |
| 					(void)tracking;
 | |
| 					return false;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			template <typename T, typename Handler>
 | |
| 			bool interop_check(lua_State* L, int index, type index_type, Handler&& handler, record& tracking) {
 | |
| 				if constexpr (meta::meta_detail::is_adl_sol_lua_interop_check_v<T>) {
 | |
| 					return sol_lua_interop_check(types<T>(), L, index, index_type, std::forward<Handler>(handler), tracking);
 | |
| 				}
 | |
| 				else {
 | |
| 					return unqualified_interop_check<T>(L, index, index_type, std::forward<Handler>(handler), tracking);
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			using undefined_method_func = void (*)(stack_reference);
 | |
| 
 | |
| 			struct undefined_metatable {
 | |
| 				lua_State* L;
 | |
| 				const char* key;
 | |
| 				undefined_method_func on_new_table;
 | |
| 
 | |
| 				undefined_metatable(lua_State* l, const char* k, undefined_method_func umf) : L(l), key(k), on_new_table(umf) {
 | |
| 				}
 | |
| 
 | |
| 				void operator()() const {
 | |
| 					if (luaL_newmetatable(L, key) == 1) {
 | |
| 						on_new_table(stack_reference(L, -1));
 | |
| 					}
 | |
| 					lua_setmetatable(L, -2);
 | |
| 				}
 | |
| 			};
 | |
| 		} // namespace stack_detail
 | |
| 
 | |
| 		inline bool maybe_indexable(lua_State* L, int index = -1) {
 | |
| 			type t = type_of(L, index);
 | |
| 			return t == type::userdata || t == type::table;
 | |
| 		}
 | |
| 
 | |
| 		inline int top(lua_State* L) {
 | |
| 			return lua_gettop(L);
 | |
| 		}
 | |
| 
 | |
| 		inline bool is_main_thread(lua_State* L) {
 | |
| 			int ismainthread = lua_pushthread(L);
 | |
| 			lua_pop(L, 1);
 | |
| 			return ismainthread == 1;
 | |
| 		}
 | |
| 
 | |
| 		inline void coroutine_create_guard(lua_State* L) {
 | |
| 			if (is_main_thread(L)) {
 | |
| 				return;
 | |
| 			}
 | |
| 			int stacksize = lua_gettop(L);
 | |
| 			if (stacksize < 1) {
 | |
| 				return;
 | |
| 			}
 | |
| 			if (type_of(L, 1) != type::function) {
 | |
| 				return;
 | |
| 			}
 | |
| 			// well now we're screwed...
 | |
| 			// we can clean the stack and pray it doesn't destroy anything?
 | |
| 			lua_pop(L, stacksize);
 | |
| 		}
 | |
| 
 | |
| 		inline void clear(lua_State* L, int table_index) {
 | |
| 			lua_pushnil(L);
 | |
| 			while (lua_next(L, table_index) != 0) {
 | |
| 				// remove value
 | |
| 				lua_pop(L, 1);
 | |
| 				// duplicate key to protect form rawset
 | |
| 				lua_pushvalue(L, -1);
 | |
| 				// push new value
 | |
| 				lua_pushnil(L);
 | |
| 				// table_index%[key] = nil
 | |
| 				lua_rawset(L, table_index);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		inline void clear(reference& r) {
 | |
| 			auto pp = push_pop<false>(r);
 | |
| 			int stack_index = pp.index_of(r);
 | |
| 			clear(r.lua_state(), stack_index);
 | |
| 		}
 | |
| 
 | |
| 		inline void clear(stack_reference& r) {
 | |
| 			clear(r.lua_state(), r.stack_index());
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, typename... Args>
 | |
| 		int push(lua_State* L, T&& t, Args&&... args) {
 | |
| 			using Tu = meta::unqualified_t<T>;
 | |
| 			if constexpr (meta::meta_detail::is_adl_sol_lua_push_exact_v<T, T, Args...>) {
 | |
| 				return sol_lua_push(types<T>(), L, std::forward<T>(t), std::forward<Args>(args)...);
 | |
| 			}
 | |
| 			else if constexpr (meta::meta_detail::is_adl_sol_lua_push_exact_v<Tu, T, Args...>) {
 | |
| 				return sol_lua_push(types<Tu>(), L, std::forward<T>(t), std::forward<Args>(args)...);
 | |
| 			}
 | |
| 			else if constexpr (meta::meta_detail::is_adl_sol_lua_push_v<T, Args...>) {
 | |
| 				return sol_lua_push(L, std::forward<T>(t), std::forward<Args>(args)...);
 | |
| 			}
 | |
| 			else {
 | |
| 				unqualified_pusher<Tu> p {};
 | |
| 				(void)p;
 | |
| 				return p.push(L, std::forward<T>(t), std::forward<Args>(args)...);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// overload allows to use a pusher of a specific type, but pass in any kind of args
 | |
| 		template <typename T, typename Arg, typename... Args, typename = std::enable_if_t<!std::is_same<T, Arg>::value>>
 | |
| 		int push(lua_State* L, Arg&& arg, Args&&... args) {
 | |
| 			using Tu = meta::unqualified_t<T>;
 | |
| 			if constexpr (meta::meta_detail::is_adl_sol_lua_push_exact_v<T, Arg, Args...>) {
 | |
| 				return sol_lua_push(types<T>(), L, std::forward<Arg>(arg), std::forward<Args>(args)...);
 | |
| 			}
 | |
| 			else if constexpr (meta::meta_detail::is_adl_sol_lua_push_exact_v<Tu, Arg, Args...>) {
 | |
| 				return sol_lua_push(types<Tu>(), L, std::forward<Arg>(arg), std::forward<Args>(args)...);
 | |
| 			}
 | |
| 			else if constexpr (meta::meta_detail::is_adl_sol_lua_push_v<Arg, Args...>) {
 | |
| 				return sol_lua_push(L, std::forward<Arg>(arg), std::forward<Args>(args)...);
 | |
| 			}
 | |
| 			else {
 | |
| 				unqualified_pusher<Tu> p {};
 | |
| 				(void)p;
 | |
| 				return p.push(L, std::forward<Arg>(arg), std::forward<Args>(args)...);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, typename... Args>
 | |
| 		int push_userdata(lua_State* L, T&& t, Args&&... args) {
 | |
| 			using U = meta::unqualified_t<T>;
 | |
| 			using Tr = meta::conditional_t<std::is_pointer_v<U>,
 | |
| 			     detail::as_pointer_tag<std::remove_pointer_t<U>>,
 | |
| 			     meta::conditional_t<is_unique_usertype_v<U>, detail::as_unique_tag<U>, detail::as_value_tag<U>>>;
 | |
| 			return stack::push<Tr>(L, std::forward<T>(t), std::forward<Args>(args)...);
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, typename Arg, typename... Args>
 | |
| 		int push_userdata(lua_State* L, Arg&& arg, Args&&... args) {
 | |
| 			using U = meta::unqualified_t<T>;
 | |
| 			using Tr = meta::conditional_t<std::is_pointer_v<U>,
 | |
| 			     detail::as_pointer_tag<std::remove_pointer_t<U>>,
 | |
| 			     meta::conditional_t<is_unique_usertype_v<U>, detail::as_unique_tag<U>, detail::as_value_tag<U>>>;
 | |
| 			return stack::push<Tr>(L, std::forward<Arg>(arg), std::forward<Args>(args)...);
 | |
| 		}
 | |
| 
 | |
| 		namespace stack_detail {
 | |
| 
 | |
| 			template <typename T, typename Arg, typename... Args>
 | |
| 			int push_reference(lua_State* L, Arg&& arg, Args&&... args) {
 | |
| 				using use_reference_tag = meta::all<std::is_lvalue_reference<T>,
 | |
| 				     meta::neg<std::is_const<std::remove_reference_t<T>>>,
 | |
| 				     meta::neg<is_lua_primitive<meta::unqualified_t<T>>>,
 | |
| 				     meta::neg<is_unique_usertype<meta::unqualified_t<T>>>>;
 | |
| 				using Tr = meta::conditional_t<use_reference_tag::value, detail::as_reference_tag, meta::unqualified_t<T>>;
 | |
| 				return stack::push<Tr>(L, std::forward<Arg>(arg), std::forward<Args>(args)...);
 | |
| 			}
 | |
| 
 | |
| 		} // namespace stack_detail
 | |
| 
 | |
| 		template <typename T, typename... Args>
 | |
| 		int push_reference(lua_State* L, T&& t, Args&&... args) {
 | |
| 			return stack_detail::push_reference<T>(L, std::forward<T>(t), std::forward<Args>(args)...);
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, typename Arg, typename... Args>
 | |
| 		int push_reference(lua_State* L, Arg&& arg, Args&&... args) {
 | |
| 			return stack_detail::push_reference<T>(L, std::forward<Arg>(arg), std::forward<Args>(args)...);
 | |
| 		}
 | |
| 
 | |
| 		inline int multi_push(lua_State*) {
 | |
| 			// do nothing
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, typename... Args>
 | |
| 		int multi_push(lua_State* L, T&& t, Args&&... args) {
 | |
| 			int pushcount = push(L, std::forward<T>(t));
 | |
| 			void(detail::swallow { (pushcount += stack::push(L, std::forward<Args>(args)), 0)... });
 | |
| 			return pushcount;
 | |
| 		}
 | |
| 
 | |
| 		inline int multi_push_reference(lua_State*) {
 | |
| 			// do nothing
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, typename... Args>
 | |
| 		int multi_push_reference(lua_State* L, T&& t, Args&&... args) {
 | |
| 			int pushcount = push_reference(L, std::forward<T>(t));
 | |
| 			void(detail::swallow { (pushcount += stack::push_reference(L, std::forward<Args>(args)), 0)... });
 | |
| 			return pushcount;
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, typename Handler>
 | |
| 		bool unqualified_check(lua_State* L, int index, Handler&& handler, record& tracking) {
 | |
| 			using Tu = meta::unqualified_t<T>;
 | |
| 			if constexpr (meta::meta_detail::is_adl_sol_lua_check_v<Tu>) {
 | |
| 				return sol_lua_check(types<Tu>(), L, index, std::forward<Handler>(handler), tracking);
 | |
| 			}
 | |
| 			else {
 | |
| 				unqualified_checker<Tu, lua_type_of_v<Tu>> c;
 | |
| 				// VC++ has a bad warning here: shut it up
 | |
| 				(void)c;
 | |
| 				return c.check(L, index, std::forward<Handler>(handler), tracking);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, typename Handler>
 | |
| 		bool unqualified_check(lua_State* L, int index, Handler&& handler) {
 | |
| 			record tracking {};
 | |
| 			return unqualified_check<T>(L, index, std::forward<Handler>(handler), tracking);
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		bool unqualified_check(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
 | |
| 			auto handler = no_panic;
 | |
| 			return unqualified_check<T>(L, index, handler);
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, typename Handler>
 | |
| 		bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
 | |
| 			if constexpr (meta::meta_detail::is_adl_sol_lua_check_v<T>) {
 | |
| 				return sol_lua_check(types<T>(), L, index, std::forward<Handler>(handler), tracking);
 | |
| 			}
 | |
| 			else {
 | |
| 				using Tu = meta::unqualified_t<T>;
 | |
| 				qualified_checker<T, lua_type_of_v<Tu>> c;
 | |
| 				// VC++ has a bad warning here: shut it up
 | |
| 				(void)c;
 | |
| 				return c.check(L, index, std::forward<Handler>(handler), tracking);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, typename Handler>
 | |
| 		bool check(lua_State* L, int index, Handler&& handler) {
 | |
| 			record tracking {};
 | |
| 			return check<T>(L, index, std::forward<Handler>(handler), tracking);
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		bool check(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
 | |
| 			auto handler = no_panic;
 | |
| 			return check<T>(L, index, handler);
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, typename Handler>
 | |
| 		bool check_usertype(lua_State* L, int index, type, Handler&& handler, record& tracking) {
 | |
| 			using Tu = meta::unqualified_t<T>;
 | |
| 			using detail_t = meta::conditional_t<std::is_pointer_v<T>, detail::as_pointer_tag<Tu>, detail::as_value_tag<Tu>>;
 | |
| 			return check<detail_t>(L, index, std::forward<Handler>(handler), tracking);
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, typename Handler>
 | |
| 		bool check_usertype(lua_State* L, int index, Handler&& handler, record& tracking) {
 | |
| 			using Tu = meta::unqualified_t<T>;
 | |
| 			using detail_t = meta::conditional_t<std::is_pointer_v<T>, detail::as_pointer_tag<Tu>, detail::as_value_tag<Tu>>;
 | |
| 			return check<detail_t>(L, index, std::forward<Handler>(handler), tracking);
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, typename Handler>
 | |
| 		bool check_usertype(lua_State* L, int index, Handler&& handler) {
 | |
| 			record tracking {};
 | |
| 			return check_usertype<T>(L, index, std::forward<Handler>(handler), tracking);
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		bool check_usertype(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
 | |
| 			auto handler = no_panic;
 | |
| 			return check_usertype<T>(L, index, handler);
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, typename Handler>
 | |
| 		decltype(auto) unqualified_check_get(lua_State* L, int index, Handler&& handler, record& tracking) {
 | |
| 			using Tu = meta::unqualified_t<T>;
 | |
| 			if constexpr (meta::meta_detail::is_adl_sol_lua_check_get_v<T>) {
 | |
| 				return sol_lua_check_get(types<T>(), L, index, std::forward<Handler>(handler), tracking);
 | |
| 			}
 | |
| 			else if constexpr (meta::meta_detail::is_adl_sol_lua_check_get_v<Tu>) {
 | |
| 				return sol_lua_check_get(types<Tu>(), L, index, std::forward<Handler>(handler), tracking);
 | |
| 			}
 | |
| 			else {
 | |
| 				unqualified_check_getter<Tu> cg {};
 | |
| 				(void)cg;
 | |
| 				return cg.get(L, index, std::forward<Handler>(handler), tracking);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, typename Handler>
 | |
| 		decltype(auto) unqualified_check_get(lua_State* L, int index, Handler&& handler) {
 | |
| 			record tracking {};
 | |
| 			return unqualified_check_get<T>(L, index, handler, tracking);
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		decltype(auto) unqualified_check_get(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
 | |
| 			auto handler = no_panic;
 | |
| 			return unqualified_check_get<T>(L, index, handler);
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, typename Handler>
 | |
| 		decltype(auto) check_get(lua_State* L, int index, Handler&& handler, record& tracking) {
 | |
| 			if constexpr (meta::meta_detail::is_adl_sol_lua_check_get_v<T>) {
 | |
| 				return sol_lua_check_get(types<T>(), L, index, std::forward<Handler>(handler), tracking);
 | |
| 			}
 | |
| 			else {
 | |
| 				qualified_check_getter<T> cg {};
 | |
| 				(void)cg;
 | |
| 				return cg.get(L, index, std::forward<Handler>(handler), tracking);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, typename Handler>
 | |
| 		decltype(auto) check_get(lua_State* L, int index, Handler&& handler) {
 | |
| 			record tracking {};
 | |
| 			return check_get<T>(L, index, handler, tracking);
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		decltype(auto) check_get(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
 | |
| 			auto handler = no_panic;
 | |
| 			return check_get<T>(L, index, handler);
 | |
| 		}
 | |
| 
 | |
| 		namespace stack_detail {
 | |
| 
 | |
| 			template <typename Handler>
 | |
| 			bool check_types(lua_State*, int, Handler&&, record&) {
 | |
| 				return true;
 | |
| 			}
 | |
| 
 | |
| 			template <typename T, typename... Args, typename Handler>
 | |
| 			bool check_types(lua_State* L, int firstargument, Handler&& handler, record& tracking) {
 | |
| 				if (!stack::check<T>(L, firstargument + tracking.used, handler, tracking))
 | |
| 					return false;
 | |
| 				return check_types<Args...>(L, firstargument, std::forward<Handler>(handler), tracking);
 | |
| 			}
 | |
| 
 | |
| 			template <typename... Args, typename Handler>
 | |
| 			bool check_types(types<Args...>, lua_State* L, int index, Handler&& handler, record& tracking) {
 | |
| 				return check_types<Args...>(L, index, std::forward<Handler>(handler), tracking);
 | |
| 			}
 | |
| 
 | |
| 		} // namespace stack_detail
 | |
| 
 | |
| 		template <typename... Args, typename Handler>
 | |
| 		bool multi_check(lua_State* L, int index, Handler&& handler, record& tracking) {
 | |
| 			return stack_detail::check_types<Args...>(L, index, std::forward<Handler>(handler), tracking);
 | |
| 		}
 | |
| 
 | |
| 		template <typename... Args, typename Handler>
 | |
| 		bool multi_check(lua_State* L, int index, Handler&& handler) {
 | |
| 			record tracking {};
 | |
| 			return multi_check<Args...>(L, index, std::forward<Handler>(handler), tracking);
 | |
| 		}
 | |
| 
 | |
| 		template <typename... Args>
 | |
| 		bool multi_check(lua_State* L, int index) {
 | |
| 			return multi_check<Args...>(L, index);
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		auto unqualified_get(lua_State* L, int index, record& tracking) -> decltype(stack_detail::unchecked_unqualified_get<T>(L, index, tracking)) {
 | |
| #if SOL_IS_ON(SOL_SAFE_GETTER_I_)
 | |
| 			static constexpr bool is_op = meta::is_optional_v<T>;
 | |
| 			if constexpr (is_op) {
 | |
| 				return stack_detail::unchecked_unqualified_get<T>(L, index, tracking);
 | |
| 			}
 | |
| 			else {
 | |
| 				if (is_lua_reference<T>::value) {
 | |
| 					return stack_detail::unchecked_unqualified_get<T>(L, index, tracking);
 | |
| 				}
 | |
| 				auto op = unqualified_check_get<T>(L, index, type_panic_c_str, tracking);
 | |
| 				return *std::move(op);
 | |
| 			}
 | |
| #else
 | |
| 			return stack_detail::unchecked_unqualified_get<T>(L, index, tracking);
 | |
| #endif
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		decltype(auto) unqualified_get(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
 | |
| 			record tracking {};
 | |
| 			return unqualified_get<T>(L, index, tracking);
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		auto get(lua_State* L, int index, record& tracking) -> decltype(stack_detail::unchecked_get<T>(L, index, tracking)) {
 | |
| #if SOL_IS_ON(SOL_SAFE_GETTER_I_)
 | |
| 			static constexpr bool is_op = meta::is_optional_v<T>;
 | |
| 			if constexpr (is_op) {
 | |
| 				return stack_detail::unchecked_get<T>(L, index, tracking);
 | |
| 			}
 | |
| 			else {
 | |
| 				if (is_lua_reference<T>::value) {
 | |
| 					return stack_detail::unchecked_get<T>(L, index, tracking);
 | |
| 				}
 | |
| 				auto op = check_get<T>(L, index, type_panic_c_str, tracking);
 | |
| 				return *std::move(op);
 | |
| 			}
 | |
| #else
 | |
| 			return stack_detail::unchecked_get<T>(L, index, tracking);
 | |
| #endif
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		decltype(auto) get(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
 | |
| 			record tracking {};
 | |
| 			return get<T>(L, index, tracking);
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		decltype(auto) get_usertype(lua_State* L, int index, record& tracking) {
 | |
| 			using UT = meta::conditional_t<std::is_pointer<T>::value, detail::as_pointer_tag<std::remove_pointer_t<T>>, detail::as_value_tag<T>>;
 | |
| 			return get<UT>(L, index, tracking);
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		decltype(auto) get_usertype(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) {
 | |
| 			record tracking {};
 | |
| 			return get_usertype<T>(L, index, tracking);
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		decltype(auto) pop(lua_State* L) {
 | |
| 			return popper<meta::unqualified_t<T>> {}.pop(L);
 | |
| 		}
 | |
| 
 | |
| 		template <bool global = false, bool raw = false, typename Key>
 | |
| 		void get_field(lua_State* L, Key&& key) {
 | |
| 			field_getter<meta::unqualified_t<Key>, global, raw> {}.get(L, std::forward<Key>(key));
 | |
| 		}
 | |
| 
 | |
| 		template <bool global = false, bool raw = false, typename Key>
 | |
| 		void get_field(lua_State* L, Key&& key, int tableindex) {
 | |
| 			field_getter<meta::unqualified_t<Key>, global, raw> {}.get(L, std::forward<Key>(key), tableindex);
 | |
| 		}
 | |
| 
 | |
| 		template <bool global = false, typename Key>
 | |
| 		void raw_get_field(lua_State* L, Key&& key) {
 | |
| 			get_field<global, true>(L, std::forward<Key>(key));
 | |
| 		}
 | |
| 
 | |
| 		template <bool global = false, typename Key>
 | |
| 		void raw_get_field(lua_State* L, Key&& key, int tableindex) {
 | |
| 			get_field<global, true>(L, std::forward<Key>(key), tableindex);
 | |
| 		}
 | |
| 
 | |
| 		template <bool global = false, bool raw = false, typename C = detail::non_lua_nil_t, typename Key>
 | |
| 		probe probe_get_field(lua_State* L, Key&& key) {
 | |
| 			return probe_field_getter<meta::unqualified_t<Key>, C, global, raw> {}.get(L, std::forward<Key>(key));
 | |
| 		}
 | |
| 
 | |
| 		template <bool global = false, bool raw = false, typename C = detail::non_lua_nil_t, typename Key>
 | |
| 		probe probe_get_field(lua_State* L, Key&& key, int tableindex) {
 | |
| 			return probe_field_getter<meta::unqualified_t<Key>, C, global, raw> {}.get(L, std::forward<Key>(key), tableindex);
 | |
| 		}
 | |
| 
 | |
| 		template <bool global = false, typename C = detail::non_lua_nil_t, typename Key>
 | |
| 		probe probe_raw_get_field(lua_State* L, Key&& key) {
 | |
| 			return probe_get_field<global, true, C>(L, std::forward<Key>(key));
 | |
| 		}
 | |
| 
 | |
| 		template <bool global = false, typename C = detail::non_lua_nil_t, typename Key>
 | |
| 		probe probe_raw_get_field(lua_State* L, Key&& key, int tableindex) {
 | |
| 			return probe_get_field<global, true, C>(L, std::forward<Key>(key), tableindex);
 | |
| 		}
 | |
| 
 | |
| 		template <bool global = false, bool raw = false, typename Key, typename Value>
 | |
| 		void set_field(lua_State* L, Key&& key, Value&& value) {
 | |
| 			field_setter<meta::unqualified_t<Key>, global, raw> {}.set(L, std::forward<Key>(key), std::forward<Value>(value));
 | |
| 		}
 | |
| 
 | |
| 		template <bool global = false, bool raw = false, typename Key, typename Value>
 | |
| 		void set_field(lua_State* L, Key&& key, Value&& value, int tableindex) {
 | |
| 			field_setter<meta::unqualified_t<Key>, global, raw> {}.set(L, std::forward<Key>(key), std::forward<Value>(value), tableindex);
 | |
| 		}
 | |
| 
 | |
| 		template <bool global = false, typename Key, typename Value>
 | |
| 		void raw_set_field(lua_State* L, Key&& key, Value&& value) {
 | |
| 			set_field<global, true>(L, std::forward<Key>(key), std::forward<Value>(value));
 | |
| 		}
 | |
| 
 | |
| 		template <bool global = false, typename Key, typename Value>
 | |
| 		void raw_set_field(lua_State* L, Key&& key, Value&& value, int tableindex) {
 | |
| 			set_field<global, true>(L, std::forward<Key>(key), std::forward<Value>(value), tableindex);
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, typename F>
 | |
| 		void modify_unique_usertype_as(const stack_reference& obj, F&& f) {
 | |
| 			using u_traits = unique_usertype_traits<T>;
 | |
| 			void* raw = lua_touserdata(obj.lua_state(), obj.stack_index());
 | |
| 			void* ptr_memory = detail::align_usertype_pointer(raw);
 | |
| 			void* uu_memory = detail::align_usertype_unique<T>(raw);
 | |
| 			T& uu = *static_cast<T*>(uu_memory);
 | |
| 			f(uu);
 | |
| 			*static_cast<void**>(ptr_memory) = static_cast<void*>(u_traits::get(uu));
 | |
| 		}
 | |
| 
 | |
| 		template <typename F>
 | |
| 		void modify_unique_usertype(const stack_reference& obj, F&& f) {
 | |
| 			using bt = meta::bind_traits<meta::unqualified_t<F>>;
 | |
| 			using T = typename bt::template arg_at<0>;
 | |
| 			using Tu = meta::unqualified_t<T>;
 | |
| 			modify_unique_usertype_as<Tu>(obj, std::forward<F>(f));
 | |
| 		}
 | |
| 
 | |
| 	} // namespace stack
 | |
| 
 | |
| 	namespace detail {
 | |
| 
 | |
| 		template <typename T>
 | |
| 		lua_CFunction make_destructor(std::true_type) {
 | |
| 			if constexpr (is_unique_usertype_v<T>) {
 | |
| 				return &unique_destruct<T>;
 | |
| 			}
 | |
| 			else if constexpr (!std::is_pointer_v<T>) {
 | |
| 				return &usertype_alloc_destruct<T>;
 | |
| 			}
 | |
| 			else {
 | |
| 				return &cannot_destruct<T>;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		lua_CFunction make_destructor(std::false_type) {
 | |
| 			return &cannot_destruct<T>;
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		lua_CFunction make_destructor() {
 | |
| 			return make_destructor<T>(std::is_destructible<T>());
 | |
| 		}
 | |
| 
 | |
| 		struct no_comp {
 | |
| 			template <typename A, typename B>
 | |
| 			bool operator()(A&&, B&&) const {
 | |
| 				return false;
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <typename T>
 | |
| 		int is_check(lua_State* L) {
 | |
| 			return stack::push(L, stack::check<T>(L, 1, &no_panic));
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		int member_default_to_string(std::true_type, lua_State* L) {
 | |
| 			decltype(auto) ts = stack::get<T>(L, 1).to_string();
 | |
| 			return stack::push(L, std::forward<decltype(ts)>(ts));
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		int member_default_to_string(std::false_type, lua_State* L) {
 | |
| 			return luaL_error(L,
 | |
| 			     "cannot perform to_string on '%s': no 'to_string' overload in namespace, 'to_string' member "
 | |
| 			     "function, or operator<<(ostream&, ...) present",
 | |
| 			     detail::demangle<T>().data());
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		int adl_default_to_string(std::true_type, lua_State* L) {
 | |
| 			using namespace std;
 | |
| 			decltype(auto) ts = to_string(stack::get<T>(L, 1));
 | |
| 			return stack::push(L, std::forward<decltype(ts)>(ts));
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		int adl_default_to_string(std::false_type, lua_State* L) {
 | |
| 			return member_default_to_string<T>(meta::supports_to_string_member<T>(), L);
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		int oss_default_to_string(std::true_type, lua_State* L) {
 | |
| 			std::ostringstream oss;
 | |
| 			oss << stack::unqualified_get<T>(L, 1);
 | |
| 			return stack::push(L, oss.str());
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		int oss_default_to_string(std::false_type, lua_State* L) {
 | |
| 			return adl_default_to_string<T>(meta::supports_adl_to_string<T>(), L);
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		int default_to_string(lua_State* L) {
 | |
| 			return oss_default_to_string<T>(meta::supports_op_left_shift<std::ostream, T>(), L);
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		int default_size(lua_State* L) {
 | |
| 			decltype(auto) self = stack::unqualified_get<T>(L, 1);
 | |
| 			return stack::push(L, self.size());
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, typename Op>
 | |
| 		int comparsion_operator_wrap(lua_State* L) {
 | |
| 			if constexpr (std::is_void_v<T>) {
 | |
| 				return stack::push(L, false);
 | |
| 			}
 | |
| 			else {
 | |
| 				auto maybel = stack::unqualified_check_get<T>(L, 1);
 | |
| 				if (!maybel) {
 | |
| 					return stack::push(L, false);
 | |
| 				}
 | |
| 				auto mayber = stack::unqualified_check_get<T>(L, 2);
 | |
| 				if (!mayber) {
 | |
| 					return stack::push(L, false);
 | |
| 				}
 | |
| 				decltype(auto) l = *maybel;
 | |
| 				decltype(auto) r = *mayber;
 | |
| 				if constexpr (std::is_same_v<no_comp, Op>) {
 | |
| 					std::equal_to<> op;
 | |
| 					return stack::push(L, op(detail::ptr(l), detail::ptr(r)));
 | |
| 				}
 | |
| 				else {
 | |
| 					if constexpr (std::is_same_v<std::equal_to<>, Op> // clang-format hack
 | |
| 					     || std::is_same_v<std::less_equal<>, Op>     //
 | |
| 					     || std::is_same_v<std::less_equal<>, Op>) {  //
 | |
| 						if (detail::ptr(l) == detail::ptr(r)) {
 | |
| 							return stack::push(L, true);
 | |
| 						}
 | |
| 					}
 | |
| 					Op op;
 | |
| 					return stack::push(L, op(detail::deref(l), detail::deref(r)));
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, typename IFx, typename Fx>
 | |
| 		void insert_default_registrations(IFx&& ifx, Fx&& fx);
 | |
| 
 | |
| 		template <typename T, bool, bool>
 | |
| 		struct get_is_primitive : is_lua_primitive<T> { };
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct get_is_primitive<T, true, false>
 | |
| 		: meta::neg<std::is_reference<decltype(sol_lua_get(types<T>(), nullptr, -1, std::declval<stack::record&>()))>> { };
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct get_is_primitive<T, false, true>
 | |
| 		: meta::neg<std::is_reference<decltype(sol_lua_get(types<meta::unqualified_t<T>>(), nullptr, -1, std::declval<stack::record&>()))>> { };
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct get_is_primitive<T, true, true> : get_is_primitive<T, true, false> { };
 | |
| 
 | |
| 	} // namespace detail
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct is_proxy_primitive
 | |
| 	: detail::get_is_primitive<T, meta::meta_detail::is_adl_sol_lua_get_v<T>, meta::meta_detail::is_adl_sol_lua_get_v<meta::unqualified_t<T>>> { };
 | |
| 
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/stack_core.hpp
 | |
| 
 | |
| // beginning of sol/stack_check.hpp
 | |
| 
 | |
| // beginning of sol/stack_check_unqualified.hpp
 | |
| 
 | |
| #include <memory>
 | |
| #include <functional>
 | |
| #include <utility>
 | |
| #include <cmath>
 | |
| #include <optional>
 | |
| #if SOL_IS_ON(SOL_STD_VARIANT_I_)
 | |
| #include <variant>
 | |
| #endif // variant shenanigans
 | |
| 
 | |
| namespace sol { namespace stack {
 | |
| 	namespace stack_detail {
 | |
| 		inline bool impl_check_metatable(lua_State* L, int index, const std::string& metakey, bool poptable) {
 | |
| 			luaL_getmetatable(L, &metakey[0]);
 | |
| 			const type expectedmetatabletype = static_cast<type>(lua_type(L, -1));
 | |
| 			if (expectedmetatabletype != type::lua_nil) {
 | |
| 				if (lua_rawequal(L, -1, index) == 1) {
 | |
| 					lua_pop(L, 1 + static_cast<int>(poptable));
 | |
| 					return true;
 | |
| 				}
 | |
| 			}
 | |
| 			lua_pop(L, 1);
 | |
| 			return false;
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, bool poptable = true>
 | |
| 		inline bool check_metatable(lua_State* L, int index = -2) {
 | |
| 			return impl_check_metatable(L, index, usertype_traits<T>::metatable(), poptable);
 | |
| 		}
 | |
| 
 | |
| 		template <type expected, int (*check_func)(lua_State*, int)>
 | |
| 		struct basic_check {
 | |
| 			template <typename Handler>
 | |
| 			static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
 | |
| 				tracking.use(1);
 | |
| 				bool success = check_func(L, index) == 1;
 | |
| 				if (!success) {
 | |
| 					// expected type, actual type
 | |
| 					handler(L, index, expected, type_of(L, index), "");
 | |
| 				}
 | |
| 				return success;
 | |
| 			}
 | |
| 		};
 | |
| 	} // namespace stack_detail
 | |
| 
 | |
| 	template <typename T, typename>
 | |
| 	struct unqualified_interop_checker {
 | |
| 		template <typename Handler>
 | |
| 		static bool check(lua_State*, int, type, Handler&&, record&) {
 | |
| 			return false;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T, typename>
 | |
| 	struct qualified_interop_checker {
 | |
| 		template <typename Handler>
 | |
| 		static bool check(lua_State* L, int index, type index_type, Handler&& handler, record& tracking) {
 | |
| 			return stack_detail::unqualified_interop_check<T>(L, index, index_type, std::forward<Handler>(handler), tracking);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T, type expected, typename>
 | |
| 	struct unqualified_checker {
 | |
| 		template <typename Handler>
 | |
| 		static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
 | |
| 			if constexpr (std::is_same_v<T, bool>) {
 | |
| 				tracking.use(1);
 | |
| 				bool success = lua_isboolean(L, index) == 1;
 | |
| 				if (!success) {
 | |
| 					// expected type, actual type
 | |
| 					handler(L, index, expected, type_of(L, index), "");
 | |
| 				}
 | |
| 				return success;
 | |
| 			}
 | |
| 			else if constexpr (meta::any_same_v<T, char /* , char8_t*/, char16_t, char32_t>) {
 | |
| 				return stack::check<std::basic_string<T>>(L, index, std::forward<Handler>(handler), tracking);
 | |
| 			}
 | |
| 			else if constexpr (std::is_integral_v<T> || std::is_same_v<T, lua_Integer>) {
 | |
| 				tracking.use(1);
 | |
| #if SOL_LUA_VESION_I_ >= 503
 | |
| 				// Lua 5.3 and greater checks for numeric precision
 | |
| #if SOL_IS_ON(SOL_STRINGS_ARE_NUMBERS_I_)
 | |
| 				// imprecise, sloppy conversions
 | |
| 				int isnum = 0;
 | |
| 				lua_tointegerx(L, index, &isnum);
 | |
| 				const bool success = isnum != 0;
 | |
| 				if (!success) {
 | |
| 					// expected type, actual type
 | |
| 					handler(L, index, type::number, type_of(L, index), detail::not_a_number_or_number_string_integral);
 | |
| 				}
 | |
| #elif SOL_IS_ON(SOL_NUMBER_PRECISION_CHECKS_I_)
 | |
| 				// this check is precise, do not convert
 | |
| 				if (lua_isinteger(L, index) == 1) {
 | |
| 					return true;
 | |
| 				}
 | |
| 				const bool success = false;
 | |
| 				if (!success) {
 | |
| 					// expected type, actual type
 | |
| 					handler(L, index, type::number, type_of(L, index), detail::not_a_number_integral);
 | |
| 				}
 | |
| #else
 | |
| 				// Numerics are neither safe nor string-convertible
 | |
| 				type t = type_of(L, index);
 | |
| 				const bool success = t == type::number;
 | |
| #endif
 | |
| 				if (!success) {
 | |
| 					// expected type, actual type
 | |
| 					handler(L, index, type::number, type_of(L, index), detail::not_a_number);
 | |
| 				}
 | |
| 				return success;
 | |
| #else
 | |
| 				// Lua 5.2 and below checks
 | |
| #if SOL_IS_OFF(SOL_STRINGS_ARE_NUMBERS_I_)
 | |
| 				// must pre-check, because it will convert
 | |
| 				type t = type_of(L, index);
 | |
| 				if (t != type::number) {
 | |
| 					// expected type, actual type
 | |
| 					handler(L, index, type::number, t, detail::not_a_number);
 | |
| 					return false;
 | |
| 				}
 | |
| #endif // Do not allow strings to be numbers
 | |
| 
 | |
| #if SOL_IS_ON(SOL_NUMBER_PRECISION_CHECKS_I_)
 | |
| 				int isnum = 0;
 | |
| 				const lua_Number v = lua_tonumberx(L, index, &isnum);
 | |
| 				const bool success = isnum != 0 && static_cast<lua_Number>(llround(v)) == v;
 | |
| #else
 | |
| 				const bool success = true;
 | |
| #endif // Safe numerics and number precision checking
 | |
| 				if (!success) {
 | |
| 					// Use defines to provide a better error message!
 | |
| #if SOL_IS_ON(SOL_STRINGS_ARE_NUMBERS_I_)
 | |
| 					handler(L, index, type::number, type_of(L, index), detail::not_a_number_or_number_string);
 | |
| #elif SOL_IS_ON(SOL_NUMBER_PRECISION_CHECKS_I_)
 | |
| 					handler(L, index, type::number, t, detail::not_a_number_or_number_string);
 | |
| #else
 | |
| 					handler(L, index, type::number, t, detail::not_a_number);
 | |
| #endif
 | |
| 				}
 | |
| 				return success;
 | |
| #endif
 | |
| 			}
 | |
| 			else if constexpr (std::is_floating_point_v<T> || std::is_same_v<T, lua_Number>) {
 | |
| 				tracking.use(1);
 | |
| #if SOL_IS_ON(SOL_STRINGS_ARE_NUMBERS_I_)
 | |
| 				bool success = lua_isnumber(L, index) == 1;
 | |
| 				if (!success) {
 | |
| 					// expected type, actual type
 | |
| 					handler(L, index, type::number, type_of(L, index), detail::not_a_number_or_number_string);
 | |
| 				}
 | |
| 				return success;
 | |
| #else
 | |
| 				type t = type_of(L, index);
 | |
| 				bool success = t == type::number;
 | |
| 				if (!success) {
 | |
| 					// expected type, actual type
 | |
| 					handler(L, index, type::number, t, detail::not_a_number);
 | |
| 				}
 | |
| 				return success;
 | |
| #endif // Strings are Numbers
 | |
| 			}
 | |
| 			else if constexpr (meta::any_same_v<T, type, this_state, this_main_state, this_environment, variadic_args>) {
 | |
| 				(void)L;
 | |
| 				(void)index;
 | |
| 				(void)handler;
 | |
| 				tracking.use(0);
 | |
| 				return true;
 | |
| 			}
 | |
| 			else if constexpr (is_unique_usertype_v<T>) {
 | |
| 				using proper_T = typename unique_usertype_traits<T>::type;
 | |
| 				const type indextype = type_of(L, index);
 | |
| 				tracking.use(1);
 | |
| 				if (indextype != type::userdata) {
 | |
| 					handler(L, index, type::userdata, indextype, "value is not a userdata");
 | |
| 					return false;
 | |
| 				}
 | |
| 				if (lua_getmetatable(L, index) == 0) {
 | |
| 					return true;
 | |
| 				}
 | |
| 				int metatableindex = lua_gettop(L);
 | |
| 				if (stack_detail::check_metatable<detail::unique_usertype<proper_T>>(L, metatableindex)) {
 | |
| 					void* memory = lua_touserdata(L, index);
 | |
| 					memory = detail::align_usertype_unique_destructor(memory);
 | |
| 					detail::unique_destructor& pdx = *static_cast<detail::unique_destructor*>(memory);
 | |
| 					bool success = &detail::usertype_unique_alloc_destroy<proper_T, T> == pdx;
 | |
| 					if (!success) {
 | |
| 						memory = detail::align_usertype_unique_tag<true>(memory);
 | |
| #if 0
 | |
| 						// New version
 | |
| #else
 | |
| 						const char*& name_tag = *static_cast<const char**>(memory);
 | |
| 						success = usertype_traits<T>::qualified_name() == name_tag;
 | |
| #endif
 | |
| 						if (!success) {
 | |
| 							handler(L, index, type::userdata, indextype, "value is a userdata but is not the correct unique usertype");
 | |
| 						}
 | |
| 					}
 | |
| 					return success;
 | |
| 				}
 | |
| 				lua_pop(L, 1);
 | |
| 				handler(L, index, type::userdata, indextype, "unrecognized userdata (not pushed by sol?)");
 | |
| 				return false;
 | |
| 			}
 | |
| 			else if constexpr (meta::any_same_v<T, lua_nil_t, std::nullopt_t, nullopt_t>) {
 | |
| 				bool success = lua_isnil(L, index);
 | |
| 				if (success) {
 | |
| 					tracking.use(1);
 | |
| 					return success;
 | |
| 				}
 | |
| 				tracking.use(0);
 | |
| 				success = lua_isnone(L, index);
 | |
| 				if (!success) {
 | |
| 					// expected type, actual type
 | |
| 					handler(L, index, expected, type_of(L, index), "");
 | |
| 				}
 | |
| 				return success;
 | |
| 			}
 | |
| 			else if constexpr (std::is_same_v<T, env_key_t>) {
 | |
| 				tracking.use(1);
 | |
| 				type t = type_of(L, index);
 | |
| 				if (t == type::table || t == type::none || t == type::lua_nil || t == type::userdata) {
 | |
| 					return true;
 | |
| 				}
 | |
| 				handler(L, index, type::table, t, "value cannot not have a valid environment");
 | |
| 				return true;
 | |
| 			}
 | |
| 			else if constexpr (std::is_same_v<T, detail::non_lua_nil_t>) {
 | |
| 				return !stack::unqualified_check<lua_nil_t>(L, index, std::forward<Handler>(handler), tracking);
 | |
| 			}
 | |
| 			else if constexpr (meta::is_specialization_of_v<T, basic_lua_table>) {
 | |
| 				tracking.use(1);
 | |
| 				type t = type_of(L, index);
 | |
| 				if (t != type::table) {
 | |
| 					handler(L, index, type::table, t, "value is not a table");
 | |
| 					return false;
 | |
| 				}
 | |
| 				return true;
 | |
| 			}
 | |
| 			else if constexpr (meta::is_specialization_of_v<T, basic_bytecode>) {
 | |
| 				tracking.use(1);
 | |
| 				type t = type_of(L, index);
 | |
| 				if (t != type::function) {
 | |
| 					handler(L, index, type::function, t, "value is not a function that can be dumped");
 | |
| 					return false;
 | |
| 				}
 | |
| 				return true;
 | |
| 			}
 | |
| 			else if constexpr (meta::is_specialization_of_v<T, basic_environment>) {
 | |
| 				tracking.use(1);
 | |
| 				if (lua_getmetatable(L, index) == 0) {
 | |
| 					return true;
 | |
| 				}
 | |
| 				type t = type_of(L, -1);
 | |
| 				if (t == type::table || t == type::none || t == type::lua_nil) {
 | |
| 					lua_pop(L, 1);
 | |
| 					return true;
 | |
| 				}
 | |
| 				if (t != type::userdata) {
 | |
| 					lua_pop(L, 1);
 | |
| 					handler(L, index, type::table, t, "value does not have a valid metatable");
 | |
| 					return false;
 | |
| 				}
 | |
| 				return true;
 | |
| 			}
 | |
| 			else if constexpr (std::is_same_v<T, metatable_key_t>) {
 | |
| 				tracking.use(1);
 | |
| 				if (lua_getmetatable(L, index) == 0) {
 | |
| 					return true;
 | |
| 				}
 | |
| 				type t = type_of(L, -1);
 | |
| 				if (t == type::table || t == type::none || t == type::lua_nil) {
 | |
| 					lua_pop(L, 1);
 | |
| 					return true;
 | |
| 				}
 | |
| 				if (t != type::userdata) {
 | |
| 					lua_pop(L, 1);
 | |
| 					handler(L, index, expected, t, "value does not have a valid metatable");
 | |
| 					return false;
 | |
| 				}
 | |
| 				return true;
 | |
| 			}
 | |
| 			else if constexpr (std::is_same_v<T, luaL_Stream*> || std::is_same_v<T, luaL_Stream>) {
 | |
| 				if (lua_getmetatable(L, index) == 0) {
 | |
| 					type t = type_of(L, index);
 | |
| 					handler(L, index, expected, t, "value is not a valid luaL_Stream (has no metatable/is not a valid value)");
 | |
| 					return false;
 | |
| 				}
 | |
| 				luaL_getmetatable(L, LUA_FILEHANDLE);
 | |
| 				if (type_of(L, index) != type::table) {
 | |
| 					type t = type_of(L, index);
 | |
| 					lua_pop(L, 1);
 | |
| 					handler(L,
 | |
| 						index,
 | |
| 						expected,
 | |
| 						t,
 | |
| 						"value is not a valid luaL_Stream (there is no metatable for luaL_Stream -- did you forget to "
 | |
| 						"my_lua_state.open_libraries(sol::lib::state) or equivalent?)");
 | |
| 					return false;
 | |
| 				}
 | |
| 				int is_stream_table = lua_compare(L, -1, -2, LUA_OPEQ);
 | |
| 				lua_pop(L, 2);
 | |
| 				if (is_stream_table == 0) {
 | |
| 					type t = type_of(L, index);
 | |
| 					handler(L, index, expected, t, "value is not a valid luaL_Stream (incorrect metatable)");
 | |
| 					return false;
 | |
| 				}
 | |
| 				return true;
 | |
| 			}
 | |
| 			else if constexpr (meta::is_optional_v<T>) {
 | |
| 				using ValueType = typename T::value_type;
 | |
| 				(void)handler;
 | |
| 				type t = type_of(L, index);
 | |
| 				if (t == type::none) {
 | |
| 					tracking.use(0);
 | |
| 					return true;
 | |
| 				}
 | |
| 				if (t == type::lua_nil) {
 | |
| 					tracking.use(1);
 | |
| 					return true;
 | |
| 				}
 | |
| 				return stack::unqualified_check<ValueType>(L, index, no_panic, tracking);
 | |
| 			}
 | |
| #if SOL_IS_ON(SOL_GET_FUNCTION_POINTER_UNSAFE_I_)
 | |
| 			else if constexpr (std::is_function_v<T> || (std::is_pointer_v<T> && std::is_function_v<std::remove_pointer_t<T>>)) {
 | |
| 				return stack_detail::check_function_pointer<std::remove_pointer_t<T>>(L, index, std::forward<Handler>(handler), tracking);
 | |
| 			}
 | |
| #endif
 | |
| 			else if constexpr (expected == type::userdata) {
 | |
| 				if constexpr (meta::any_same_v<T, userdata_value> || meta::is_specialization_of_v<T, basic_userdata>) {
 | |
| 					tracking.use(1);
 | |
| 					type t = type_of(L, index);
 | |
| 					bool success = t == type::userdata;
 | |
| 					if (!success) {
 | |
| 						// expected type, actual type
 | |
| 						handler(L, index, type::userdata, t, "");
 | |
| 					}
 | |
| 					return success;
 | |
| 				}
 | |
| 				else if constexpr (meta::is_specialization_of_v<T, user>) {
 | |
| 					unqualified_checker<lightuserdata_value, type::userdata> c;
 | |
| 					(void)c;
 | |
| 					return c.check(L, index, std::forward<Handler>(handler), tracking);
 | |
| 				}
 | |
| 				else {
 | |
| 					if constexpr (std::is_pointer_v<T>) {
 | |
| 						return check_usertype<T>(L, index, std::forward<Handler>(handler), tracking);
 | |
| 					}
 | |
| 					else if constexpr (meta::is_specialization_of_v<T, std::reference_wrapper>) {
 | |
| 						using T_internal = typename T::type;
 | |
| 						return stack::check<T_internal>(L, index, std::forward<Handler>(handler), tracking);
 | |
| 					}
 | |
| 					else {
 | |
| 						return check_usertype<T>(L, index, std::forward<Handler>(handler), tracking);
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 			else if constexpr (expected == type::poly) {
 | |
| 				tracking.use(1);
 | |
| 				bool success = is_lua_reference_v<T> || !lua_isnone(L, index);
 | |
| 				if (!success) {
 | |
| 					// expected type, actual type
 | |
| 					handler(L, index, type::poly, type_of(L, index), "");
 | |
| 				}
 | |
| 				return success;
 | |
| 			}
 | |
| 			else if constexpr (expected == type::lightuserdata) {
 | |
| 				tracking.use(1);
 | |
| 				type t = type_of(L, index);
 | |
| 				bool success = t == type::userdata || t == type::lightuserdata;
 | |
| 				if (!success) {
 | |
| 					// expected type, actual type
 | |
| 					handler(L, index, type::lightuserdata, t, "");
 | |
| 				}
 | |
| 				return success;
 | |
| 			}
 | |
| 			else if constexpr (expected == type::function) {
 | |
| 				if constexpr (meta::any_same_v<T, lua_CFunction, std::remove_pointer_t<lua_CFunction>, c_closure>) {
 | |
| 					tracking.use(1);
 | |
| 					bool success = lua_iscfunction(L, index) == 1;
 | |
| 					if (!success) {
 | |
| 						// expected type, actual type
 | |
| 						handler(L, index, expected, type_of(L, index), "");
 | |
| 					}
 | |
| 					return success;
 | |
| 				}
 | |
| 				else {
 | |
| 					tracking.use(1);
 | |
| 					type t = type_of(L, index);
 | |
| 					if (t == type::lua_nil || t == type::none || t == type::function) {
 | |
| 						// allow for lua_nil to be returned
 | |
| 						return true;
 | |
| 					}
 | |
| 					if (t != type::userdata && t != type::table) {
 | |
| 						handler(L, index, type::function, t, "must be a function or table or a userdata");
 | |
| 						return false;
 | |
| 					}
 | |
| 					// Do advanced check for call-style userdata?
 | |
| 					static const auto& callkey = to_string(meta_function::call);
 | |
| 					if (lua_getmetatable(L, index) == 0) {
 | |
| 						// No metatable, no __call key possible
 | |
| 						handler(L, index, type::function, t, "value is not a function and does not have overriden metatable");
 | |
| 						return false;
 | |
| 					}
 | |
| 					if (lua_isnoneornil(L, -1)) {
 | |
| 						lua_pop(L, 1);
 | |
| 						handler(L, index, type::function, t, "value is not a function and does not have valid metatable");
 | |
| 						return false;
 | |
| 					}
 | |
| 					lua_getfield(L, -1, &callkey[0]);
 | |
| 					if (lua_isnoneornil(L, -1)) {
 | |
| 						lua_pop(L, 2);
 | |
| 						handler(L, index, type::function, t, "value's metatable does not have __call overridden in metatable, cannot call this type");
 | |
| 						return false;
 | |
| 					}
 | |
| 					// has call, is definitely a function
 | |
| 					lua_pop(L, 2);
 | |
| 					return true;
 | |
| 				}
 | |
| 			}
 | |
| 			else if constexpr (expected == type::table) {
 | |
| 				tracking.use(1);
 | |
| 				type t = type_of(L, index);
 | |
| 				if (t == type::table) {
 | |
| 					return true;
 | |
| 				}
 | |
| 				if (t != type::userdata) {
 | |
| 					handler(L, index, type::table, t, "value is not a table or a userdata that can behave like one");
 | |
| 					return false;
 | |
| 				}
 | |
| 				return true;
 | |
| 			}
 | |
| 			else {
 | |
| 				tracking.use(1);
 | |
| 				const type indextype = type_of(L, index);
 | |
| 				bool success = expected == indextype;
 | |
| 				if (!success) {
 | |
| 					// expected type, actual type, message
 | |
| 					handler(L, index, expected, indextype, "");
 | |
| 				}
 | |
| 				return success;
 | |
| 			}
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct unqualified_checker<non_null<T>, type::userdata> : unqualified_checker<T, lua_type_of_v<T>> { };
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct unqualified_checker<detail::as_value_tag<T>, type::userdata> {
 | |
| 		template <typename Handler>
 | |
| 		static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
 | |
| 			const type indextype = type_of(L, index);
 | |
| 			return check(types<T>(), L, index, indextype, std::forward<Handler>(handler), tracking);
 | |
| 		}
 | |
| 
 | |
| 		template <typename U, typename Handler>
 | |
| 		static bool check(types<U>, lua_State* L, int index, type indextype, Handler&& handler, record& tracking) {
 | |
| 			if constexpr (
 | |
| 				std::is_same_v<T,
 | |
| 				     lightuserdata_value> || std::is_same_v<T, userdata_value> || std::is_same_v<T, userdata> || std::is_same_v<T, lightuserdata>) {
 | |
| 				tracking.use(1);
 | |
| 				if (indextype != type::userdata) {
 | |
| 					handler(L, index, type::userdata, indextype, "value is not a valid userdata");
 | |
| 					return false;
 | |
| 				}
 | |
| 				return true;
 | |
| 			}
 | |
| 			else {
 | |
| #if SOL_IS_ON(SOL_USE_INTEROP_I_)
 | |
| 				if (stack_detail::interop_check<U>(L, index, indextype, handler, tracking)) {
 | |
| 					return true;
 | |
| 				}
 | |
| #endif // interop extensibility
 | |
| 				tracking.use(1);
 | |
| 				if (indextype != type::userdata) {
 | |
| 					handler(L, index, type::userdata, indextype, "value is not a valid userdata");
 | |
| 					return false;
 | |
| 				}
 | |
| 				if (lua_getmetatable(L, index) == 0) {
 | |
| 					return true;
 | |
| 				}
 | |
| 				int metatableindex = lua_gettop(L);
 | |
| 				if (stack_detail::check_metatable<U>(L, metatableindex))
 | |
| 					return true;
 | |
| 				if (stack_detail::check_metatable<U*>(L, metatableindex))
 | |
| 					return true;
 | |
| 				if (stack_detail::check_metatable<detail::unique_usertype<U>>(L, metatableindex))
 | |
| 					return true;
 | |
| 				if (stack_detail::check_metatable<as_container_t<U>>(L, metatableindex))
 | |
| 					return true;
 | |
| 				bool success = false;
 | |
| 				bool has_derived = derive<T>::value || weak_derive<T>::value;
 | |
| 				if (has_derived) {
 | |
| #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
 | |
| 					luaL_checkstack(L, 1, detail::not_enough_stack_space_string);
 | |
| #endif // make sure stack doesn't overflow
 | |
| 					auto pn = stack::pop_n(L, 1);
 | |
| 					lua_pushstring(L, &detail::base_class_check_key()[0]);
 | |
| 					lua_rawget(L, metatableindex);
 | |
| 					if (type_of(L, -1) != type::lua_nil) {
 | |
| 						void* basecastdata = lua_touserdata(L, -1);
 | |
| 						detail::inheritance_check_function ic = reinterpret_cast<detail::inheritance_check_function>(basecastdata);
 | |
| 						success = ic(usertype_traits<T>::qualified_name());
 | |
| 					}
 | |
| 				}
 | |
| 				lua_pop(L, 1);
 | |
| 				if (!success) {
 | |
| 					handler(L, index, type::userdata, indextype, "value at this index does not properly reflect the desired type");
 | |
| 					return false;
 | |
| 				}
 | |
| 				return true;
 | |
| 			}
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct unqualified_checker<detail::as_pointer_tag<T>, type::userdata> {
 | |
| 		template <typename Handler>
 | |
| 		static bool check(lua_State* L, int index, type indextype, Handler&& handler, record& tracking) {
 | |
| 			if (indextype == type::lua_nil) {
 | |
| 				tracking.use(1);
 | |
| 				return true;
 | |
| 			}
 | |
| 			return check_usertype<std::remove_pointer_t<T>>(L, index, std::forward<Handler>(handler), tracking);
 | |
| 		}
 | |
| 
 | |
| 		template <typename Handler>
 | |
| 		static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
 | |
| 			const type indextype = type_of(L, index);
 | |
| 			return check(L, index, indextype, std::forward<Handler>(handler), tracking);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename... Args>
 | |
| 	struct unqualified_checker<std::tuple<Args...>, type::poly> {
 | |
| 		template <typename Handler>
 | |
| 		static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
 | |
| 			return stack::multi_check<Args...>(L, index, std::forward<Handler>(handler), tracking);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename A, typename B>
 | |
| 	struct unqualified_checker<std::pair<A, B>, type::poly> {
 | |
| 		template <typename Handler>
 | |
| 		static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
 | |
| 			return stack::multi_check<A, B>(L, index, std::forward<Handler>(handler), tracking);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| #if SOL_IS_ON(SOL_STD_VARIANT_I_)
 | |
| 
 | |
| 	template <typename... Tn>
 | |
| 	struct unqualified_checker<std::variant<Tn...>, type::poly> {
 | |
| 		typedef std::variant<Tn...> V;
 | |
| 		typedef std::variant_size<V> V_size;
 | |
| 		typedef std::integral_constant<bool, V_size::value == 0> V_is_empty;
 | |
| 
 | |
| 		template <typename Handler>
 | |
| 		static bool is_one(std::integral_constant<std::size_t, 0>, lua_State* L, int index, Handler&& handler, record& tracking) {
 | |
| 			if constexpr (V_is_empty::value) {
 | |
| 				if (lua_isnone(L, index)) {
 | |
| 					return true;
 | |
| 				}
 | |
| 			}
 | |
| 			tracking.use(1);
 | |
| 			handler(L, index, type::poly, type_of(L, index), "value does not fit any type present in the variant");
 | |
| 			return false;
 | |
| 		}
 | |
| 
 | |
| 		template <std::size_t I, typename Handler>
 | |
| 		static bool is_one(std::integral_constant<std::size_t, I>, lua_State* L, int index, Handler&& handler, record& tracking) {
 | |
| 			typedef std::variant_alternative_t<I - 1, V> T;
 | |
| 			record temp_tracking = tracking;
 | |
| 			if (stack::check<T>(L, index, no_panic, temp_tracking)) {
 | |
| 				tracking = temp_tracking;
 | |
| 				return true;
 | |
| 			}
 | |
| 			return is_one(std::integral_constant<std::size_t, I - 1>(), L, index, std::forward<Handler>(handler), tracking);
 | |
| 		}
 | |
| 
 | |
| 		template <typename Handler>
 | |
| 		static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
 | |
| 			return is_one(std::integral_constant<std::size_t, V_size::value>(), L, index, std::forward<Handler>(handler), tracking);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| #endif // variant shenanigans
 | |
| 
 | |
| }} // namespace sol::stack
 | |
| 
 | |
| // end of sol/stack_check_unqualified.hpp
 | |
| 
 | |
| // beginning of sol/stack_check_qualified.hpp
 | |
| 
 | |
| namespace sol {
 | |
| namespace stack {
 | |
| 
 | |
| 	template <typename X, type expected, typename>
 | |
| 	struct qualified_checker {
 | |
| 		template <typename Handler>
 | |
| 		static bool check(lua_State* L, int index, Handler&& handler, record& tracking) {
 | |
| 			if constexpr (!std::is_reference_v<X> && is_unique_usertype_v<X>) {
 | |
| 				using u_traits = unique_usertype_traits<meta::unqualified_t<X>>;
 | |
| 				using T = typename u_traits::type;
 | |
| 				if constexpr (is_base_rebindable_non_void_v<u_traits>) {
 | |
| 					using rebind_t = typename u_traits::template rebind_base<void>;
 | |
| 					// we have a unique pointer type that can be
 | |
| 					// rebound to a base/derived type
 | |
| 					const type indextype = type_of(L, index);
 | |
| 					tracking.use(1);
 | |
| 					if (indextype != type::userdata) {
 | |
| 						handler(L, index, type::userdata, indextype, "value is not a userdata");
 | |
| 						return false;
 | |
| 					}
 | |
| 					void* memory = lua_touserdata(L, index);
 | |
| 					memory = detail::align_usertype_unique_destructor(memory);
 | |
| 					detail::unique_destructor& pdx = *static_cast<detail::unique_destructor*>(memory);
 | |
| 					if (&detail::usertype_unique_alloc_destroy<T, X> == pdx) {
 | |
| 						return true;
 | |
| 					}
 | |
| 					if constexpr (derive<T>::value) {
 | |
| 						memory = detail::align_usertype_unique_tag<true, false>(memory);
 | |
| 						detail::unique_tag& ic = *reinterpret_cast<detail::unique_tag*>(memory);
 | |
| 						string_view ti = usertype_traits<T>::qualified_name();
 | |
| 						string_view rebind_ti = usertype_traits<rebind_t>::qualified_name();
 | |
| 						if (ic(nullptr, nullptr, ti, rebind_ti) != 0) {
 | |
| 							return true;
 | |
| 						}
 | |
| 					}
 | |
| 					handler(L, index, type::userdata, indextype, "value is a userdata but is not the correct unique usertype");
 | |
| 					return false;
 | |
| 				}
 | |
| 				else {
 | |
| 					return stack::unqualified_check<X>(L, index, std::forward<Handler>(handler), tracking);
 | |
| 				}
 | |
| 			}
 | |
| 			else if constexpr (!std::is_reference_v<X> && is_container_v<X>) {
 | |
| 				if (type_of(L, index) == type::userdata) {
 | |
| 					return stack::unqualified_check<X>(L, index, std::forward<Handler>(handler), tracking);
 | |
| 				}
 | |
| 				else {
 | |
| 					return stack::unqualified_check<nested<X>>(L, index, std::forward<Handler>(handler), tracking);
 | |
| 				}
 | |
| 			}
 | |
| 			else if constexpr (!std::is_reference_v<X> && meta::is_specialization_of_v<X, nested>) {
 | |
| 				using NestedX = typename meta::unqualified_t<X>::nested_type;
 | |
| 				return stack::check<NestedX>(L, index, ::std::forward<Handler>(handler), tracking);
 | |
| 			}
 | |
| 			else {
 | |
| 				return stack::unqualified_check<X>(L, index, std::forward<Handler>(handler), tracking);
 | |
| 			}
 | |
| 		}
 | |
| 	};
 | |
| }
 | |
| } // namespace sol::stack
 | |
| 
 | |
| // end of sol/stack_check_qualified.hpp
 | |
| 
 | |
| // end of sol/stack_check.hpp
 | |
| 
 | |
| // beginning of sol/stack_get.hpp
 | |
| 
 | |
| // beginning of sol/stack_get_unqualified.hpp
 | |
| 
 | |
| // beginning of sol/overload.hpp
 | |
| 
 | |
| #include <utility>
 | |
| 
 | |
| namespace sol {
 | |
| 	template <typename... Functions>
 | |
| 	struct overload_set {
 | |
| 		std::tuple<Functions...> functions;
 | |
| 		template <typename Arg, typename... Args, meta::disable<std::is_same<overload_set, meta::unqualified_t<Arg>>> = meta::enabler>
 | |
| 		overload_set(Arg&& arg, Args&&... args)
 | |
| 		: functions(std::forward<Arg>(arg), std::forward<Args>(args)...) {
 | |
| 		}
 | |
| 		overload_set(const overload_set&) = default;
 | |
| 		overload_set(overload_set&&) = default;
 | |
| 		overload_set& operator=(const overload_set&) = default;
 | |
| 		overload_set& operator=(overload_set&&) = default;
 | |
| 	};
 | |
| 
 | |
| 	template <typename... Args>
 | |
| 	decltype(auto) overload(Args&&... args) {
 | |
| 		return overload_set<std::decay_t<Args>...>(std::forward<Args>(args)...);
 | |
| 	}
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/overload.hpp
 | |
| 
 | |
| // beginning of sol/unicode.hpp
 | |
| 
 | |
| #include <array>
 | |
| #include <cstring>
 | |
| 
 | |
| namespace sol {
 | |
| 	// Everything here was lifted pretty much straight out of
 | |
| 	// ogonek, because fuck figuring it out=
 | |
| 	namespace unicode {
 | |
| 		enum class error_code {
 | |
| 			ok = 0,
 | |
| 			invalid_code_point,
 | |
| 			invalid_code_unit,
 | |
| 			invalid_leading_surrogate,
 | |
| 			invalid_trailing_surrogate,
 | |
| 			sequence_too_short,
 | |
| 			overlong_sequence,
 | |
| 		};
 | |
| 
 | |
| 		inline const string_view& to_string(error_code ec) {
 | |
| 			static const string_view storage[7] = {
 | |
| 				"ok",
 | |
| 				"invalid code points",
 | |
| 				"invalid code unit",
 | |
| 				"invalid leading surrogate",
 | |
| 				"invalid trailing surrogate",
 | |
| 				"sequence too short",
 | |
| 				"overlong sequence"
 | |
| 			};
 | |
| 			return storage[static_cast<std::size_t>(ec)];
 | |
| 		}
 | |
| 
 | |
| 		template <typename It>
 | |
| 		struct decoded_result {
 | |
| 			error_code error;
 | |
| 			char32_t codepoint;
 | |
| 			It next;
 | |
| 		};
 | |
| 
 | |
| 		template <typename C>
 | |
| 		struct encoded_result {
 | |
| 			error_code error;
 | |
| 			std::size_t code_units_size;
 | |
| 			std::array<C, 4> code_units;
 | |
| 		};
 | |
| 
 | |
| 		struct unicode_detail {
 | |
| 			// codepoint related
 | |
| 			static constexpr char32_t last_code_point = 0x10FFFF;
 | |
| 
 | |
| 			static constexpr char32_t first_lead_surrogate = 0xD800;
 | |
| 			static constexpr char32_t last_lead_surrogate = 0xDBFF;
 | |
| 
 | |
| 			static constexpr char32_t first_trail_surrogate = 0xDC00;
 | |
| 			static constexpr char32_t last_trail_surrogate = 0xDFFF;
 | |
| 
 | |
| 			static constexpr char32_t first_surrogate = first_lead_surrogate;
 | |
| 			static constexpr char32_t last_surrogate = last_trail_surrogate;
 | |
| 
 | |
| 			static constexpr bool is_lead_surrogate(char32_t u) {
 | |
| 				return u >= first_lead_surrogate && u <= last_lead_surrogate;
 | |
| 			}
 | |
| 			static constexpr bool is_trail_surrogate(char32_t u) {
 | |
| 				return u >= first_trail_surrogate && u <= last_trail_surrogate;
 | |
| 			}
 | |
| 			static constexpr bool is_surrogate(char32_t u) {
 | |
| 				return u >= first_surrogate && u <= last_surrogate;
 | |
| 			}
 | |
| 
 | |
| 			// utf8 related
 | |
| 			static constexpr auto last_1byte_value = 0x7Fu;
 | |
| 			static constexpr auto last_2byte_value = 0x7FFu;
 | |
| 			static constexpr auto last_3byte_value = 0xFFFFu;
 | |
| 
 | |
| 			static constexpr auto start_2byte_mask = 0x80u;
 | |
| 			static constexpr auto start_3byte_mask = 0xE0u;
 | |
| 			static constexpr auto start_4byte_mask = 0xF0u;
 | |
| 
 | |
| 			static constexpr auto continuation_mask = 0xC0u;
 | |
| 			static constexpr auto continuation_signature = 0x80u;
 | |
| 
 | |
| 			static constexpr bool is_invalid(unsigned char b) {
 | |
| 				return b == 0xC0 || b == 0xC1 || b > 0xF4;
 | |
| 			}
 | |
| 
 | |
| 			static constexpr bool is_continuation(unsigned char b) {
 | |
| 				return (b & unicode_detail::continuation_mask) == unicode_detail::continuation_signature;
 | |
| 			}
 | |
| 
 | |
| 			static constexpr bool is_overlong(char32_t u, std::size_t bytes) {
 | |
| 				return u <= unicode_detail::last_1byte_value || (u <= unicode_detail::last_2byte_value && bytes > 2)
 | |
| 				     || (u <= unicode_detail::last_3byte_value && bytes > 3);
 | |
| 			}
 | |
| 
 | |
| 			static constexpr int sequence_length(unsigned char b) {
 | |
| 				return (b & start_2byte_mask) == 0 ? 1
 | |
| 					: (b & start_3byte_mask) != start_3byte_mask ? 2
 | |
| 					: (b & start_4byte_mask) != start_4byte_mask ? 3
 | |
| 					: 4;
 | |
| 			}
 | |
| 
 | |
| 			static constexpr char32_t decode(unsigned char b0, unsigned char b1) {
 | |
| 				return ((b0 & 0x1F) << 6) | (b1 & 0x3F);
 | |
| 			}
 | |
| 			static constexpr char32_t decode(unsigned char b0, unsigned char b1, unsigned char b2) {
 | |
| 				return ((b0 & 0x0F) << 12) | ((b1 & 0x3F) << 6) | (b2 & 0x3F);
 | |
| 			}
 | |
| 			static constexpr char32_t decode(unsigned char b0, unsigned char b1, unsigned char b2, unsigned char b3) {
 | |
| 				return ((b0 & 0x07) << 18) | ((b1 & 0x3F) << 12) | ((b2 & 0x3F) << 6) | (b3 & 0x3F);
 | |
| 			}
 | |
| 
 | |
| 			// utf16 related
 | |
| 			static constexpr char32_t last_bmp_value = 0xFFFF;
 | |
| 			static constexpr char32_t normalizing_value = 0x10000;
 | |
| 			static constexpr int lead_surrogate_bitmask = 0xFFC00;
 | |
| 			static constexpr int trail_surrogate_bitmask = 0x3FF;
 | |
| 			static constexpr int lead_shifted_bits = 10;
 | |
| 			static constexpr char32_t replacement = 0xFFFD;
 | |
| 
 | |
| 			static char32_t combine_surrogates(char16_t lead, char16_t trail) {
 | |
| 				auto hi = lead - first_lead_surrogate;
 | |
| 				auto lo = trail - first_trail_surrogate;
 | |
| 				return normalizing_value + ((hi << lead_shifted_bits) | lo);
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		inline encoded_result<char> code_point_to_utf8(char32_t codepoint) {
 | |
| 			encoded_result<char> er;
 | |
| 			er.error = error_code::ok;
 | |
| 			if (codepoint <= unicode_detail::last_1byte_value) {
 | |
| 				er.code_units_size = 1;
 | |
| 				er.code_units = std::array<char, 4>{ { static_cast<char>(codepoint) } };
 | |
| 			}
 | |
| 			else if (codepoint <= unicode_detail::last_2byte_value) {
 | |
| 				er.code_units_size = 2;
 | |
| 				er.code_units = std::array<char, 4>{{
 | |
| 					static_cast<char>(0xC0 | ((codepoint & 0x7C0) >> 6)),
 | |
| 					static_cast<char>(0x80 | (codepoint & 0x3F)),
 | |
| 				}};
 | |
| 			}
 | |
| 			else if (codepoint <= unicode_detail::last_3byte_value) {
 | |
| 				er.code_units_size = 3;
 | |
| 				er.code_units = std::array<char, 4>{{
 | |
| 					static_cast<char>(0xE0 | ((codepoint & 0xF000) >> 12)),
 | |
| 					static_cast<char>(0x80 | ((codepoint & 0xFC0) >> 6)),
 | |
| 					static_cast<char>(0x80 | (codepoint & 0x3F)),
 | |
| 				}};
 | |
| 			}
 | |
| 			else {
 | |
| 				er.code_units_size = 4;
 | |
| 				er.code_units = std::array<char, 4>{ {
 | |
| 					static_cast<char>(0xF0 | ((codepoint & 0x1C0000) >> 18)),
 | |
| 						static_cast<char>(0x80 | ((codepoint & 0x3F000) >> 12)),
 | |
| 						static_cast<char>(0x80 | ((codepoint & 0xFC0) >> 6)),
 | |
| 						static_cast<char>(0x80 | (codepoint & 0x3F)),
 | |
| 				} };
 | |
| 			}
 | |
| 			return er;
 | |
| 		}
 | |
| 
 | |
| 		inline encoded_result<char16_t> code_point_to_utf16(char32_t codepoint) {
 | |
| 			encoded_result<char16_t> er;
 | |
| 
 | |
| 			if (codepoint <= unicode_detail::last_bmp_value) {
 | |
| 				er.code_units_size = 1;
 | |
| 				er.code_units = std::array<char16_t, 4>{ { static_cast<char16_t>(codepoint) } };
 | |
| 				er.error = error_code::ok;
 | |
| 			}
 | |
| 			else {
 | |
| 				auto normal = codepoint - unicode_detail::normalizing_value;
 | |
| 				auto lead = unicode_detail::first_lead_surrogate + ((normal & unicode_detail::lead_surrogate_bitmask) >> unicode_detail::lead_shifted_bits);
 | |
| 				auto trail = unicode_detail::first_trail_surrogate + (normal & unicode_detail::trail_surrogate_bitmask);
 | |
| 				er.code_units = std::array<char16_t, 4>{ {
 | |
| 					static_cast<char16_t>(lead),
 | |
| 					static_cast<char16_t>(trail)
 | |
| 				} };
 | |
| 				er.code_units_size = 2;
 | |
| 				er.error = error_code::ok;
 | |
| 			}
 | |
| 			return er;
 | |
| 		}
 | |
| 
 | |
| 		inline encoded_result<char32_t> code_point_to_utf32(char32_t codepoint) {
 | |
| 			encoded_result<char32_t> er;
 | |
| 			er.code_units_size = 1;
 | |
| 			er.code_units[0] = codepoint;
 | |
| 			er.error = error_code::ok;
 | |
| 			return er;
 | |
| 		}
 | |
| 
 | |
| 		template <typename It>
 | |
| 		inline decoded_result<It> utf8_to_code_point(It it, It last) {
 | |
| 			decoded_result<It> dr;
 | |
| 			if (it == last) {
 | |
| 				dr.next = it;
 | |
| 				dr.error = error_code::sequence_too_short;
 | |
| 				return dr;
 | |
| 			}
 | |
| 
 | |
| 			unsigned char b0 = *it;
 | |
| 			std::size_t length = unicode_detail::sequence_length(b0);
 | |
| 
 | |
| 			if (length == 1) {
 | |
| 				dr.codepoint = static_cast<char32_t>(b0);
 | |
| 				dr.error = error_code::ok;
 | |
| 				++it;
 | |
| 				dr.next = it;
 | |
| 				return dr;
 | |
| 			}
 | |
| 
 | |
| 			if (unicode_detail::is_invalid(b0) || unicode_detail::is_continuation(b0)) {
 | |
| 				dr.error = error_code::invalid_code_unit;
 | |
| 				dr.next = it;
 | |
| 				return dr;
 | |
| 			}
 | |
| 
 | |
| 			++it;
 | |
| 			std::array<unsigned char, 4> b;
 | |
| 			b[0] = b0;
 | |
| 			for (std::size_t i = 1; i < length; ++i) {
 | |
| 				b[i] = *it;
 | |
| 				if (!unicode_detail::is_continuation(b[i])) {
 | |
| 					dr.error = error_code::invalid_code_unit;
 | |
| 					dr.next = it;
 | |
| 					return dr;
 | |
| 				}
 | |
| 				++it;
 | |
| 			}
 | |
| 
 | |
| 			char32_t decoded;
 | |
| 			switch (length) {
 | |
| 			case 2:
 | |
| 				decoded = unicode_detail::decode(b[0], b[1]);
 | |
| 				break;
 | |
| 			case 3:
 | |
| 				decoded = unicode_detail::decode(b[0], b[1], b[2]);
 | |
| 				break;
 | |
| 			default:
 | |
| 				decoded = unicode_detail::decode(b[0], b[1], b[2], b[3]);
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			if (unicode_detail::is_overlong(decoded, length)) {
 | |
| 				dr.error = error_code::overlong_sequence;
 | |
| 				return dr;
 | |
| 			}
 | |
| 			if (unicode_detail::is_surrogate(decoded) || decoded > unicode_detail::last_code_point) {
 | |
| 				dr.error = error_code::invalid_code_point;
 | |
| 				return dr;
 | |
| 			}
 | |
| 			
 | |
| 			// then everything is fine
 | |
| 			dr.codepoint = decoded;
 | |
| 			dr.error = error_code::ok;
 | |
| 			dr.next = it;
 | |
| 			return dr;
 | |
| 		}
 | |
| 
 | |
| 		template <typename It>
 | |
| 		inline decoded_result<It> utf16_to_code_point(It it, It last) {
 | |
| 			decoded_result<It> dr;
 | |
| 			if (it == last) {
 | |
| 				dr.next = it;
 | |
| 				dr.error = error_code::sequence_too_short;
 | |
| 				return dr;
 | |
| 			}
 | |
| 
 | |
| 			char16_t lead = static_cast<char16_t>(*it);
 | |
| 			
 | |
| 			if (!unicode_detail::is_surrogate(lead)) {
 | |
| 				++it;
 | |
| 				dr.codepoint = static_cast<char32_t>(lead);
 | |
| 				dr.next = it;
 | |
| 				dr.error = error_code::ok;
 | |
| 				return dr;
 | |
| 			}
 | |
| 			if (!unicode_detail::is_lead_surrogate(lead)) {
 | |
| 				dr.error = error_code::invalid_leading_surrogate;
 | |
| 				dr.next = it;
 | |
| 				return dr;
 | |
| 			}
 | |
| 
 | |
| 			++it;
 | |
| 			auto trail = *it;
 | |
| 			if (!unicode_detail::is_trail_surrogate(trail)) {
 | |
| 				dr.error = error_code::invalid_trailing_surrogate;
 | |
| 				dr.next = it;
 | |
| 				return dr;
 | |
| 			}
 | |
| 			
 | |
| 			dr.codepoint = unicode_detail::combine_surrogates(lead, trail);
 | |
| 			dr.next = ++it;
 | |
| 			dr.error = error_code::ok;
 | |
| 			return dr;
 | |
| 		}
 | |
| 
 | |
| 		template <typename It>
 | |
| 		inline decoded_result<It> utf32_to_code_point(It it, It last) {
 | |
| 			decoded_result<It> dr;
 | |
| 			if (it == last) {
 | |
| 				dr.next = it;
 | |
| 				dr.error = error_code::sequence_too_short;
 | |
| 				return dr;
 | |
| 			}
 | |
| 			dr.codepoint = static_cast<char32_t>(*it);
 | |
| 			dr.next = ++it;
 | |
| 			dr.error = error_code::ok;
 | |
| 			return dr;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| // end of sol/unicode.hpp
 | |
| 
 | |
| #include <memory>
 | |
| #include <functional>
 | |
| #include <utility>
 | |
| #include <cstdlib>
 | |
| #include <cmath>
 | |
| #include <string_view>
 | |
| #if SOL_IS_ON(SOL_STD_VARIANT_I_)
 | |
| #include <variant>
 | |
| #endif // Apple clang screwed up
 | |
| 
 | |
| namespace sol { namespace stack {
 | |
| 
 | |
| 	namespace stack_detail {
 | |
| 		template <typename Ch>
 | |
| 		struct count_code_units_utf {
 | |
| 			std::size_t needed_size;
 | |
| 
 | |
| 			count_code_units_utf() : needed_size(0) {
 | |
| 			}
 | |
| 
 | |
| 			void operator()(const unicode::encoded_result<Ch> er) {
 | |
| 				needed_size += er.code_units_size;
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <typename Ch, typename ErCh>
 | |
| 		struct copy_code_units_utf {
 | |
| 			Ch* target_;
 | |
| 
 | |
| 			copy_code_units_utf(Ch* target) : target_(target) {
 | |
| 			}
 | |
| 
 | |
| 			void operator()(const unicode::encoded_result<ErCh> er) {
 | |
| 				std::memcpy(target_, er.code_units.data(), er.code_units_size * sizeof(ErCh));
 | |
| 				target_ += er.code_units_size;
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <typename Ch, typename F>
 | |
| 		inline void convert(const char* strb, const char* stre, F&& f) {
 | |
| 			char32_t cp = 0;
 | |
| 			for (const char* strtarget = strb; strtarget < stre;) {
 | |
| 				auto dr = unicode::utf8_to_code_point(strtarget, stre);
 | |
| 				if (dr.error != unicode::error_code::ok) {
 | |
| 					cp = unicode::unicode_detail::replacement;
 | |
| 					++strtarget;
 | |
| 				}
 | |
| 				else {
 | |
| 					cp = dr.codepoint;
 | |
| 					strtarget = dr.next;
 | |
| 				}
 | |
| 				if constexpr (std::is_same_v<Ch, char32_t>) {
 | |
| 					auto er = unicode::code_point_to_utf32(cp);
 | |
| 					f(er);
 | |
| 				}
 | |
| 				else {
 | |
| 					auto er = unicode::code_point_to_utf16(cp);
 | |
| 					f(er);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		template <typename BaseCh, typename S>
 | |
| 		inline S get_into(lua_State* L, int index, record& tracking) {
 | |
| 			using Ch = typename S::value_type;
 | |
| 			tracking.use(1);
 | |
| 			size_t len;
 | |
| 			auto utf8p = lua_tolstring(L, index, &len);
 | |
| 			if (len < 1)
 | |
| 				return S();
 | |
| 			const char* strb = utf8p;
 | |
| 			const char* stre = utf8p + len;
 | |
| 			stack_detail::count_code_units_utf<BaseCh> count_units;
 | |
| 			convert<BaseCh>(strb, stre, count_units);
 | |
| 			S r(count_units.needed_size, static_cast<Ch>(0));
 | |
| 			r.resize(count_units.needed_size);
 | |
| 			Ch* target = &r[0];
 | |
| 			stack_detail::copy_code_units_utf<Ch, BaseCh> copy_units(target);
 | |
| 			convert<BaseCh>(strb, stre, copy_units);
 | |
| 			return r;
 | |
| 		}
 | |
| 	} // namespace stack_detail
 | |
| 
 | |
| 	template <typename T, typename>
 | |
| 	struct unqualified_getter {
 | |
| 		static decltype(auto) get(lua_State* L, int index, record& tracking) {
 | |
| 			if constexpr (std::is_same_v<T, bool>) {
 | |
| 				tracking.use(1);
 | |
| 				return lua_toboolean(L, index) != 0;
 | |
| 			}
 | |
| 			else if constexpr (std::is_enum_v<T>) {
 | |
| 				tracking.use(1);
 | |
| 				return static_cast<T>(lua_tointegerx(L, index, nullptr));
 | |
| 			}
 | |
| 			else if constexpr (std::is_integral_v<T> || std::is_same_v<T, lua_Integer>) {
 | |
| 				tracking.use(1);
 | |
| #if SOL_LUA_VESION_I_ >= 503
 | |
| 				if (lua_isinteger(L, index) != 0) {
 | |
| 					return static_cast<T>(lua_tointeger(L, index));
 | |
| 				}
 | |
| #endif
 | |
| 				return static_cast<T>(llround(lua_tonumber(L, index)));
 | |
| 			}
 | |
| 			else if constexpr (std::is_floating_point_v<T> || std::is_same_v<T, lua_Number>) {
 | |
| 				tracking.use(1);
 | |
| 				return static_cast<T>(lua_tonumber(L, index));
 | |
| 			}
 | |
| 			else if constexpr (is_lua_reference_v<T>) {
 | |
| 				tracking.use(1);
 | |
| 				return T(L, index);
 | |
| 			}
 | |
| 			else if constexpr (is_unique_usertype_v<T>) {
 | |
| 				using Real = typename unique_usertype_traits<T>::actual_type;
 | |
| 
 | |
| 				tracking.use(1);
 | |
| 				void* memory = lua_touserdata(L, index);
 | |
| 				memory = detail::align_usertype_unique<Real>(memory);
 | |
| 				Real* mem = static_cast<Real*>(memory);
 | |
| 				return *mem;
 | |
| 			}
 | |
| 			else if constexpr (meta::is_optional_v<T>) {
 | |
| 				using ValueType = typename T::value_type;
 | |
| 				return unqualified_check_getter<ValueType>::template get_using<T>(L, index, no_panic, tracking);
 | |
| 			}
 | |
| 			else if constexpr (std::is_same_v<T, luaL_Stream*>) {
 | |
| 				luaL_Stream* pstream = static_cast<luaL_Stream*>(lua_touserdata(L, index));
 | |
| 				return pstream;
 | |
| 			}
 | |
| 			else if constexpr (std::is_same_v<T, luaL_Stream>) {
 | |
| 				luaL_Stream* pstream = static_cast<luaL_Stream*>(lua_touserdata(L, index));
 | |
| 				return *pstream;
 | |
| 			}
 | |
| #if SOL_IS_ON(SOL_GET_FUNCTION_POINTER_UNSAFE_I_)
 | |
| 			else if constexpr (std::is_function_v<T> || (std::is_pointer_v<T> && std::is_function_v<std::remove_pointer_t<T>>)) {
 | |
| 				return stack_detail::get_function_pointer<std::remove_pointer_t<T>>(L, index, tracking);
 | |
| 			}
 | |
| #endif
 | |
| 			else {
 | |
| 				return stack_detail::unchecked_unqualified_get<detail::as_value_tag<T>>(L, index, tracking);
 | |
| 			}
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename X, typename>
 | |
| 	struct qualified_getter {
 | |
| 		static decltype(auto) get(lua_State* L, int index, record& tracking) {
 | |
| 			using Tu = meta::unqualified_t<X>;
 | |
| 			static constexpr bool is_userdata_of_some_kind
 | |
| 				= !std::is_reference_v<
 | |
| 				       X> && is_container_v<Tu> && std::is_default_constructible_v<Tu> && !is_lua_primitive_v<Tu> && !is_transparent_argument_v<Tu>;
 | |
| 			if constexpr (is_userdata_of_some_kind) {
 | |
| 				if (type_of(L, index) == type::userdata) {
 | |
| 					return static_cast<Tu>(stack_detail::unchecked_unqualified_get<Tu>(L, index, tracking));
 | |
| 				}
 | |
| 				else {
 | |
| 					return stack_detail::unchecked_unqualified_get<sol::nested<Tu>>(L, index, tracking);
 | |
| 				}
 | |
| 			}
 | |
| 			else if constexpr (!std::is_reference_v<X> && is_unique_usertype_v<Tu> && !is_base_rebindable_non_void_v<unique_usertype_traits<Tu>>) {
 | |
| 				using u_traits = unique_usertype_traits<Tu>;
 | |
| 				using T = typename u_traits::type;
 | |
| 				using Real = typename u_traits::actual_type;
 | |
| 				tracking.use(1);
 | |
| 				void* memory = lua_touserdata(L, index);
 | |
| 				memory = detail::align_usertype_unique_destructor(memory);
 | |
| 				detail::unique_destructor& pdx = *static_cast<detail::unique_destructor*>(memory);
 | |
| 				if (&detail::usertype_unique_alloc_destroy<T, X> == pdx) {
 | |
| 					memory = detail::align_usertype_unique_tag<true, false>(memory);
 | |
| 					memory = detail::align_usertype_unique<Real, true, false>(memory);
 | |
| 					Real* mem = static_cast<Real*>(memory);
 | |
| 					return static_cast<Real>(*mem);
 | |
| 				}
 | |
| 				Real r(nullptr);
 | |
| 				if constexpr (!derive<T>::value) {
 | |
| 					// TODO: abort / terminate, maybe only in debug modes?
 | |
| 					return static_cast<Real>(std::move(r));
 | |
| 				}
 | |
| 				else {
 | |
| 					memory = detail::align_usertype_unique_tag<true, false>(memory);
 | |
| 					detail::unique_tag& ic = *reinterpret_cast<detail::unique_tag*>(memory);
 | |
| 					memory = detail::align_usertype_unique<Real, true, false>(memory);
 | |
| 					string_view ti = usertype_traits<T>::qualified_name();
 | |
| 					int cast_operation;
 | |
| 					if constexpr (is_base_rebindable_v<u_traits>) {
 | |
| 						using rebind_t = typename u_traits::template rebind_base<void>;
 | |
| 						string_view rebind_ti = usertype_traits<rebind_t>::qualified_name();
 | |
| 						cast_operation = ic(memory, &r, ti, rebind_ti);
 | |
| 					}
 | |
| 					else {
 | |
| 						string_view rebind_ti("");
 | |
| 						cast_operation = ic(memory, &r, ti, rebind_ti);
 | |
| 					}
 | |
| 					switch (cast_operation) {
 | |
| 					case 1: {
 | |
| 						// it's a perfect match,
 | |
| 						// alias memory directly
 | |
| 						Real* mem = static_cast<Real*>(memory);
 | |
| 						return static_cast<Real>(*mem);
 | |
| 					}
 | |
| 					case 2:
 | |
| 						// it's a base match, return the
 | |
| 						// aliased creation
 | |
| 						return static_cast<Real>(std::move(r));
 | |
| 					default:
 | |
| 						// uh oh..
 | |
| 						break;
 | |
| 					}
 | |
| 					// TODO: abort / terminate, maybe only in debug modes?
 | |
| 					return static_cast<Real>(r);
 | |
| 				}
 | |
| 			}
 | |
| 			else {
 | |
| 				return stack_detail::unchecked_unqualified_get<Tu>(L, index, tracking);
 | |
| 			}
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct unqualified_getter<as_table_t<T>> {
 | |
| 		using Tu = meta::unqualified_t<T>;
 | |
| 
 | |
| 		template <typename V>
 | |
| 		static void push_back_at_end(std::true_type, types<V>, lua_State* L, T& cont, std::size_t) {
 | |
| 			cont.push_back(stack::get<V>(L, -lua_size<V>::value));
 | |
| 		}
 | |
| 
 | |
| 		template <typename V>
 | |
| 		static void push_back_at_end(std::false_type, types<V> t, lua_State* L, T& cont, std::size_t idx) {
 | |
| 			insert_at_end(meta::has_insert<Tu>(), t, L, cont, idx);
 | |
| 		}
 | |
| 
 | |
| 		template <typename V>
 | |
| 		static void insert_at_end(std::true_type, types<V>, lua_State* L, T& cont, std::size_t) {
 | |
| 			using std::cend;
 | |
| 			cont.insert(cend(cont), stack::get<V>(L, -lua_size<V>::value));
 | |
| 		}
 | |
| 
 | |
| 		template <typename V>
 | |
| 		static void insert_at_end(std::false_type, types<V>, lua_State* L, T& cont, std::size_t idx) {
 | |
| 			cont[idx] = stack::get<V>(L, -lua_size<V>::value);
 | |
| 		}
 | |
| 
 | |
| 		static bool max_size_check(std::false_type, T&, std::size_t) {
 | |
| 			return false;
 | |
| 		}
 | |
| 
 | |
| 		static bool max_size_check(std::true_type, T& cont, std::size_t idx) {
 | |
| 			return idx >= cont.max_size();
 | |
| 		}
 | |
| 
 | |
| 		static T get(lua_State* L, int relindex, record& tracking) {
 | |
| 			return get(meta::is_associative<Tu>(), L, relindex, tracking);
 | |
| 		}
 | |
| 
 | |
| 		static T get(std::false_type, lua_State* L, int relindex, record& tracking) {
 | |
| 			typedef typename Tu::value_type V;
 | |
| 			return get(types<V>(), L, relindex, tracking);
 | |
| 		}
 | |
| 
 | |
| 		template <typename V>
 | |
| 		static T get(types<V> t, lua_State* L, int relindex, record& tracking) {
 | |
| 			tracking.use(1);
 | |
| 
 | |
| 			// the W4 flag is really great,
 | |
| 			// so great that it can tell my for loops (twice nested)
 | |
| 			// below never actually terminate
 | |
| 			// without hitting where the gotos have infested
 | |
| 
 | |
| 			// so now I would get the error W4XXX unreachable
 | |
| 			// me that the return cont at the end of this function
 | |
| 			// which is fair until other compilers complain
 | |
| 			// that there isn't a return and that based on
 | |
| 			// SOME MAGICAL FORCE
 | |
| 			// control flow falls off the end of a non-void function
 | |
| 			// so it needs to be there for the compilers that are
 | |
| 			// too flimsy to analyze the basic blocks...
 | |
| 			// (I'm sure I should file a bug but those compilers are already
 | |
| 			// in the wild; it doesn't matter if I fix them,
 | |
| 			// someone else is still going to get some old-ass compiler
 | |
| 			// and then bother me about the unclean build for the 30th
 | |
| 			// time)
 | |
| 
 | |
| 			// "Why not an IIFE?"
 | |
| 			// Because additional lambdas / functions which serve as
 | |
| 			// capture-all-and-then-invoke bloat binary sizes
 | |
| 			// by an actually detectable amount
 | |
| 			// (one user uses sol2 pretty heavily and 22 MB of binary size
 | |
| 			// was saved by reducing reliance on lambdas in templates)
 | |
| 
 | |
| 			// This would really be solved by having break N;
 | |
| 			// be a real, proper thing...
 | |
| 			// but instead, we have to use labels and gotos
 | |
| 			// and earn the universal vitriol of the dogmatic
 | |
| 			// programming community
 | |
| 
 | |
| 			// all in all: W4 is great!~
 | |
| 
 | |
| 			int index = lua_absindex(L, relindex);
 | |
| 			T cont;
 | |
| 			std::size_t idx = 0;
 | |
| #if SOL_LUA_VESION_I_ >= 503
 | |
| 			// This method is HIGHLY performant over regular table iteration
 | |
| 			// thanks to the Lua API changes in 5.3
 | |
| 			// Questionable in 5.4
 | |
| 			for (lua_Integer i = 0;; i += lua_size<V>::value) {
 | |
| 				if (max_size_check(meta::has_max_size<Tu>(), cont, idx)) {
 | |
| 					// see above comment
 | |
| 					goto done;
 | |
| 				}
 | |
| 				bool isnil = false;
 | |
| 				for (int vi = 0; vi < lua_size<V>::value; ++vi) {
 | |
| #if defined(LUA_NILINTABLE) && LUA_NILINTABLE && SOL_LUA_VESION_I_ >= 600
 | |
| #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
 | |
| 					luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
 | |
| #endif // make sure stack doesn't overflow
 | |
| 					lua_pushinteger(L, static_cast<lua_Integer>(i + vi));
 | |
| 					if (lua_keyin(L, index) == 0) {
 | |
| 						// it's time to stop
 | |
| 						isnil = true;
 | |
| 					}
 | |
| 					else {
 | |
| 						// we have a key, have to get the value
 | |
| 						lua_geti(L, index, i + vi);
 | |
| 					}
 | |
| #else
 | |
| 					type vt = static_cast<type>(lua_geti(L, index, i + vi));
 | |
| 					isnil = vt == type::none || vt == type::lua_nil;
 | |
| #endif
 | |
| 					if (isnil) {
 | |
| 						if (i == 0) {
 | |
| 							break;
 | |
| 						}
 | |
| #if defined(LUA_NILINTABLE) && LUA_NILINTABLE && SOL_LUA_VESION_I_ >= 600
 | |
| 						lua_pop(L, vi);
 | |
| #else
 | |
| 						lua_pop(L, (vi + 1));
 | |
| #endif
 | |
| 						// see above comment
 | |
| 						goto done;
 | |
| 					}
 | |
| 				}
 | |
| 				if (isnil) {
 | |
| #if defined(LUA_NILINTABLE) && LUA_NILINTABLE && SOL_LUA_VESION_I_ >= 600
 | |
| #else
 | |
| 					lua_pop(L, lua_size<V>::value);
 | |
| #endif
 | |
| 					continue;
 | |
| 				}
 | |
| 
 | |
| 				push_back_at_end(meta::has_push_back<Tu>(), t, L, cont, idx);
 | |
| 				++idx;
 | |
| 				lua_pop(L, lua_size<V>::value);
 | |
| 			}
 | |
| #else
 | |
| 			// Zzzz slower but necessary thanks to the lower version API and missing functions qq
 | |
| 			for (lua_Integer i = 0;; i += lua_size<V>::value, lua_pop(L, lua_size<V>::value)) {
 | |
| 				if (idx >= cont.max_size()) {
 | |
| 					// see above comment
 | |
| 					goto done;
 | |
| 				}
 | |
| #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
 | |
| 				luaL_checkstack(L, 2, detail::not_enough_stack_space_generic);
 | |
| #endif // make sure stack doesn't overflow
 | |
| 				bool isnil = false;
 | |
| 				for (int vi = 0; vi < lua_size<V>::value; ++vi) {
 | |
| 					lua_pushinteger(L, i);
 | |
| 					lua_gettable(L, index);
 | |
| 					type vt = type_of(L, -1);
 | |
| 					isnil = vt == type::lua_nil;
 | |
| 					if (isnil) {
 | |
| 						if (i == 0) {
 | |
| 							break;
 | |
| 						}
 | |
| 						lua_pop(L, (vi + 1));
 | |
| 						// see above comment
 | |
| 						goto done;
 | |
| 					}
 | |
| 				}
 | |
| 				if (isnil)
 | |
| 					continue;
 | |
| 				push_back_at_end(meta::has_push_back<Tu>(), t, L, cont, idx);
 | |
| 				++idx;
 | |
| 			}
 | |
| #endif
 | |
| 		done:
 | |
| 			return cont;
 | |
| 		}
 | |
| 
 | |
| 		static T get(std::true_type, lua_State* L, int index, record& tracking) {
 | |
| 			typedef typename Tu::value_type P;
 | |
| 			typedef typename P::first_type K;
 | |
| 			typedef typename P::second_type V;
 | |
| 			return get(types<K, V>(), L, index, tracking);
 | |
| 		}
 | |
| 
 | |
| 		template <typename K, typename V>
 | |
| 		static T get(types<K, V>, lua_State* L, int relindex, record& tracking) {
 | |
| 			tracking.use(1);
 | |
| 
 | |
| #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
 | |
| 			luaL_checkstack(L, 3, detail::not_enough_stack_space_generic);
 | |
| #endif // make sure stack doesn't overflow
 | |
| 
 | |
| 			T associative;
 | |
| 			int index = lua_absindex(L, relindex);
 | |
| 			lua_pushnil(L);
 | |
| 			while (lua_next(L, index) != 0) {
 | |
| 				decltype(auto) key = stack::check_get<K>(L, -2);
 | |
| 				if (!key) {
 | |
| 					lua_pop(L, 1);
 | |
| 					continue;
 | |
| 				}
 | |
| 				associative.emplace(std::forward<decltype(*key)>(*key), stack::get<V>(L, -1));
 | |
| 				lua_pop(L, 1);
 | |
| 			}
 | |
| 			return associative;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T, typename Al>
 | |
| 	struct unqualified_getter<as_table_t<std::forward_list<T, Al>>> {
 | |
| 		typedef std::forward_list<T, Al> C;
 | |
| 
 | |
| 		static C get(lua_State* L, int relindex, record& tracking) {
 | |
| 			return get(meta::has_key_value_pair<C>(), L, relindex, tracking);
 | |
| 		}
 | |
| 
 | |
| 		static C get(std::true_type, lua_State* L, int index, record& tracking) {
 | |
| 			typedef typename T::value_type P;
 | |
| 			typedef typename P::first_type K;
 | |
| 			typedef typename P::second_type V;
 | |
| 			return get(types<K, V>(), L, index, tracking);
 | |
| 		}
 | |
| 
 | |
| 		static C get(std::false_type, lua_State* L, int relindex, record& tracking) {
 | |
| 			typedef typename C::value_type V;
 | |
| 			return get(types<V>(), L, relindex, tracking);
 | |
| 		}
 | |
| 
 | |
| 		template <typename V>
 | |
| 		static C get(types<V>, lua_State* L, int relindex, record& tracking) {
 | |
| 			tracking.use(1);
 | |
| #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
 | |
| 			luaL_checkstack(L, 3, detail::not_enough_stack_space_generic);
 | |
| #endif // make sure stack doesn't overflow
 | |
| 
 | |
| 			int index = lua_absindex(L, relindex);
 | |
| 			C cont;
 | |
| 			auto at = cont.cbefore_begin();
 | |
| 			std::size_t idx = 0;
 | |
| #if SOL_LUA_VESION_I_ >= 503
 | |
| 			// This method is HIGHLY performant over regular table iteration thanks to the Lua API changes in 5.3
 | |
| 			for (lua_Integer i = 0;; i += lua_size<V>::value, lua_pop(L, lua_size<V>::value)) {
 | |
| 				if (idx >= cont.max_size()) {
 | |
| 					goto done;
 | |
| 				}
 | |
| 				bool isnil = false;
 | |
| 				for (int vi = 0; vi < lua_size<V>::value; ++vi) {
 | |
| 					type t = static_cast<type>(lua_geti(L, index, i + vi));
 | |
| 					isnil = t == type::lua_nil;
 | |
| 					if (isnil) {
 | |
| 						if (i == 0) {
 | |
| 							break;
 | |
| 						}
 | |
| 						lua_pop(L, (vi + 1));
 | |
| 						goto done;
 | |
| 					}
 | |
| 				}
 | |
| 				if (isnil)
 | |
| 					continue;
 | |
| 				at = cont.insert_after(at, stack::get<V>(L, -lua_size<V>::value));
 | |
| 				++idx;
 | |
| 			}
 | |
| #else
 | |
| 			// Zzzz slower but necessary thanks to the lower version API and missing functions qq
 | |
| 			for (lua_Integer i = 0;; i += lua_size<V>::value, lua_pop(L, lua_size<V>::value)) {
 | |
| 				if (idx >= cont.max_size()) {
 | |
| 					goto done;
 | |
| 				}
 | |
| 				bool isnil = false;
 | |
| 				for (int vi = 0; vi < lua_size<V>::value; ++vi) {
 | |
| 					lua_pushinteger(L, i);
 | |
| 					lua_gettable(L, index);
 | |
| 					type t = type_of(L, -1);
 | |
| 					isnil = t == type::lua_nil;
 | |
| 					if (isnil) {
 | |
| 						if (i == 0) {
 | |
| 							break;
 | |
| 						}
 | |
| 						lua_pop(L, (vi + 1));
 | |
| 						goto done;
 | |
| 					}
 | |
| 				}
 | |
| 				if (isnil)
 | |
| 					continue;
 | |
| 				at = cont.insert_after(at, stack::get<V>(L, -lua_size<V>::value));
 | |
| 				++idx;
 | |
| 			}
 | |
| #endif
 | |
| 		done:
 | |
| 			return cont;
 | |
| 		}
 | |
| 
 | |
| 		template <typename K, typename V>
 | |
| 		static C get(types<K, V>, lua_State* L, int relindex, record& tracking) {
 | |
| 			tracking.use(1);
 | |
| 
 | |
| #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
 | |
| 			luaL_checkstack(L, 3, detail::not_enough_stack_space_generic);
 | |
| #endif // make sure stack doesn't overflow
 | |
| 
 | |
| 			C associative;
 | |
| 			auto at = associative.cbefore_begin();
 | |
| 			int index = lua_absindex(L, relindex);
 | |
| 			lua_pushnil(L);
 | |
| 			while (lua_next(L, index) != 0) {
 | |
| 				decltype(auto) key = stack::check_get<K>(L, -2);
 | |
| 				if (!key) {
 | |
| 					lua_pop(L, 1);
 | |
| 					continue;
 | |
| 				}
 | |
| 				at = associative.emplace_after(at, std::forward<decltype(*key)>(*key), stack::get<V>(L, -1));
 | |
| 				lua_pop(L, 1);
 | |
| 			}
 | |
| 			return associative;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct unqualified_getter<nested<T>> {
 | |
| 		static T get(lua_State* L, int index, record& tracking) {
 | |
| 			using Tu = meta::unqualified_t<T>;
 | |
| 			if constexpr (is_container_v<Tu>) {
 | |
| 				if constexpr (meta::is_associative<Tu>::value) {
 | |
| 					typedef typename T::value_type P;
 | |
| 					typedef typename P::first_type K;
 | |
| 					typedef typename P::second_type V;
 | |
| 					unqualified_getter<as_table_t<T>> g;
 | |
| 					// VC++ has a bad warning here: shut it up
 | |
| 					(void)g;
 | |
| 					return g.get(types<K, nested<V>>(), L, index, tracking);
 | |
| 				}
 | |
| 				else {
 | |
| 					typedef typename T::value_type V;
 | |
| 					unqualified_getter<as_table_t<T>> g;
 | |
| 					// VC++ has a bad warning here: shut it up
 | |
| 					(void)g;
 | |
| 					return g.get(types<nested<V>>(), L, index, tracking);
 | |
| 				}
 | |
| 			}
 | |
| 			else {
 | |
| 				unqualified_getter<Tu> g;
 | |
| 				// VC++ has a bad warning here: shut it up
 | |
| 				(void)g;
 | |
| 				return g.get(L, index, tracking);
 | |
| 			}
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct unqualified_getter<as_container_t<T>> {
 | |
| 		static decltype(auto) get(lua_State* L, int index, record& tracking) {
 | |
| 			return stack::unqualified_get<T>(L, index, tracking);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct unqualified_getter<as_container_t<T>*> {
 | |
| 		static decltype(auto) get(lua_State* L, int index, record& tracking) {
 | |
| 			return stack::unqualified_get<T*>(L, index, tracking);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct unqualified_getter<userdata_value> {
 | |
| 		static userdata_value get(lua_State* L, int index, record& tracking) {
 | |
| 			tracking.use(1);
 | |
| 			return userdata_value(lua_touserdata(L, index));
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct unqualified_getter<lightuserdata_value> {
 | |
| 		static lightuserdata_value get(lua_State* L, int index, record& tracking) {
 | |
| 			tracking.use(1);
 | |
| 			return lightuserdata_value(lua_touserdata(L, index));
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct unqualified_getter<light<T>> {
 | |
| 		static light<T> get(lua_State* L, int index, record& tracking) {
 | |
| 			tracking.use(1);
 | |
| 			void* memory = lua_touserdata(L, index);
 | |
| 			return light<T>(static_cast<T*>(memory));
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct unqualified_getter<user<T>> {
 | |
| 		static std::add_lvalue_reference_t<T> get(lua_State* L, int index, record& tracking) {
 | |
| 			tracking.use(1);
 | |
| 			void* memory = lua_touserdata(L, index);
 | |
| 			memory = detail::align_user<T>(memory);
 | |
| 			return *static_cast<std::remove_reference_t<T>*>(memory);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct unqualified_getter<user<T*>> {
 | |
| 		static T* get(lua_State* L, int index, record& tracking) {
 | |
| 			tracking.use(1);
 | |
| 			void* memory = lua_touserdata(L, index);
 | |
| 			memory = detail::align_user<T*>(memory);
 | |
| 			return static_cast<T*>(memory);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct unqualified_getter<type> {
 | |
| 		static type get(lua_State* L, int index, record& tracking) {
 | |
| 			tracking.use(1);
 | |
| 			return static_cast<type>(lua_type(L, index));
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct unqualified_getter<std::string> {
 | |
| 		static std::string get(lua_State* L, int index, record& tracking) {
 | |
| 			tracking.use(1);
 | |
| 			std::size_t len;
 | |
| 			auto str = lua_tolstring(L, index, &len);
 | |
| 			return std::string(str, len);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct unqualified_getter<const char*> {
 | |
| 		static const char* get(lua_State* L, int index, record& tracking) {
 | |
| 			tracking.use(1);
 | |
| 			size_t sz;
 | |
| 			return lua_tolstring(L, index, &sz);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct unqualified_getter<char> {
 | |
| 		static char get(lua_State* L, int index, record& tracking) {
 | |
| 			tracking.use(1);
 | |
| 			size_t len;
 | |
| 			auto str = lua_tolstring(L, index, &len);
 | |
| 			return len > 0 ? str[0] : '\0';
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename Traits>
 | |
| 	struct unqualified_getter<basic_string_view<char, Traits>> {
 | |
| 		static string_view get(lua_State* L, int index, record& tracking) {
 | |
| 			tracking.use(1);
 | |
| 			size_t sz;
 | |
| 			const char* str = lua_tolstring(L, index, &sz);
 | |
| 			return basic_string_view<char, Traits>(str, sz);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename Traits, typename Al>
 | |
| 	struct unqualified_getter<std::basic_string<wchar_t, Traits, Al>> {
 | |
| 		using S = std::basic_string<wchar_t, Traits, Al>;
 | |
| 		static S get(lua_State* L, int index, record& tracking) {
 | |
| 			using Ch = meta::conditional_t<sizeof(wchar_t) == 2, char16_t, char32_t>;
 | |
| 			return stack_detail::get_into<Ch, S>(L, index, tracking);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename Traits, typename Al>
 | |
| 	struct unqualified_getter<std::basic_string<char16_t, Traits, Al>> {
 | |
| 		static std::basic_string<char16_t, Traits, Al> get(lua_State* L, int index, record& tracking) {
 | |
| 			return stack_detail::get_into<char16_t, std::basic_string<char16_t, Traits, Al>>(L, index, tracking);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename Traits, typename Al>
 | |
| 	struct unqualified_getter<std::basic_string<char32_t, Traits, Al>> {
 | |
| 		static std::basic_string<char32_t, Traits, Al> get(lua_State* L, int index, record& tracking) {
 | |
| 			return stack_detail::get_into<char32_t, std::basic_string<char32_t, Traits, Al>>(L, index, tracking);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct unqualified_getter<char16_t> {
 | |
| 		static char16_t get(lua_State* L, int index, record& tracking) {
 | |
| 			string_view utf8 = stack::get<string_view>(L, index, tracking);
 | |
| 			const char* strb = utf8.data();
 | |
| 			const char* stre = utf8.data() + utf8.size();
 | |
| 			char32_t cp = 0;
 | |
| 			auto dr = unicode::utf8_to_code_point(strb, stre);
 | |
| 			if (dr.error != unicode::error_code::ok) {
 | |
| 				cp = unicode::unicode_detail::replacement;
 | |
| 			}
 | |
| 			else {
 | |
| 				cp = dr.codepoint;
 | |
| 			}
 | |
| 			auto er = unicode::code_point_to_utf16(cp);
 | |
| 			return er.code_units[0];
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct unqualified_getter<char32_t> {
 | |
| 		static char32_t get(lua_State* L, int index, record& tracking) {
 | |
| 			string_view utf8 = stack::get<string_view>(L, index, tracking);
 | |
| 			const char* strb = utf8.data();
 | |
| 			const char* stre = utf8.data() + utf8.size();
 | |
| 			char32_t cp = 0;
 | |
| 			auto dr = unicode::utf8_to_code_point(strb, stre);
 | |
| 			if (dr.error != unicode::error_code::ok) {
 | |
| 				cp = unicode::unicode_detail::replacement;
 | |
| 			}
 | |
| 			else {
 | |
| 				cp = dr.codepoint;
 | |
| 			}
 | |
| 			auto er = unicode::code_point_to_utf32(cp);
 | |
| 			return er.code_units[0];
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct unqualified_getter<wchar_t> {
 | |
| 		static wchar_t get(lua_State* L, int index, record& tracking) {
 | |
| 			typedef meta::conditional_t<sizeof(wchar_t) == 2, char16_t, char32_t> Ch;
 | |
| 			unqualified_getter<Ch> g;
 | |
| 			(void)g;
 | |
| 			auto c = g.get(L, index, tracking);
 | |
| 			return static_cast<wchar_t>(c);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct unqualified_getter<meta_function> {
 | |
| 		static meta_function get(lua_State* L, int index, record& tracking) {
 | |
| 			tracking.use(1);
 | |
| 			const char* name = unqualified_getter<const char*> {}.get(L, index, tracking);
 | |
| 			const auto& mfnames = meta_function_names();
 | |
| 			for (std::size_t i = 0; i < mfnames.size(); ++i)
 | |
| 				if (mfnames[i] == name)
 | |
| 					return static_cast<meta_function>(i);
 | |
| 			return meta_function::construct;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct unqualified_getter<lua_nil_t> {
 | |
| 		static lua_nil_t get(lua_State*, int, record& tracking) {
 | |
| 			tracking.use(1);
 | |
| 			return lua_nil;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct unqualified_getter<std::nullptr_t> {
 | |
| 		static std::nullptr_t get(lua_State*, int, record& tracking) {
 | |
| 			tracking.use(1);
 | |
| 			return nullptr;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct unqualified_getter<nullopt_t> {
 | |
| 		static nullopt_t get(lua_State*, int, record& tracking) {
 | |
| 			tracking.use(1);
 | |
| 			return nullopt;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct unqualified_getter<this_state> {
 | |
| 		static this_state get(lua_State* L, int, record& tracking) {
 | |
| 			tracking.use(0);
 | |
| 			return this_state(L);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct unqualified_getter<this_main_state> {
 | |
| 		static this_main_state get(lua_State* L, int, record& tracking) {
 | |
| 			tracking.use(0);
 | |
| 			return this_main_state(main_thread(L, L));
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct unqualified_getter<lua_CFunction> {
 | |
| 		static lua_CFunction get(lua_State* L, int index, record& tracking) {
 | |
| 			tracking.use(1);
 | |
| 			return lua_tocfunction(L, index);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct unqualified_getter<c_closure> {
 | |
| 		static c_closure get(lua_State* L, int index, record& tracking) {
 | |
| 			tracking.use(1);
 | |
| 			return c_closure(lua_tocfunction(L, index), -1);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct unqualified_getter<error> {
 | |
| 		static error get(lua_State* L, int index, record& tracking) {
 | |
| 			tracking.use(1);
 | |
| 			size_t sz = 0;
 | |
| 			const char* err = lua_tolstring(L, index, &sz);
 | |
| 			if (err == nullptr) {
 | |
| 				return error(detail::direct_error, "");
 | |
| 			}
 | |
| 			return error(detail::direct_error, std::string(err, sz));
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct unqualified_getter<void*> {
 | |
| 		static void* get(lua_State* L, int index, record& tracking) {
 | |
| 			tracking.use(1);
 | |
| 			return lua_touserdata(L, index);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct unqualified_getter<const void*> {
 | |
| 		static const void* get(lua_State* L, int index, record& tracking) {
 | |
| 			tracking.use(1);
 | |
| 			return lua_touserdata(L, index);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct unqualified_getter<detail::as_value_tag<T>> {
 | |
| 		static T* get_no_lua_nil(lua_State* L, int index, record& tracking) {
 | |
| 			void* memory = lua_touserdata(L, index);
 | |
| #if SOL_IS_ON(SOL_USE_INTEROP_I_)
 | |
| 			auto ugr = stack_detail::interop_get<T>(L, index, memory, tracking);
 | |
| 			if (ugr.first) {
 | |
| 				return ugr.second;
 | |
| 			}
 | |
| #endif // interop extensibility
 | |
| 			tracking.use(1);
 | |
| 			void* rawdata = detail::align_usertype_pointer(memory);
 | |
| 			void** pudata = static_cast<void**>(rawdata);
 | |
| 			void* udata = *pudata;
 | |
| 			return get_no_lua_nil_from(L, udata, index, tracking);
 | |
| 		}
 | |
| 
 | |
| 		static T* get_no_lua_nil_from(lua_State* L, void* udata, int index, record&) {
 | |
| 			bool has_derived = derive<T>::value || weak_derive<T>::value;
 | |
| 			if (has_derived) {
 | |
| 				if (lua_getmetatable(L, index) == 1) {
 | |
| 					lua_getfield(L, -1, &detail::base_class_cast_key()[0]);
 | |
| 					if (type_of(L, -1) != type::lua_nil) {
 | |
| 						void* basecastdata = lua_touserdata(L, -1);
 | |
| 						detail::inheritance_cast_function ic = reinterpret_cast<detail::inheritance_cast_function>(basecastdata);
 | |
| 						// use the casting function to properly adjust the pointer for the desired T
 | |
| 						udata = ic(udata, usertype_traits<T>::qualified_name());
 | |
| 					}
 | |
| 					lua_pop(L, 2);
 | |
| 				}
 | |
| 			}
 | |
| 			T* obj = static_cast<T*>(udata);
 | |
| 			return obj;
 | |
| 		}
 | |
| 
 | |
| 		static T& get(lua_State* L, int index, record& tracking) {
 | |
| 			return *get_no_lua_nil(L, index, tracking);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct unqualified_getter<detail::as_pointer_tag<T>> {
 | |
| 		static T* get(lua_State* L, int index, record& tracking) {
 | |
| 			type t = type_of(L, index);
 | |
| 			if (t == type::lua_nil) {
 | |
| 				tracking.use(1);
 | |
| 				return nullptr;
 | |
| 			}
 | |
| 			unqualified_getter<detail::as_value_tag<T>> g;
 | |
| 			// Avoid VC++ warning
 | |
| 			(void)g;
 | |
| 			return g.get_no_lua_nil(L, index, tracking);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct unqualified_getter<non_null<T*>> {
 | |
| 		static T* get(lua_State* L, int index, record& tracking) {
 | |
| 			unqualified_getter<detail::as_value_tag<T>> g;
 | |
| 			// Avoid VC++ warning
 | |
| 			(void)g;
 | |
| 			return g.get_no_lua_nil(L, index, tracking);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct unqualified_getter<T&> {
 | |
| 		static T& get(lua_State* L, int index, record& tracking) {
 | |
| 			unqualified_getter<detail::as_value_tag<T>> g;
 | |
| 			// Avoid VC++ warning
 | |
| 			(void)g;
 | |
| 			return g.get(L, index, tracking);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct unqualified_getter<std::reference_wrapper<T>> {
 | |
| 		static T& get(lua_State* L, int index, record& tracking) {
 | |
| 			unqualified_getter<T&> g;
 | |
| 			// Avoid VC++ warning
 | |
| 			(void)g;
 | |
| 			return g.get(L, index, tracking);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct unqualified_getter<T*> {
 | |
| 		static T* get(lua_State* L, int index, record& tracking) {
 | |
| #if SOL_IS_ON(SOL_GET_FUNCTION_POINTER_UNSAFE_I_)
 | |
| 			if constexpr (std::is_function_v<T>) {
 | |
| 				return stack_detail::get_function_pointer<T>(L, index, tracking);
 | |
| 			}
 | |
| 			else {
 | |
| 				unqualified_getter<detail::as_pointer_tag<T>> g;
 | |
| 				// Avoid VC++ warning
 | |
| 				(void)g;
 | |
| 				return g.get(L, index, tracking);
 | |
| 			}
 | |
| #else
 | |
| 			unqualified_getter<detail::as_pointer_tag<T>> g;
 | |
| 			// Avoid VC++ warning
 | |
| 			(void)g;
 | |
| 			return g.get(L, index, tracking);
 | |
| #endif
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename... Tn>
 | |
| 	struct unqualified_getter<std::tuple<Tn...>> {
 | |
| 		typedef std::tuple<decltype(stack::get<Tn>(nullptr, 0))...> R;
 | |
| 
 | |
| 		template <typename... Args>
 | |
| 		static R apply(std::index_sequence<>, lua_State*, int, record&, Args&&... args) {
 | |
| 			// Fuck you too, VC++
 | |
| 			return R { std::forward<Args>(args)... };
 | |
| 		}
 | |
| 
 | |
| 		template <std::size_t I, std::size_t... Ix, typename... Args>
 | |
| 		static R apply(std::index_sequence<I, Ix...>, lua_State* L, int index, record& tracking, Args&&... args) {
 | |
| 			// Fuck you too, VC++
 | |
| 			typedef std::tuple_element_t<I, std::tuple<Tn...>> T;
 | |
| 			return apply(std::index_sequence<Ix...>(), L, index, tracking, std::forward<Args>(args)..., stack::get<T>(L, index + tracking.used, tracking));
 | |
| 		}
 | |
| 
 | |
| 		static R get(lua_State* L, int index, record& tracking) {
 | |
| 			return apply(std::make_index_sequence<sizeof...(Tn)>(), L, index, tracking);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename A, typename B>
 | |
| 	struct unqualified_getter<std::pair<A, B>> {
 | |
| 		static decltype(auto) get(lua_State* L, int index, record& tracking) {
 | |
| 			return std::pair<decltype(stack::get<A>(L, index)), decltype(stack::get<B>(L, index))> { stack::get<A>(L, index, tracking),
 | |
| 				stack::get<B>(L, index + tracking.used, tracking) };
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| #if SOL_IS_ON(SOL_STD_VARIANT_I_)
 | |
| 
 | |
| 	template <typename... Tn>
 | |
| 	struct unqualified_getter<std::variant<Tn...>> {
 | |
| 		using V = std::variant<Tn...>;
 | |
| 
 | |
| 		static V get_one(std::integral_constant<std::size_t, std::variant_size_v<V>>, lua_State* L, int index, record& tracking) {
 | |
| 			(void)L;
 | |
| 			(void)index;
 | |
| 			(void)tracking;
 | |
| 			if constexpr (std::variant_size_v<V> == 0) {
 | |
| 				return V();
 | |
| 			}
 | |
| 			else {
 | |
| 				// using T = std::variant_alternative_t<0, V>;
 | |
| 				std::abort();
 | |
| 				// return V(std::in_place_index<0>, stack::get<T>(L, index, tracking));
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		template <std::size_t I>
 | |
| 		static V get_one(std::integral_constant<std::size_t, I>, lua_State* L, int index, record& tracking) {
 | |
| 			typedef std::variant_alternative_t<I, V> T;
 | |
| 			record temp_tracking = tracking;
 | |
| 			if (stack::check<T>(L, index, no_panic, temp_tracking)) {
 | |
| 				tracking = temp_tracking;
 | |
| 				return V(std::in_place_index<I>, stack::get<T>(L, index));
 | |
| 			}
 | |
| 			return get_one(std::integral_constant<std::size_t, I + 1>(), L, index, tracking);
 | |
| 		}
 | |
| 
 | |
| 		static V get(lua_State* L, int index, record& tracking) {
 | |
| 			return get_one(std::integral_constant<std::size_t, 0>(), L, index, tracking);
 | |
| 		}
 | |
| 	};
 | |
| #endif // variant
 | |
| 
 | |
| }} // namespace sol::stack
 | |
| 
 | |
| // end of sol/stack_get_unqualified.hpp
 | |
| 
 | |
| // beginning of sol/stack_get_qualified.hpp
 | |
| 
 | |
| namespace sol {
 | |
| namespace stack {
 | |
| 
 | |
| 	// There are no more enable_ifs that can be used here,
 | |
| 	// so this is just for posterity, I guess?
 | |
| 	// maybe I'll fill this file in later.
 | |
| 
 | |
| }
 | |
| } // namespace sol::stack
 | |
| 
 | |
| // end of sol/stack_get_qualified.hpp
 | |
| 
 | |
| // end of sol/stack_get.hpp
 | |
| 
 | |
| // beginning of sol/stack_check_get.hpp
 | |
| 
 | |
| // beginning of sol/stack_check_get_unqualified.hpp
 | |
| 
 | |
| #include <cstdlib>
 | |
| #include <cmath>
 | |
| #include <optional>
 | |
| #if SOL_IS_ON(SOL_STD_VARIANT_I_)
 | |
| #include <variant>
 | |
| #endif // variant shenanigans (thanks, Mac OSX)
 | |
| 
 | |
| namespace sol { namespace stack {
 | |
| 	template <typename T, typename>
 | |
| 	struct unqualified_check_getter {
 | |
| 		typedef decltype(stack_detail::unchecked_unqualified_get<T>(nullptr, -1, std::declval<record&>())) R;
 | |
| 
 | |
| 		template <typename Optional, typename Handler>
 | |
| 		static Optional get_using(lua_State* L, int index, Handler&& handler, record& tracking) {
 | |
| 			if constexpr (!meta::meta_detail::is_adl_sol_lua_check_v<T> && !meta::meta_detail::is_adl_sol_lua_get_v<T>) {
 | |
| 				if constexpr (is_lua_reference_v<T>) {
 | |
| 					// actually check if it's none here, otherwise
 | |
| 					// we'll have a none object inside an optional!
 | |
| 					bool success = lua_isnoneornil(L, index) == 0 && stack::check<T>(L, index, no_panic);
 | |
| 					if (!success) {
 | |
| 						// expected type, actual type
 | |
| 						tracking.use(static_cast<int>(success));
 | |
| 						handler(L, index, type::poly, type_of(L, index), "");
 | |
| 						return detail::associated_nullopt_v<Optional>;
 | |
| 					}
 | |
| 					return stack_detail::unchecked_get<T>(L, index, tracking);
 | |
| 				}
 | |
| 				else if constexpr ((std::is_integral_v<T> || std::is_same_v<T, lua_Integer>)&&!std::is_same_v<T, bool>) {
 | |
| #if SOL_LUA_VESION_I_ >= 503
 | |
| 					if (lua_isinteger(L, index) != 0) {
 | |
| 						tracking.use(1);
 | |
| 						return static_cast<T>(lua_tointeger(L, index));
 | |
| 					}
 | |
| #endif
 | |
| 					int isnum = 0;
 | |
| 					const lua_Number value = lua_tonumberx(L, index, &isnum);
 | |
| 					if (isnum != 0) {
 | |
| #if SOL_IS_ON(SOL_NUMBER_PRECISION_CHECKS_I_)
 | |
| 						const auto integer_value = llround(value);
 | |
| 						if (static_cast<lua_Number>(integer_value) == value) {
 | |
| 							tracking.use(1);
 | |
| 							return static_cast<T>(integer_value);
 | |
| 						}
 | |
| #else
 | |
| 						tracking.use(1);
 | |
| 						return static_cast<T>(value);
 | |
| #endif
 | |
| 					}
 | |
| 					const type t = type_of(L, index);
 | |
| 					tracking.use(static_cast<int>(t != type::none));
 | |
| 					handler(L, index, type::number, t, "not an integer");
 | |
| 					return detail::associated_nullopt_v<Optional>;
 | |
| 				}
 | |
| 				else if constexpr (std::is_floating_point_v<T> || std::is_same_v<T, lua_Number>) {
 | |
| 					int isnum = 0;
 | |
| 					lua_Number value = lua_tonumberx(L, index, &isnum);
 | |
| 					if (isnum == 0) {
 | |
| 						type t = type_of(L, index);
 | |
| 						tracking.use(static_cast<int>(t != type::none));
 | |
| 						handler(L, index, type::number, t, "not a valid floating point number");
 | |
| 						return detail::associated_nullopt_v<Optional>;
 | |
| 					}
 | |
| 					tracking.use(1);
 | |
| 					return static_cast<T>(value);
 | |
| 				}
 | |
| 				else if constexpr (std::is_enum_v<T> && !meta::any_same_v<T, meta_function, type>) {
 | |
| 					int isnum = 0;
 | |
| 					lua_Integer value = lua_tointegerx(L, index, &isnum);
 | |
| 					if (isnum == 0) {
 | |
| 						type t = type_of(L, index);
 | |
| 						tracking.use(static_cast<int>(t != type::none));
 | |
| 						handler(L, index, type::number, t, "not a valid enumeration value");
 | |
| 						return detail::associated_nullopt_v<Optional>;
 | |
| 					}
 | |
| 					tracking.use(1);
 | |
| 					return static_cast<T>(value);
 | |
| 				}
 | |
| 				else {
 | |
| 					if (!unqualified_check<T>(L, index, std::forward<Handler>(handler))) {
 | |
| 						tracking.use(static_cast<int>(!lua_isnone(L, index)));
 | |
| 						return detail::associated_nullopt_v<Optional>;
 | |
| 					}
 | |
| 					return stack_detail::unchecked_unqualified_get<T>(L, index, tracking);
 | |
| 				}
 | |
| 			}
 | |
| 			else {
 | |
| 				if (!unqualified_check<T>(L, index, std::forward<Handler>(handler))) {
 | |
| 					tracking.use(static_cast<int>(!lua_isnone(L, index)));
 | |
| 					return detail::associated_nullopt_v<Optional>;
 | |
| 				}
 | |
| 				return stack_detail::unchecked_unqualified_get<T>(L, index, tracking);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		template <typename Handler>
 | |
| 		static optional<R> get(lua_State* L, int index, Handler&& handler, record& tracking) {
 | |
| 			return get_using<optional<R>>(L, index, std::forward<Handler>(handler), tracking);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| #if SOL_IS_ON(SOL_STD_VARIANT_I_)
 | |
| 	template <typename... Tn, typename C>
 | |
| 	struct unqualified_check_getter<std::variant<Tn...>, C> {
 | |
| 		typedef std::variant<Tn...> V;
 | |
| 		typedef std::variant_size<V> V_size;
 | |
| 		typedef std::integral_constant<bool, V_size::value == 0> V_is_empty;
 | |
| 
 | |
| 		template <typename Handler>
 | |
| 		static optional<V> get_empty(std::true_type, lua_State*, int, Handler&&, record&) {
 | |
| 			return nullopt;
 | |
| 		}
 | |
| 
 | |
| 		template <typename Handler>
 | |
| 		static optional<V> get_empty(std::false_type, lua_State* L, int index, Handler&& handler, record&) {
 | |
| 			// This should never be reached...
 | |
| 			// please check your code and understand what you did to bring yourself here
 | |
| 			// maybe file a bug report, or 5
 | |
| 			handler(
 | |
| 				L, index, type::poly, type_of(L, index), "this variant code should never be reached: if it has, you have done something so terribly wrong");
 | |
| 			return nullopt;
 | |
| 		}
 | |
| 
 | |
| 		template <typename Handler>
 | |
| 		static optional<V> get_one(std::integral_constant<std::size_t, 0>, lua_State* L, int index, Handler&& handler, record& tracking) {
 | |
| 			return get_empty(V_is_empty(), L, index, std::forward<Handler>(handler), tracking);
 | |
| 		}
 | |
| 
 | |
| 		template <std::size_t I, typename Handler>
 | |
| 		static optional<V> get_one(std::integral_constant<std::size_t, I>, lua_State* L, int index, Handler&& handler, record& tracking) {
 | |
| 			typedef std::variant_alternative_t<I - 1, V> T;
 | |
| 			if (stack::check<T>(L, index, no_panic, tracking)) {
 | |
| 				return V(std::in_place_index<I - 1>, stack::get<T>(L, index));
 | |
| 			}
 | |
| 			return get_one(std::integral_constant<std::size_t, I - 1>(), L, index, std::forward<Handler>(handler), tracking);
 | |
| 		}
 | |
| 
 | |
| 		template <typename Handler>
 | |
| 		static optional<V> get(lua_State* L, int index, Handler&& handler, record& tracking) {
 | |
| 			return get_one(std::integral_constant<std::size_t, V_size::value>(), L, index, std::forward<Handler>(handler), tracking);
 | |
| 		}
 | |
| 	};
 | |
| #endif // standard variant
 | |
| }}     // namespace sol::stack
 | |
| 
 | |
| // end of sol/stack_check_get_unqualified.hpp
 | |
| 
 | |
| // beginning of sol/stack_check_get_qualified.hpp
 | |
| 
 | |
| namespace sol { namespace stack {
 | |
| 	template <typename T, typename C>
 | |
| 	struct qualified_check_getter {
 | |
| 		typedef decltype(stack_detail::unchecked_get<T>(nullptr, -1, std::declval<record&>())) R;
 | |
| 
 | |
| 		template <typename Handler>
 | |
| 		static optional<R> get(lua_State* L, int index, Handler&& handler, record& tracking) {
 | |
| 			if constexpr (is_lua_reference_v<T>) {
 | |
| 				// actually check if it's none here, otherwise
 | |
| 				// we'll have a none object inside an optional!
 | |
| 				bool success = lua_isnoneornil(L, index) == 0 && stack::check<T>(L, index, no_panic);
 | |
| 				if (!success) {
 | |
| 					// expected type, actual type
 | |
| 					tracking.use(static_cast<int>(success));
 | |
| 					handler(L, index, type::poly, type_of(L, index), "");
 | |
| 					return nullopt;
 | |
| 				}
 | |
| 				return stack_detail::unchecked_get<T>(L, index, tracking);
 | |
| 			}
 | |
| 			else {
 | |
| 				if (!check<T>(L, index, std::forward<Handler>(handler))) {
 | |
| 					tracking.use(static_cast<int>(!lua_isnone(L, index)));
 | |
| 					return nullopt;
 | |
| 				}
 | |
| 				return stack_detail::unchecked_get<T>(L, index, tracking);
 | |
| 			}
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct qualified_getter<T, std::enable_if_t<meta::is_optional_v<T>>> {
 | |
| 		static T get(lua_State* L, int index, record& tracking) {
 | |
| 			using ValueType = typename meta::unqualified_t<T>::value_type;
 | |
| 			if constexpr (is_lua_reference_v<ValueType>) {
 | |
| 				// actually check if it's none here, otherwise
 | |
| 				// we'll have a none object inside an optional!
 | |
| 				bool success = lua_isnoneornil(L, index) == 0 && stack::check<ValueType>(L, index, no_panic);
 | |
| 				if (!success) {
 | |
| 					// expected type, actual type
 | |
| 					tracking.use(static_cast<int>(success));
 | |
| 					return {};
 | |
| 				}
 | |
| 				return stack_detail::unchecked_get<ValueType>(L, index, tracking);
 | |
| 			}
 | |
| 			else {
 | |
| 				if (!check<ValueType>(L, index, &no_panic)) {
 | |
| 					tracking.use(static_cast<int>(!lua_isnone(L, index)));
 | |
| 					return {};
 | |
| 				}
 | |
| 				return stack_detail::unchecked_get<ValueType>(L, index, tracking);
 | |
| 			}
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| }} // namespace sol::stack
 | |
| 
 | |
| // end of sol/stack_check_get_qualified.hpp
 | |
| 
 | |
| // end of sol/stack_check_get.hpp
 | |
| 
 | |
| // beginning of sol/stack_push.hpp
 | |
| 
 | |
| #include <memory>
 | |
| #include <type_traits>
 | |
| #include <cassert>
 | |
| #include <limits>
 | |
| #include <cmath>
 | |
| #include <string_view>
 | |
| #if SOL_IS_ON(SOL_STD_VARIANT_I_)
 | |
| #include <variant>
 | |
| #endif // Can use variant
 | |
| 
 | |
| namespace sol { namespace stack {
 | |
| 	namespace stack_detail {
 | |
| 		template <typename T>
 | |
| 		inline bool integer_value_fits(const T& value) {
 | |
| 			if constexpr (sizeof(T) < sizeof(lua_Integer) || (std::is_signed_v<T> && sizeof(T) == sizeof(lua_Integer))) {
 | |
| 				(void)value;
 | |
| 				return true;
 | |
| 			}
 | |
| 			else {
 | |
| 				auto u_min = static_cast<std::intmax_t>((std::numeric_limits<lua_Integer>::min)());
 | |
| 				auto u_max = static_cast<std::uintmax_t>((std::numeric_limits<lua_Integer>::max)());
 | |
| 				auto t_min = static_cast<std::intmax_t>((std::numeric_limits<T>::min)());
 | |
| 				auto t_max = static_cast<std::uintmax_t>((std::numeric_limits<T>::max)());
 | |
| 				return (u_min <= t_min || value >= static_cast<T>(u_min)) && (u_max >= t_max || value <= static_cast<T>(u_max));
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		int msvc_is_ass_with_if_constexpr_push_enum(std::true_type, lua_State* L, const T& value) {
 | |
| 			if constexpr (meta::any_same_v<std::underlying_type_t<T>, char /*, char8_t*/, char16_t, char32_t>) {
 | |
| 				if constexpr (std::is_signed_v<T>) {
 | |
| 					return stack::push(L, static_cast<std::int_least32_t>(value));
 | |
| 				}
 | |
| 				else {
 | |
| 					return stack::push(L, static_cast<std::uint_least32_t>(value));
 | |
| 				}
 | |
| 			}
 | |
| 			else {
 | |
| 				return stack::push(L, static_cast<std::underlying_type_t<T>>(value));
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		int msvc_is_ass_with_if_constexpr_push_enum(std::false_type, lua_State*, const T&) {
 | |
| 			return 0;
 | |
| 		}
 | |
| 	} // namespace stack_detail
 | |
| 
 | |
| 	inline int push_environment_of(lua_State* L, int index = -1) {
 | |
| #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
 | |
| 		luaL_checkstack(L, 1, detail::not_enough_stack_space_environment);
 | |
| #endif // make sure stack doesn't overflow
 | |
| #if SOL_LUA_VESION_I_ < 502
 | |
| 		// Use lua_getfenv
 | |
| 		lua_getfenv(L, index);
 | |
| #else
 | |
| 		// Use upvalues as explained in Lua 5.2 and beyond's manual
 | |
| 		if (lua_getupvalue(L, index, 1) == nullptr) {
 | |
| 			push(L, lua_nil);
 | |
| 			return 1;
 | |
| 		}
 | |
| #endif
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	template <typename T>
 | |
| 	int push_environment_of(const T& target) {
 | |
| 		target.push();
 | |
| 		return push_environment_of(target.lua_state(), -1) + 1;
 | |
| 	}
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct unqualified_pusher<detail::as_value_tag<T>> {
 | |
| 		template <typename F, typename... Args>
 | |
| 		static int push_fx(lua_State* L, F&& f, Args&&... args) {
 | |
| #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
 | |
| 			luaL_checkstack(L, 1, detail::not_enough_stack_space_userdata);
 | |
| #endif // make sure stack doesn't overflow
 | |
|        // Basically, we store all user-data like this:
 | |
|        // If it's a movable/copyable value (no std::ref(x)), then we store the pointer to the new
 | |
|        // data in the first sizeof(T*) bytes, and then however many bytes it takes to
 | |
|        // do the actual object. Things that are std::ref or plain T* are stored as
 | |
|        // just the sizeof(T*), and nothing else.
 | |
| 			T* obj = detail::usertype_allocate<T>(L);
 | |
| 			f();
 | |
| 			std::allocator<T> alloc {};
 | |
| 			std::allocator_traits<std::allocator<T>>::construct(alloc, obj, std::forward<Args>(args)...);
 | |
| 			return 1;
 | |
| 		}
 | |
| 
 | |
| 		template <typename K, typename... Args>
 | |
| 		static int push_keyed(lua_State* L, K&& k, Args&&... args) {
 | |
| 			stack_detail::undefined_metatable fx(L, &k[0], &stack::stack_detail::set_undefined_methods_on<T>);
 | |
| 			return push_fx(L, fx, std::forward<Args>(args)...);
 | |
| 		}
 | |
| 
 | |
| 		template <typename Arg, typename... Args>
 | |
| 		static int push(lua_State* L, Arg&& arg, Args&&... args) {
 | |
| 			if constexpr (std::is_same_v<meta::unqualified_t<Arg>, detail::with_function_tag>) {
 | |
| 				(void)arg;
 | |
| 				return push_fx(L, std::forward<Args>(args)...);
 | |
| 			}
 | |
| 			else {
 | |
| 				return push_keyed(L, usertype_traits<T>::metatable(), std::forward<Arg>(arg), std::forward<Args>(args)...);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		static int push(lua_State* L) {
 | |
| 			return push_keyed(L, usertype_traits<T>::metatable());
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct unqualified_pusher<detail::as_pointer_tag<T>> {
 | |
| 		typedef meta::unqualified_t<T> U;
 | |
| 
 | |
| 		template <typename F>
 | |
| 		static int push_fx(lua_State* L, F&& f, T* obj) {
 | |
| 			if (obj == nullptr)
 | |
| 				return stack::push(L, lua_nil);
 | |
| #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
 | |
| 			luaL_checkstack(L, 1, detail::not_enough_stack_space_userdata);
 | |
| #endif // make sure stack doesn't overflow
 | |
| 			T** pref = detail::usertype_allocate_pointer<T>(L);
 | |
| 			f();
 | |
| 			*pref = obj;
 | |
| 			return 1;
 | |
| 		}
 | |
| 
 | |
| 		template <typename K>
 | |
| 		static int push_keyed(lua_State* L, K&& k, T* obj) {
 | |
| 			stack_detail::undefined_metatable fx(L, &k[0], &stack::stack_detail::set_undefined_methods_on<U*>);
 | |
| 			return push_fx(L, fx, obj);
 | |
| 		}
 | |
| 
 | |
| 		template <typename Arg, typename... Args>
 | |
| 		static int push(lua_State* L, Arg&& arg, Args&&... args) {
 | |
| 			if constexpr (std::is_same_v<meta::unqualified_t<Arg>, detail::with_function_tag>) {
 | |
| 				(void)arg;
 | |
| 				return push_fx(L, std::forward<Args>(args)...);
 | |
| 			}
 | |
| 			else {
 | |
| 				return push_keyed(L, usertype_traits<U*>::metatable(), std::forward<Arg>(arg), std::forward<Args>(args)...);
 | |
| 			}
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct unqualified_pusher<detail::as_reference_tag> {
 | |
| 		template <typename T>
 | |
| 		static int push(lua_State* L, T&& obj) {
 | |
| 			return stack::push(L, detail::ptr(obj));
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	namespace stack_detail {
 | |
| 		template <typename T>
 | |
| 		struct uu_pusher {
 | |
| 			using u_traits = unique_usertype_traits<T>;
 | |
| 			using P = typename u_traits::type;
 | |
| 			using Real = typename u_traits::actual_type;
 | |
| 
 | |
| 			template <typename Arg, typename... Args>
 | |
| 			static int push(lua_State* L, Arg&& arg, Args&&... args) {
 | |
| 				if constexpr (std::is_base_of_v<Real, meta::unqualified_t<Arg>>) {
 | |
| 					if (u_traits::is_null(arg)) {
 | |
| 						return stack::push(L, lua_nil);
 | |
| 					}
 | |
| 					return push_deep(L, std::forward<Arg>(arg), std::forward<Args>(args)...);
 | |
| 				}
 | |
| 				else {
 | |
| 					return push_deep(L, std::forward<Arg>(arg), std::forward<Args>(args)...);
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			template <typename... Args>
 | |
| 			static int push_deep(lua_State* L, Args&&... args) {
 | |
| #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
 | |
| 				luaL_checkstack(L, 1, detail::not_enough_stack_space_userdata);
 | |
| #endif // make sure stack doesn't overflow
 | |
| 				P** pref = nullptr;
 | |
| 				detail::unique_destructor* fx = nullptr;
 | |
| 				detail::unique_tag* id = nullptr;
 | |
| 				Real* mem = detail::usertype_unique_allocate<P, Real>(L, pref, fx, id);
 | |
| 				if (luaL_newmetatable(L, &usertype_traits<detail::unique_usertype<std::remove_cv_t<P>>>::metatable()[0]) == 1) {
 | |
| 					detail::lua_reg_table l {};
 | |
| 					int index = 0;
 | |
| 					detail::indexed_insert insert_fx(l, index);
 | |
| 					detail::insert_default_registrations<P>(insert_fx, detail::property_always_true);
 | |
| 					l[index] = { to_string(meta_function::garbage_collect).c_str(), detail::make_destructor<T>() };
 | |
| 					luaL_setfuncs(L, l, 0);
 | |
| 				}
 | |
| 				lua_setmetatable(L, -2);
 | |
| 				*fx = detail::usertype_unique_alloc_destroy<P, Real>;
 | |
| 				*id = &detail::inheritance<P>::template type_unique_cast<Real>;
 | |
| 				detail::default_construct::construct(mem, std::forward<Args>(args)...);
 | |
| 				*pref = unique_usertype_traits<T>::get(*mem);
 | |
| 				return 1;
 | |
| 			}
 | |
| 		};
 | |
| 	} // namespace stack_detail
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct unqualified_pusher<detail::as_unique_tag<T>> {
 | |
| 		template <typename... Args>
 | |
| 		static int push(lua_State* L, Args&&... args) {
 | |
| 			stack_detail::uu_pusher<T> p;
 | |
| 			(void)p;
 | |
| 			return p.push(L, std::forward<Args>(args)...);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T, typename>
 | |
| 	struct unqualified_pusher {
 | |
| 		template <typename... Args>
 | |
| 		static int push(lua_State* L, Args&&... args) {
 | |
| 			using Tu = meta::unqualified_t<T>;
 | |
| 			if constexpr (is_lua_reference_v<Tu>) {
 | |
| 				using int_arr = int[];
 | |
| 				int_arr p { (std::forward<Args>(args).push(L))... };
 | |
| 				return p[0];
 | |
| 			}
 | |
| 			else if constexpr (std::is_same_v<Tu, bool>) {
 | |
| #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
 | |
| 				luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
 | |
| #endif // make sure stack doesn't overflow
 | |
| 				lua_pushboolean(L, std::forward<Args>(args)...);
 | |
| 				return 1;
 | |
| 			}
 | |
| 			else if constexpr (std::is_integral_v<Tu> || std::is_same_v<Tu, lua_Integer>) {
 | |
| 				const Tu& value(std::forward<Args>(args)...);
 | |
| #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
 | |
| 				luaL_checkstack(L, 1, detail::not_enough_stack_space_integral);
 | |
| #endif // make sure stack doesn't overflow
 | |
| #if SOL_LUA_VESION_I_ >= 503
 | |
| 				if (stack_detail::integer_value_fits<Tu>(value)) {
 | |
| 					lua_pushinteger(L, static_cast<lua_Integer>(value));
 | |
| 					return 1;
 | |
| 				}
 | |
| #endif // Lua 5.3 and above
 | |
| #if SOL_IS_ON(SOL_NUMBER_PRECISION_CHECKS_I_)
 | |
| 				if (static_cast<T>(llround(static_cast<lua_Number>(value))) != value) {
 | |
| #if SOL_IS_OFF(SOL_EXCEPTIONS_I_)
 | |
| 					// Is this really worth it?
 | |
| 					assert(false && "integer value will be misrepresented in lua");
 | |
| 					lua_pushinteger(L, static_cast<lua_Integer>(value));
 | |
| 					return 1;
 | |
| #else
 | |
| 					throw error(detail::direct_error, "integer value will be misrepresented in lua");
 | |
| #endif // No Exceptions
 | |
| 				}
 | |
| #endif // Safe Numerics and Number Precision Check
 | |
| 				lua_pushnumber(L, static_cast<lua_Number>(value));
 | |
| 				return 1;
 | |
| 			}
 | |
| 			else if constexpr (std::is_floating_point_v<Tu> || std::is_same_v<Tu, lua_Number>) {
 | |
| #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
 | |
| 				luaL_checkstack(L, 1, detail::not_enough_stack_space_floating);
 | |
| #endif // make sure stack doesn't overflow
 | |
| 				lua_pushnumber(L, std::forward<Args>(args)...);
 | |
| 				return 1;
 | |
| 			}
 | |
| 			else if constexpr (std::is_same_v<Tu, luaL_Stream*>) {
 | |
| 				luaL_Stream* source { std::forward<Args>(args)... };
 | |
| 				luaL_Stream* stream = static_cast<luaL_Stream*>(lua_newuserdata(L, sizeof(luaL_Stream)));
 | |
| 				stream->f = source->f;
 | |
| #if SOL_IS_ON(SOL_LUAL_STREAM_USE_CLOSE_FUNCTION_I_)
 | |
| 				stream->closef = source->closef;
 | |
| #endif // LuaJIT and Lua 5.1 and below do not have
 | |
| 				return 1;
 | |
| 			}
 | |
| 			else if constexpr (std::is_same_v<Tu, luaL_Stream>) {
 | |
| 				luaL_Stream& source(std::forward<Args>(args)...);
 | |
| 				luaL_Stream* stream = static_cast<luaL_Stream*>(lua_newuserdata(L, sizeof(luaL_Stream)));
 | |
| 				stream->f = source.f;
 | |
| #if SOL_IS_ON(SOL_LUAL_STREAM_USE_CLOSE_FUNCTION_I_)
 | |
| 				stream->closef = source.closef;
 | |
| #endif // LuaJIT and Lua 5.1 and below do not have
 | |
| 				return 1;
 | |
| 			}
 | |
| 			else if constexpr (std::is_enum_v<Tu>) {
 | |
| 				return stack_detail::msvc_is_ass_with_if_constexpr_push_enum(std::true_type(), L, std::forward<Args>(args)...);
 | |
| 			}
 | |
| 			else if constexpr (std::is_pointer_v<Tu>) {
 | |
| 				return stack::push<detail::as_pointer_tag<std::remove_pointer_t<T>>>(L, std::forward<Args>(args)...);
 | |
| 			}
 | |
| 			else if constexpr (is_unique_usertype_v<Tu>) {
 | |
| 				return stack::push<detail::as_unique_tag<T>>(L, std::forward<Args>(args)...);
 | |
| 			}
 | |
| 			else {
 | |
| 				return stack::push<detail::as_value_tag<T>>(L, std::forward<Args>(args)...);
 | |
| 			}
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct unqualified_pusher<std::reference_wrapper<T>> {
 | |
| 		static int push(lua_State* L, const std::reference_wrapper<T>& t) {
 | |
| 			return stack::push(L, std::addressof(detail::deref(t.get())));
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct unqualified_pusher<detail::as_table_tag<T>> {
 | |
| 		using has_kvp = meta::has_key_value_pair<meta::unqualified_t<std::remove_pointer_t<T>>>;
 | |
| 
 | |
| 		static int push(lua_State* L, const T& tablecont) {
 | |
| 			return push(has_kvp(), std::false_type(), L, tablecont);
 | |
| 		}
 | |
| 
 | |
| 		static int push(lua_State* L, const T& tablecont, nested_tag_t) {
 | |
| 			return push(has_kvp(), std::true_type(), L, tablecont);
 | |
| 		}
 | |
| 
 | |
| 		static int push(std::true_type, lua_State* L, const T& tablecont) {
 | |
| 			return push(has_kvp(), std::true_type(), L, tablecont);
 | |
| 		}
 | |
| 
 | |
| 		static int push(std::false_type, lua_State* L, const T& tablecont) {
 | |
| 			return push(has_kvp(), std::false_type(), L, tablecont);
 | |
| 		}
 | |
| 
 | |
| 		template <bool is_nested>
 | |
| 		static int push(std::true_type, std::integral_constant<bool, is_nested>, lua_State* L, const T& tablecont) {
 | |
| 			auto& cont = detail::deref(detail::unwrap(tablecont));
 | |
| 			lua_createtable(L, static_cast<int>(cont.size()), 0);
 | |
| 			int tableindex = lua_gettop(L);
 | |
| 			for (const auto& pair : cont) {
 | |
| 				if (is_nested) {
 | |
| 					set_field(L, pair.first, as_nested_ref(pair.second), tableindex);
 | |
| 				}
 | |
| 				else {
 | |
| 					set_field(L, pair.first, pair.second, tableindex);
 | |
| 				}
 | |
| 			}
 | |
| 			return 1;
 | |
| 		}
 | |
| 
 | |
| 		template <bool is_nested>
 | |
| 		static int push(std::false_type, std::integral_constant<bool, is_nested>, lua_State* L, const T& tablecont) {
 | |
| 			auto& cont = detail::deref(detail::unwrap(tablecont));
 | |
| 			lua_createtable(L, stack_detail::get_size_hint(cont), 0);
 | |
| 			int tableindex = lua_gettop(L);
 | |
| 			std::size_t index = 1;
 | |
| 			for (const auto& i : cont) {
 | |
| #if SOL_LUA_VESION_I_ >= 503
 | |
| 				int p = is_nested ? stack::push(L, as_nested_ref(i)) : stack::push(L, i);
 | |
| 				for (int pi = 0; pi < p; ++pi) {
 | |
| 					lua_seti(L, tableindex, static_cast<lua_Integer>(index++));
 | |
| 				}
 | |
| #else
 | |
| #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
 | |
| 				luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
 | |
| #endif // make sure stack doesn't overflow
 | |
| 				lua_pushinteger(L, static_cast<lua_Integer>(index));
 | |
| 				int p = is_nested ? stack::push(L, as_nested_ref(i)) : stack::push(L, i);
 | |
| 				if (p == 1) {
 | |
| 					++index;
 | |
| 					lua_settable(L, tableindex);
 | |
| 				}
 | |
| 				else {
 | |
| 					int firstindex = tableindex + 1 + 1;
 | |
| 					for (int pi = 0; pi < p; ++pi) {
 | |
| 						stack::push(L, index);
 | |
| #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
 | |
| 						luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
 | |
| #endif // make sure stack doesn't overflow
 | |
| 						lua_pushvalue(L, firstindex);
 | |
| 						lua_settable(L, tableindex);
 | |
| 						++index;
 | |
| 						++firstindex;
 | |
| 					}
 | |
| 					lua_pop(L, 1 + p);
 | |
| 				}
 | |
| #endif // Lua Version 5.3 and others
 | |
| 			}
 | |
| 			// TODO: figure out a better way to do this...?
 | |
| 			// set_field(L, -1, cont.size());
 | |
| 			return 1;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct unqualified_pusher<as_table_t<T>> {
 | |
| 		static int push(lua_State* L, const T& v) {
 | |
| 			using inner_t = std::remove_pointer_t<meta::unwrap_unqualified_t<T>>;
 | |
| 			if constexpr (is_container_v<inner_t>) {
 | |
| 				return stack::push<detail::as_table_tag<T>>(L, v);
 | |
| 			}
 | |
| 			else {
 | |
| 				return stack::push(L, v);
 | |
| 			}
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct unqualified_pusher<nested<T>> {
 | |
| 		static int push(lua_State* L, const T& tablecont) {
 | |
| 			using Tu = meta::unwrap_unqualified_t<T>;
 | |
| 			using inner_t = std::remove_pointer_t<Tu>;
 | |
| 			if constexpr (is_container_v<inner_t>) {
 | |
| 				return stack::push<detail::as_table_tag<T>>(L, tablecont, nested_tag);
 | |
| 			}
 | |
| 			else {
 | |
| 				return stack::push<Tu>(L, tablecont);
 | |
| 			}
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct unqualified_pusher<std::initializer_list<T>> {
 | |
| 		static int push(lua_State* L, const std::initializer_list<T>& il) {
 | |
| 			unqualified_pusher<detail::as_table_tag<std::initializer_list<T>>> p {};
 | |
| 			// silence annoying VC++ warning
 | |
| 			(void)p;
 | |
| 			return p.push(L, il);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct unqualified_pusher<lua_nil_t> {
 | |
| 		static int push(lua_State* L, lua_nil_t) {
 | |
| #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
 | |
| 			luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
 | |
| #endif // make sure stack doesn't overflow
 | |
| 			lua_pushnil(L);
 | |
| 			return 1;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct unqualified_pusher<stack_count> {
 | |
| 		static int push(lua_State*, stack_count st) {
 | |
| 			return st.count;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct unqualified_pusher<metatable_key_t> {
 | |
| 		static int push(lua_State* L, metatable_key_t) {
 | |
| #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
 | |
| 			luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
 | |
| #endif // make sure stack doesn't overflow
 | |
| 			lua_pushlstring(L, to_string(meta_function::metatable).c_str(), 4);
 | |
| 			return 1;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct unqualified_pusher<std::remove_pointer_t<lua_CFunction>> {
 | |
| 		static int push(lua_State* L, lua_CFunction func, int n = 0) {
 | |
| #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
 | |
| 			luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
 | |
| #endif // make sure stack doesn't overflow
 | |
| 			lua_pushcclosure(L, func, n);
 | |
| 			return 1;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct unqualified_pusher<lua_CFunction> {
 | |
| 		static int push(lua_State* L, lua_CFunction func, int n = 0) {
 | |
| #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
 | |
| 			luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
 | |
| #endif // make sure stack doesn't overflow
 | |
| 			lua_pushcclosure(L, func, n);
 | |
| 			return 1;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| #if SOL_IS_ON(SOL_USE_NOEXCEPT_FUNCTION_TYPE_I_)
 | |
| 	template <>
 | |
| 	struct unqualified_pusher<std::remove_pointer_t<detail::lua_CFunction_noexcept>> {
 | |
| 		static int push(lua_State* L, detail::lua_CFunction_noexcept func, int n = 0) {
 | |
| #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
 | |
| 			luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
 | |
| #endif // make sure stack doesn't overflow
 | |
| 			lua_pushcclosure(L, func, n);
 | |
| 			return 1;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct unqualified_pusher<detail::lua_CFunction_noexcept> {
 | |
| 		static int push(lua_State* L, detail::lua_CFunction_noexcept func, int n = 0) {
 | |
| #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
 | |
| 			luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
 | |
| #endif // make sure stack doesn't overflow
 | |
| 			lua_pushcclosure(L, func, n);
 | |
| 			return 1;
 | |
| 		}
 | |
| 	};
 | |
| #endif // noexcept function type
 | |
| 
 | |
| 	template <>
 | |
| 	struct unqualified_pusher<c_closure> {
 | |
| 		static int push(lua_State* L, c_closure cc) {
 | |
| #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
 | |
| 			luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
 | |
| #endif // make sure stack doesn't overflow
 | |
| 			lua_pushcclosure(L, cc.c_function, cc.upvalues);
 | |
| 			return 1;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename Arg, typename... Args>
 | |
| 	struct unqualified_pusher<closure<Arg, Args...>> {
 | |
| 		template <std::size_t... I, typename T>
 | |
| 		static int push(std::index_sequence<I...>, lua_State* L, T&& c) {
 | |
| 			using f_tuple = decltype(std::forward<T>(c).upvalues);
 | |
| 			int pushcount = multi_push(L, std::get<I>(std::forward<f_tuple>(std::forward<T>(c).upvalues))...);
 | |
| 			return stack::push(L, c_closure(c.c_function, pushcount));
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		static int push(lua_State* L, T&& c) {
 | |
| 			return push(std::make_index_sequence<1 + sizeof...(Args)>(), L, std::forward<T>(c));
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct unqualified_pusher<void*> {
 | |
| 		static int push(lua_State* L, void* userdata) {
 | |
| #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
 | |
| 			luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
 | |
| #endif // make sure stack doesn't overflow
 | |
| 			lua_pushlightuserdata(L, userdata);
 | |
| 			return 1;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct unqualified_pusher<const void*> {
 | |
| 		static int push(lua_State* L, const void* userdata) {
 | |
| #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
 | |
| 			luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
 | |
| #endif // make sure stack doesn't overflow
 | |
| 			lua_pushlightuserdata(L, const_cast<void*>(userdata));
 | |
| 			return 1;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct unqualified_pusher<lightuserdata_value> {
 | |
| 		static int push(lua_State* L, lightuserdata_value userdata) {
 | |
| #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
 | |
| 			luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
 | |
| #endif // make sure stack doesn't overflow
 | |
| 			lua_pushlightuserdata(L, userdata);
 | |
| 			return 1;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct unqualified_pusher<light<T>> {
 | |
| 		static int push(lua_State* L, light<T> l) {
 | |
| #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
 | |
| 			luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
 | |
| #endif // make sure stack doesn't overflow
 | |
| 			lua_pushlightuserdata(L, static_cast<void*>(l.value));
 | |
| 			return 1;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct unqualified_pusher<user<T>> {
 | |
| 		template <bool with_meta = true, typename Key, typename... Args>
 | |
| 		static int push_with(lua_State* L, Key&& name, Args&&... args) {
 | |
| #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
 | |
| 			luaL_checkstack(L, 1, detail::not_enough_stack_space_userdata);
 | |
| #endif // make sure stack doesn't overflow
 | |
|        // A dumb pusher
 | |
| 			T* data = detail::user_allocate<T>(L);
 | |
| 			if (with_meta) {
 | |
| 				// Make sure we have a plain GC set for this data
 | |
| #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
 | |
| 				luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
 | |
| #endif // make sure stack doesn't overflow
 | |
| 				if (luaL_newmetatable(L, name) != 0) {
 | |
| 					lua_CFunction cdel = detail::user_alloc_destruct<T>;
 | |
| 					lua_pushcclosure(L, cdel, 0);
 | |
| 					lua_setfield(L, -2, "__gc");
 | |
| 				}
 | |
| 				lua_setmetatable(L, -2);
 | |
| 			}
 | |
| 			std::allocator<T> alloc {};
 | |
| 			std::allocator_traits<std::allocator<T>>::construct(alloc, data, std::forward<Args>(args)...);
 | |
| 			return 1;
 | |
| 		}
 | |
| 
 | |
| 		template <typename Arg, typename... Args>
 | |
| 		static int push(lua_State* L, Arg&& arg, Args&&... args) {
 | |
| 			if constexpr (std::is_same_v<meta::unqualified_t<Arg>, metatable_key_t>) {
 | |
| 				const auto name = &arg[0];
 | |
| 				return push_with<true>(L, name, std::forward<Args>(args)...);
 | |
| 			}
 | |
| 			else if constexpr (std::is_same_v<meta::unqualified_t<Arg>, no_metatable_t>) {
 | |
| 				(void)arg;
 | |
| 				const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0];
 | |
| 				return push_with<false>(L, name, std::forward<Args>(args)...);
 | |
| 			}
 | |
| 			else {
 | |
| 				const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0];
 | |
| 				return push_with(L, name, std::forward<Arg>(arg), std::forward<Args>(args)...);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		static int push(lua_State* L, const user<T>& u) {
 | |
| 			const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0];
 | |
| 			return push_with(L, name, u.value);
 | |
| 		}
 | |
| 
 | |
| 		static int push(lua_State* L, user<T>&& u) {
 | |
| 			const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0];
 | |
| 			return push_with(L, name, std::move(u.value));
 | |
| 		}
 | |
| 
 | |
| 		static int push(lua_State* L, no_metatable_t, const user<T>& u) {
 | |
| 			const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0];
 | |
| 			return push_with<false>(L, name, u.value);
 | |
| 		}
 | |
| 
 | |
| 		static int push(lua_State* L, no_metatable_t, user<T>&& u) {
 | |
| 			const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0];
 | |
| 			return push_with<false>(L, name, std::move(u.value));
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct unqualified_pusher<userdata_value> {
 | |
| 		static int push(lua_State* L, userdata_value data) {
 | |
| #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
 | |
| 			luaL_checkstack(L, 1, detail::not_enough_stack_space_userdata);
 | |
| #endif // make sure stack doesn't overflow
 | |
| 			void** ud = detail::usertype_allocate_pointer<void>(L);
 | |
| 			*ud = data.value;
 | |
| 			return 1;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct unqualified_pusher<const char*> {
 | |
| 		static int push_sized(lua_State* L, const char* str, std::size_t len) {
 | |
| #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
 | |
| 			luaL_checkstack(L, 1, detail::not_enough_stack_space_string);
 | |
| #endif // make sure stack doesn't overflow
 | |
| 			lua_pushlstring(L, str, len);
 | |
| 			return 1;
 | |
| 		}
 | |
| 
 | |
| 		static int push(lua_State* L, const char* str) {
 | |
| 			if (str == nullptr)
 | |
| 				return stack::push(L, lua_nil);
 | |
| 			return push_sized(L, str, std::char_traits<char>::length(str));
 | |
| 		}
 | |
| 
 | |
| 		static int push(lua_State* L, const char* strb, const char* stre) {
 | |
| 			return push_sized(L, strb, stre - strb);
 | |
| 		}
 | |
| 
 | |
| 		static int push(lua_State* L, const char* str, std::size_t len) {
 | |
| 			return push_sized(L, str, len);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct unqualified_pusher<char*> {
 | |
| 		static int push_sized(lua_State* L, const char* str, std::size_t len) {
 | |
| 			unqualified_pusher<const char*> p {};
 | |
| 			(void)p;
 | |
| 			return p.push_sized(L, str, len);
 | |
| 		}
 | |
| 
 | |
| 		static int push(lua_State* L, const char* str) {
 | |
| 			unqualified_pusher<const char*> p {};
 | |
| 			(void)p;
 | |
| 			return p.push(L, str);
 | |
| 		}
 | |
| 
 | |
| 		static int push(lua_State* L, const char* strb, const char* stre) {
 | |
| 			unqualified_pusher<const char*> p {};
 | |
| 			(void)p;
 | |
| 			return p.push(L, strb, stre);
 | |
| 		}
 | |
| 
 | |
| 		static int push(lua_State* L, const char* str, std::size_t len) {
 | |
| 			unqualified_pusher<const char*> p {};
 | |
| 			(void)p;
 | |
| 			return p.push(L, str, len);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <size_t N>
 | |
| 	struct unqualified_pusher<char[N]> {
 | |
| 		static int push(lua_State* L, const char (&str)[N]) {
 | |
| #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
 | |
| 			luaL_checkstack(L, 1, detail::not_enough_stack_space_string);
 | |
| #endif // make sure stack doesn't overflow
 | |
| 			lua_pushlstring(L, str, std::char_traits<char>::length(str));
 | |
| 			return 1;
 | |
| 		}
 | |
| 
 | |
| 		static int push(lua_State* L, const char (&str)[N], std::size_t sz) {
 | |
| #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
 | |
| 			luaL_checkstack(L, 1, detail::not_enough_stack_space_string);
 | |
| #endif // make sure stack doesn't overflow
 | |
| 			lua_pushlstring(L, str, sz);
 | |
| 			return 1;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct unqualified_pusher<char> {
 | |
| 		static int push(lua_State* L, char c) {
 | |
| 			const char str[2] = { c, '\0' };
 | |
| 			return stack::push(L, static_cast<const char*>(str), 1);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename Ch, typename Traits, typename Al>
 | |
| 	struct unqualified_pusher<std::basic_string<Ch, Traits, Al>> {
 | |
| 		static int push(lua_State* L, const std::basic_string<Ch, Traits, Al>& str) {
 | |
| 			if constexpr (!std::is_same_v<Ch, char>) {
 | |
| 				return stack::push(L, str.data(), str.size());
 | |
| 			}
 | |
| 			else {
 | |
| #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
 | |
| 				luaL_checkstack(L, 1, detail::not_enough_stack_space_string);
 | |
| #endif // make sure stack doesn't overflow
 | |
| 				lua_pushlstring(L, str.c_str(), str.size());
 | |
| 				return 1;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		static int push(lua_State* L, const std::basic_string<Ch, Traits, Al>& str, std::size_t sz) {
 | |
| 			if constexpr (!std::is_same_v<Ch, char>) {
 | |
| 				return stack::push(L, str.data(), sz);
 | |
| 			}
 | |
| 			else {
 | |
| #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
 | |
| 				luaL_checkstack(L, 1, detail::not_enough_stack_space_string);
 | |
| #endif // make sure stack doesn't overflow
 | |
| 				lua_pushlstring(L, str.c_str(), sz);
 | |
| 				return 1;
 | |
| 			}
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename Ch, typename Traits>
 | |
| 	struct unqualified_pusher<basic_string_view<Ch, Traits>> {
 | |
| 		static int push(lua_State* L, const basic_string_view<Ch, Traits>& sv) {
 | |
| 			return stack::push(L, sv.data(), sv.length());
 | |
| 		}
 | |
| 
 | |
| 		static int push(lua_State* L, const basic_string_view<Ch, Traits>& sv, std::size_t n) {
 | |
| 			return stack::push(L, sv.data(), n);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct unqualified_pusher<meta_function> {
 | |
| 		static int push(lua_State* L, meta_function m) {
 | |
| #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
 | |
| 			luaL_checkstack(L, 1, detail::not_enough_stack_space_meta_function_name);
 | |
| #endif // make sure stack doesn't overflow
 | |
| 			const std::string& str = to_string(m);
 | |
| 			lua_pushlstring(L, str.c_str(), str.size());
 | |
| 			return 1;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct unqualified_pusher<absolute_index> {
 | |
| 		static int push(lua_State* L, absolute_index ai) {
 | |
| #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
 | |
| 			luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
 | |
| #endif // make sure stack doesn't overflow
 | |
| 			lua_pushvalue(L, ai);
 | |
| 			return 1;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct unqualified_pusher<raw_index> {
 | |
| 		static int push(lua_State* L, raw_index ri) {
 | |
| #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
 | |
| 			luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
 | |
| #endif // make sure stack doesn't overflow
 | |
| 			lua_pushvalue(L, ri);
 | |
| 			return 1;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct unqualified_pusher<ref_index> {
 | |
| 		static int push(lua_State* L, ref_index ri) {
 | |
| #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
 | |
| 			luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
 | |
| #endif // make sure stack doesn't overflow
 | |
| 			lua_rawgeti(L, LUA_REGISTRYINDEX, ri);
 | |
| 			return 1;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct unqualified_pusher<const wchar_t*> {
 | |
| 		static int push(lua_State* L, const wchar_t* wstr) {
 | |
| 			return push(L, wstr, std::char_traits<wchar_t>::length(wstr));
 | |
| 		}
 | |
| 
 | |
| 		static int push(lua_State* L, const wchar_t* wstr, std::size_t sz) {
 | |
| 			return push(L, wstr, wstr + sz);
 | |
| 		}
 | |
| 
 | |
| 		static int push(lua_State* L, const wchar_t* strb, const wchar_t* stre) {
 | |
| 			if constexpr (sizeof(wchar_t) == 2) {
 | |
| 				const char16_t* sb = reinterpret_cast<const char16_t*>(strb);
 | |
| 				const char16_t* se = reinterpret_cast<const char16_t*>(stre);
 | |
| 				return stack::push(L, sb, se);
 | |
| 			}
 | |
| 			else {
 | |
| 				const char32_t* sb = reinterpret_cast<const char32_t*>(strb);
 | |
| 				const char32_t* se = reinterpret_cast<const char32_t*>(stre);
 | |
| 				return stack::push(L, sb, se);
 | |
| 			}
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct unqualified_pusher<wchar_t*> {
 | |
| 		static int push(lua_State* L, const wchar_t* str) {
 | |
| 			unqualified_pusher<const wchar_t*> p {};
 | |
| 			(void)p;
 | |
| 			return p.push(L, str);
 | |
| 		}
 | |
| 
 | |
| 		static int push(lua_State* L, const wchar_t* strb, const wchar_t* stre) {
 | |
| 			unqualified_pusher<const wchar_t*> p {};
 | |
| 			(void)p;
 | |
| 			return p.push(L, strb, stre);
 | |
| 		}
 | |
| 
 | |
| 		static int push(lua_State* L, const wchar_t* str, std::size_t len) {
 | |
| 			unqualified_pusher<const wchar_t*> p {};
 | |
| 			(void)p;
 | |
| 			return p.push(L, str, len);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct unqualified_pusher<const char16_t*> {
 | |
| 		static int convert_into(lua_State* L, char* start, std::size_t, const char16_t* strb, const char16_t* stre) {
 | |
| 			char* target = start;
 | |
| 			char32_t cp = 0;
 | |
| 			for (const char16_t* strtarget = strb; strtarget < stre;) {
 | |
| 				auto dr = unicode::utf16_to_code_point(strtarget, stre);
 | |
| 				if (dr.error != unicode::error_code::ok) {
 | |
| 					cp = unicode::unicode_detail::replacement;
 | |
| 				}
 | |
| 				else {
 | |
| 					cp = dr.codepoint;
 | |
| 				}
 | |
| 				auto er = unicode::code_point_to_utf8(cp);
 | |
| 				const char* utf8data = er.code_units.data();
 | |
| 				std::memcpy(target, utf8data, er.code_units_size);
 | |
| 				target += er.code_units_size;
 | |
| 				strtarget = dr.next;
 | |
| 			}
 | |
| 
 | |
| 			return stack::push(L, start, target);
 | |
| 		}
 | |
| 
 | |
| 		static int push(lua_State* L, const char16_t* u16str) {
 | |
| 			return push(L, u16str, std::char_traits<char16_t>::length(u16str));
 | |
| 		}
 | |
| 
 | |
| 		static int push(lua_State* L, const char16_t* u16str, std::size_t sz) {
 | |
| 			return push(L, u16str, u16str + sz);
 | |
| 		}
 | |
| 
 | |
| 		static int push(lua_State* L, const char16_t* strb, const char16_t* stre) {
 | |
| 			char sbo[SOL_OPTIMIZATION_STRING_CONVERSION_STACK_SIZE_I_];
 | |
| 			// if our max string space is small enough, use SBO
 | |
| 			// right off the bat
 | |
| 			std::size_t max_possible_code_units = (stre - strb) * 4;
 | |
| 			if (max_possible_code_units <= SOL_OPTIMIZATION_STRING_CONVERSION_STACK_SIZE_I_) {
 | |
| 				return convert_into(L, sbo, max_possible_code_units, strb, stre);
 | |
| 			}
 | |
| 			// otherwise, we must manually count/check size
 | |
| 			std::size_t needed_size = 0;
 | |
| 			for (const char16_t* strtarget = strb; strtarget < stre;) {
 | |
| 				auto dr = unicode::utf16_to_code_point(strtarget, stre);
 | |
| 				auto er = unicode::code_point_to_utf8(dr.codepoint);
 | |
| 				needed_size += er.code_units_size;
 | |
| 				strtarget = dr.next;
 | |
| 			}
 | |
| 			if (needed_size < SOL_OPTIMIZATION_STRING_CONVERSION_STACK_SIZE_I_) {
 | |
| 				return convert_into(L, sbo, needed_size, strb, stre);
 | |
| 			}
 | |
| 			std::string u8str("", 0);
 | |
| 			u8str.resize(needed_size);
 | |
| 			char* target = const_cast<char*>(u8str.data());
 | |
| 			return convert_into(L, target, needed_size, strb, stre);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct unqualified_pusher<char16_t*> {
 | |
| 		static int push(lua_State* L, const char16_t* str) {
 | |
| 			unqualified_pusher<const char16_t*> p {};
 | |
| 			(void)p;
 | |
| 			return p.push(L, str);
 | |
| 		}
 | |
| 
 | |
| 		static int push(lua_State* L, const char16_t* strb, const char16_t* stre) {
 | |
| 			unqualified_pusher<const char16_t*> p {};
 | |
| 			(void)p;
 | |
| 			return p.push(L, strb, stre);
 | |
| 		}
 | |
| 
 | |
| 		static int push(lua_State* L, const char16_t* str, std::size_t len) {
 | |
| 			unqualified_pusher<const char16_t*> p {};
 | |
| 			(void)p;
 | |
| 			return p.push(L, str, len);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct unqualified_pusher<const char32_t*> {
 | |
| 		static int convert_into(lua_State* L, char* start, std::size_t, const char32_t* strb, const char32_t* stre) {
 | |
| 			char* target = start;
 | |
| 			char32_t cp = 0;
 | |
| 			for (const char32_t* strtarget = strb; strtarget < stre;) {
 | |
| 				auto dr = unicode::utf32_to_code_point(strtarget, stre);
 | |
| 				if (dr.error != unicode::error_code::ok) {
 | |
| 					cp = unicode::unicode_detail::replacement;
 | |
| 				}
 | |
| 				else {
 | |
| 					cp = dr.codepoint;
 | |
| 				}
 | |
| 				auto er = unicode::code_point_to_utf8(cp);
 | |
| 				const char* data = er.code_units.data();
 | |
| 				std::memcpy(target, data, er.code_units_size);
 | |
| 				target += er.code_units_size;
 | |
| 				strtarget = dr.next;
 | |
| 			}
 | |
| 			return stack::push(L, start, target);
 | |
| 		}
 | |
| 
 | |
| 		static int push(lua_State* L, const char32_t* u32str) {
 | |
| 			return push(L, u32str, u32str + std::char_traits<char32_t>::length(u32str));
 | |
| 		}
 | |
| 
 | |
| 		static int push(lua_State* L, const char32_t* u32str, std::size_t sz) {
 | |
| 			return push(L, u32str, u32str + sz);
 | |
| 		}
 | |
| 
 | |
| 		static int push(lua_State* L, const char32_t* strb, const char32_t* stre) {
 | |
| 			char sbo[SOL_OPTIMIZATION_STRING_CONVERSION_STACK_SIZE_I_];
 | |
| 			// if our max string space is small enough, use SBO
 | |
| 			// right off the bat
 | |
| 			std::size_t max_possible_code_units = (stre - strb) * 4;
 | |
| 			if (max_possible_code_units <= SOL_OPTIMIZATION_STRING_CONVERSION_STACK_SIZE_I_) {
 | |
| 				return convert_into(L, sbo, max_possible_code_units, strb, stre);
 | |
| 			}
 | |
| 			// otherwise, we must manually count/check size
 | |
| 			std::size_t needed_size = 0;
 | |
| 			for (const char32_t* strtarget = strb; strtarget < stre;) {
 | |
| 				auto dr = unicode::utf32_to_code_point(strtarget, stre);
 | |
| 				auto er = unicode::code_point_to_utf8(dr.codepoint);
 | |
| 				needed_size += er.code_units_size;
 | |
| 				strtarget = dr.next;
 | |
| 			}
 | |
| 			if (needed_size < SOL_OPTIMIZATION_STRING_CONVERSION_STACK_SIZE_I_) {
 | |
| 				return convert_into(L, sbo, needed_size, strb, stre);
 | |
| 			}
 | |
| 			std::string u8str("", 0);
 | |
| 			u8str.resize(needed_size);
 | |
| 			char* target = const_cast<char*>(u8str.data());
 | |
| 			return convert_into(L, target, needed_size, strb, stre);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct unqualified_pusher<char32_t*> {
 | |
| 		static int push(lua_State* L, const char32_t* str) {
 | |
| 			unqualified_pusher<const char32_t*> p {};
 | |
| 			(void)p;
 | |
| 			return p.push(L, str);
 | |
| 		}
 | |
| 
 | |
| 		static int push(lua_State* L, const char32_t* strb, const char32_t* stre) {
 | |
| 			unqualified_pusher<const char32_t*> p {};
 | |
| 			(void)p;
 | |
| 			return p.push(L, strb, stre);
 | |
| 		}
 | |
| 
 | |
| 		static int push(lua_State* L, const char32_t* str, std::size_t len) {
 | |
| 			unqualified_pusher<const char32_t*> p {};
 | |
| 			(void)p;
 | |
| 			return p.push(L, str, len);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <size_t N>
 | |
| 	struct unqualified_pusher<wchar_t[N]> {
 | |
| 		static int push(lua_State* L, const wchar_t (&str)[N]) {
 | |
| 			return push(L, str, std::char_traits<wchar_t>::length(str));
 | |
| 		}
 | |
| 
 | |
| 		static int push(lua_State* L, const wchar_t (&str)[N], std::size_t sz) {
 | |
| 			const wchar_t* str_ptr = static_cast<const wchar_t*>(str);
 | |
| 			return stack::push<const wchar_t*>(L, str_ptr, str_ptr + sz);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <size_t N>
 | |
| 	struct unqualified_pusher<char16_t[N]> {
 | |
| 		static int push(lua_State* L, const char16_t (&str)[N]) {
 | |
| 			return push(L, str, std::char_traits<char16_t>::length(str));
 | |
| 		}
 | |
| 
 | |
| 		static int push(lua_State* L, const char16_t (&str)[N], std::size_t sz) {
 | |
| 			const char16_t* str_ptr = static_cast<const char16_t*>(str);
 | |
| 			return stack::push<const char16_t*>(L, str_ptr, str_ptr + sz);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <size_t N>
 | |
| 	struct unqualified_pusher<char32_t[N]> {
 | |
| 		static int push(lua_State* L, const char32_t (&str)[N]) {
 | |
| 			return push(L, str, std::char_traits<char32_t>::length(str));
 | |
| 		}
 | |
| 
 | |
| 		static int push(lua_State* L, const char32_t (&str)[N], std::size_t sz) {
 | |
| 			const char32_t* str_ptr = static_cast<const char32_t*>(str);
 | |
| 			return stack::push<const char32_t*>(L, str_ptr, str_ptr + sz);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct unqualified_pusher<wchar_t> {
 | |
| 		static int push(lua_State* L, wchar_t c) {
 | |
| 			const wchar_t str[2] = { c, '\0' };
 | |
| 			return stack::push(L, static_cast<const wchar_t*>(str), 1);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct unqualified_pusher<char16_t> {
 | |
| 		static int push(lua_State* L, char16_t c) {
 | |
| 			const char16_t str[2] = { c, '\0' };
 | |
| 			return stack::push(L, static_cast<const char16_t*>(str), 1);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct unqualified_pusher<char32_t> {
 | |
| 		static int push(lua_State* L, char32_t c) {
 | |
| 			const char32_t str[2] = { c, '\0' };
 | |
| 			return stack::push(L, static_cast<const char32_t*>(str), 1);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename... Args>
 | |
| 	struct unqualified_pusher<std::tuple<Args...>> {
 | |
| 		template <std::size_t... I, typename T>
 | |
| 		static int push(std::index_sequence<I...>, lua_State* L, T&& t) {
 | |
| #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
 | |
| 			luaL_checkstack(L, static_cast<int>(sizeof...(I)), detail::not_enough_stack_space_generic);
 | |
| #endif // make sure stack doesn't overflow
 | |
| 			int pushcount = 0;
 | |
| 			(void)detail::swallow { 0, (pushcount += stack::push(L, std::get<I>(std::forward<T>(t))), 0)... };
 | |
| 			return pushcount;
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		static int push(lua_State* L, T&& t) {
 | |
| 			return push(std::index_sequence_for<Args...>(), L, std::forward<T>(t));
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename A, typename B>
 | |
| 	struct unqualified_pusher<std::pair<A, B>> {
 | |
| 		template <typename T>
 | |
| 		static int push(lua_State* L, T&& t) {
 | |
| 			int pushcount = stack::push(L, std::get<0>(std::forward<T>(t)));
 | |
| 			pushcount += stack::push(L, std::get<1>(std::forward<T>(t)));
 | |
| 			return pushcount;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct unqualified_pusher<T, std::enable_if_t<meta::is_optional_v<T>>> {
 | |
| 		using ValueType = typename meta::unqualified_t<T>::value_type;
 | |
| 
 | |
| 		template <typename Optional>
 | |
| 		static int push(lua_State* L, Optional&& op) {
 | |
| 			using QualifiedValueType = meta::conditional_t<std::is_lvalue_reference_v<Optional>, ValueType&, ValueType&&>;
 | |
| 			if (!op) {
 | |
| 				return stack::push(L, nullopt);
 | |
| 			}
 | |
| 			return stack::push(L, static_cast<QualifiedValueType>(op.value()));
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct unqualified_pusher<nullopt_t> {
 | |
| 		static int push(lua_State* L, nullopt_t) {
 | |
| 			return stack::push(L, lua_nil);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct unqualified_pusher<std::nullptr_t> {
 | |
| 		static int push(lua_State* L, std::nullptr_t) {
 | |
| 			return stack::push(L, lua_nil);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct unqualified_pusher<this_state> {
 | |
| 		static int push(lua_State*, const this_state&) {
 | |
| 			return 0;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct unqualified_pusher<this_main_state> {
 | |
| 		static int push(lua_State*, const this_main_state&) {
 | |
| 			return 0;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <>
 | |
| 	struct unqualified_pusher<new_table> {
 | |
| 		static int push(lua_State* L, const new_table& nt) {
 | |
| 			lua_createtable(L, nt.sequence_hint, nt.map_hint);
 | |
| 			return 1;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename Allocator>
 | |
| 	struct unqualified_pusher<basic_bytecode<Allocator>> {
 | |
| 		template <typename T>
 | |
| 		static int push(lua_State* L, T&& bc, const char* bytecode_name) {
 | |
| 			const auto first = bc.data();
 | |
| 			const auto bcsize = bc.size();
 | |
| 			// pushes either the function, or an error
 | |
| 			// if it errors, shit goes south, and people can test that upstream
 | |
| 			(void)luaL_loadbuffer(
 | |
| 				L, reinterpret_cast<const char*>(first), static_cast<std::size_t>(bcsize * (sizeof(*first) / sizeof(const char))), bytecode_name);
 | |
| 			return 1;
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		static int push(lua_State* L, T&& bc) {
 | |
| 			return push(L, std::forward<bc>(bc), "bytecode");
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| #if SOL_IS_ON(SOL_STD_VARIANT_I_)
 | |
| 	namespace stack_detail {
 | |
| 
 | |
| 		struct push_function {
 | |
| 			lua_State* L;
 | |
| 
 | |
| 			push_function(lua_State* L) : L(L) {
 | |
| 			}
 | |
| 
 | |
| 			template <typename T>
 | |
| 			int operator()(T&& value) const {
 | |
| 				return stack::push<T>(L, std::forward<T>(value));
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 	} // namespace stack_detail
 | |
| 
 | |
| 	template <typename... Tn>
 | |
| 	struct unqualified_pusher<std::variant<Tn...>> {
 | |
| 		static int push(lua_State* L, const std::variant<Tn...>& v) {
 | |
| 			return std::visit(stack_detail::push_function(L), v);
 | |
| 		}
 | |
| 
 | |
| 		static int push(lua_State* L, std::variant<Tn...>&& v) {
 | |
| 			return std::visit(stack_detail::push_function(L), std::move(v));
 | |
| 		}
 | |
| 	};
 | |
| #endif // Variant because Clang is terrible
 | |
| 
 | |
| }} // namespace sol::stack
 | |
| 
 | |
| // end of sol/stack_push.hpp
 | |
| 
 | |
| // beginning of sol/stack_pop.hpp
 | |
| 
 | |
| #include <utility>
 | |
| #include <tuple>
 | |
| 
 | |
| namespace sol {
 | |
| namespace stack {
 | |
| 	template <typename T, typename>
 | |
| 	struct popper {
 | |
| 		inline static decltype(auto) pop(lua_State* L) {
 | |
| 			if constexpr (is_stack_based_v<meta::unqualified_t<T>>) {
 | |
| 				static_assert(!is_stack_based_v<meta::unqualified_t<T>>,
 | |
| 					"You cannot pop something that lives solely on the stack: it will not remain on the stack when popped and thusly will go out of "
 | |
| 					"scope!");
 | |
| 			}
 | |
| 			else {
 | |
| 				record tracking{};
 | |
| 				decltype(auto) r = get<T>(L, -lua_size<T>::value, tracking);
 | |
| 				lua_pop(L, tracking.used);
 | |
| 				return r;
 | |
| 			}
 | |
| 		}
 | |
| 	};
 | |
| }
 | |
| } // namespace sol::stack
 | |
| 
 | |
| // end of sol/stack_pop.hpp
 | |
| 
 | |
| // beginning of sol/stack_field.hpp
 | |
| 
 | |
| namespace sol { namespace stack {
 | |
| 	template <typename T, bool global, bool raw, typename>
 | |
| 	struct field_getter {
 | |
| 		static constexpr int default_table_index = meta::conditional_t < meta::is_c_str_v<T>
 | |
| #if SOL_LUA_VESION_I_ >= 503
 | |
| 			|| (std::is_integral_v<T> && !std::is_same_v<T, bool>)
 | |
| #endif // integer  global keys 5.3 or better
 | |
| 			|| (raw && std::is_void_v<std::remove_pointer_t<T>>),
 | |
| 			                std::integral_constant<int, -1>, std::integral_constant<int, -2> > ::value;
 | |
| 
 | |
| 		template <typename Key>
 | |
| 		void get(lua_State* L, Key&& key, int tableindex = default_table_index) {
 | |
| 			if constexpr (std::is_same_v<T, update_if_empty_t> || std::is_same_v<T, override_value_t> || std::is_same_v<T, create_if_nil_t>) {
 | |
| 				(void)L;
 | |
| 				(void)key;
 | |
| 				(void)tableindex;
 | |
| 			}
 | |
| 			else if constexpr (std::is_same_v<T, env_key_t>) {
 | |
| 				(void)key;
 | |
| #if SOL_LUA_VESION_I_ < 502
 | |
| 				// Use lua_setfenv
 | |
| 				lua_getfenv(L, tableindex);
 | |
| #else
 | |
| 				// Use upvalues as explained in Lua 5.2 and beyond's manual
 | |
| 				if (lua_getupvalue(L, tableindex, 1) == nullptr) {
 | |
| 					push(L, lua_nil);
 | |
| 				}
 | |
| #endif
 | |
| 			}
 | |
| 			else if constexpr (std::is_same_v<T, metatable_key_t>) {
 | |
| 				(void)key;
 | |
| 				if (lua_getmetatable(L, tableindex) == 0)
 | |
| 					push(L, lua_nil);
 | |
| 			}
 | |
| 			else if constexpr (raw) {
 | |
| 				if constexpr (std::is_integral_v<T> && !std::is_same_v<bool, T>) {
 | |
| 					lua_rawgeti(L, tableindex, static_cast<lua_Integer>(key));
 | |
| 				}
 | |
| #if SOL_LUA_VESION_I_ >= 502
 | |
| 				else if constexpr (std::is_void_v<std::remove_pointer_t<T>>) {
 | |
| 					lua_rawgetp(L, tableindex, key);
 | |
| 				}
 | |
| #endif // Lua 5.2.x+
 | |
| 				else {
 | |
| 					push(L, std::forward<Key>(key));
 | |
| 					lua_rawget(L, tableindex);
 | |
| 				}
 | |
| 			}
 | |
| 			else {
 | |
| 				if constexpr (meta::is_c_str_v<T>) {
 | |
| 					if constexpr (global) {
 | |
| 						(void)tableindex;
 | |
| 						lua_getglobal(L, &key[0]);
 | |
| 					}
 | |
| 					else {
 | |
| 						lua_getfield(L, tableindex, &key[0]);
 | |
| 					}
 | |
| 				}
 | |
| #if SOL_LUA_VESION_I_ >= 503
 | |
| 				else if constexpr (std::is_integral_v<T> && !std::is_same_v<bool, T>) {
 | |
| 					lua_geti(L, tableindex, static_cast<lua_Integer>(key));
 | |
| 				}
 | |
| #endif // Lua 5.3.x+
 | |
| 				else {
 | |
| 					push(L, std::forward<Key>(key));
 | |
| 					lua_gettable(L, tableindex);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename... Args, bool b, bool raw, typename C>
 | |
| 	struct field_getter<std::tuple<Args...>, b, raw, C> {
 | |
| 		template <std::size_t... I, typename Keys>
 | |
| 		void apply(std::index_sequence<0, I...>, lua_State* L, Keys&& keys, int tableindex) {
 | |
| 			get_field<b, raw>(L, std::get<0>(std::forward<Keys>(keys)), tableindex);
 | |
| 			void(detail::swallow { (get_field<false, raw>(L, std::get<I>(std::forward<Keys>(keys))), 0)... });
 | |
| 			reference saved(L, -1);
 | |
| 			lua_pop(L, static_cast<int>(sizeof...(I)));
 | |
| 			saved.push();
 | |
| 		}
 | |
| 
 | |
| 		template <typename Keys>
 | |
| 		void get(lua_State* L, Keys&& keys) {
 | |
| 			apply(std::make_index_sequence<sizeof...(Args)>(), L, std::forward<Keys>(keys), lua_absindex(L, -1));
 | |
| 		}
 | |
| 
 | |
| 		template <typename Keys>
 | |
| 		void get(lua_State* L, Keys&& keys, int tableindex) {
 | |
| 			apply(std::make_index_sequence<sizeof...(Args)>(), L, std::forward<Keys>(keys), tableindex);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename A, typename B, bool b, bool raw, typename C>
 | |
| 	struct field_getter<std::pair<A, B>, b, raw, C> {
 | |
| 		template <typename Keys>
 | |
| 		void get(lua_State* L, Keys&& keys, int tableindex) {
 | |
| 			get_field<b, raw>(L, std::get<0>(std::forward<Keys>(keys)), tableindex);
 | |
| 			get_field<false, raw>(L, std::get<1>(std::forward<Keys>(keys)));
 | |
| 			reference saved(L, -1);
 | |
| 			lua_pop(L, static_cast<int>(2));
 | |
| 			saved.push();
 | |
| 		}
 | |
| 
 | |
| 		template <typename Keys>
 | |
| 		void get(lua_State* L, Keys&& keys) {
 | |
| 			get_field<b, raw>(L, std::get<0>(std::forward<Keys>(keys)));
 | |
| 			get_field<false, raw>(L, std::get<1>(std::forward<Keys>(keys)));
 | |
| 			reference saved(L, -1);
 | |
| 			lua_pop(L, static_cast<int>(2));
 | |
| 			saved.push();
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T, bool global, bool raw, typename>
 | |
| 	struct field_setter {
 | |
| 		static constexpr int default_table_index
 | |
| 			= meta::conditional_t < (meta::is_c_str_v<T> || meta::is_string_of_v<T, char>) || (std::is_integral_v<T> && !std::is_same_v<T, bool>)
 | |
| 			|| (std::is_integral_v<T> && !std::is_same_v<T, bool>) || (raw && std::is_void_v<std::remove_pointer_t<T>>),
 | |
| 			std::integral_constant<int, -2>, std::integral_constant<int, -3> > ::value;
 | |
| 
 | |
| 		template <typename Key, typename Value>
 | |
| 		void set(lua_State* L, Key&& key, Value&& value, int tableindex = default_table_index) {
 | |
| 			if constexpr (std::is_same_v<T, update_if_empty_t> || std::is_same_v<T, override_value_t>) {
 | |
| 				(void)L;
 | |
| 				(void)key;
 | |
| 				(void)value;
 | |
| 				(void)tableindex;
 | |
| 			}
 | |
| 			else if constexpr (std::is_same_v<T, metatable_key_t>) {
 | |
| 				(void)key;
 | |
| 				push(L, std::forward<Value>(value));
 | |
| 				lua_setmetatable(L, tableindex);
 | |
| 			}
 | |
| 			else if constexpr (raw) {
 | |
| 				if constexpr (std::is_integral_v<T> && !std::is_same_v<bool, T>) {
 | |
| 					push(L, std::forward<Value>(value));
 | |
| 					lua_rawseti(L, tableindex, static_cast<lua_Integer>(key));
 | |
| 				}
 | |
| #if SOL_LUA_VESION_I_ >= 502
 | |
| 				else if constexpr (std::is_void_v<std::remove_pointer_t<T>>) {
 | |
| 					push(L, std::forward<Value>(value));
 | |
| 					lua_rawsetp(L, tableindex, std::forward<Key>(key));
 | |
| 				}
 | |
| #endif // Lua 5.2.x
 | |
| 				else {
 | |
| 					push(L, std::forward<Key>(key));
 | |
| 					push(L, std::forward<Value>(value));
 | |
| 					lua_rawset(L, tableindex);
 | |
| 				}
 | |
| 			}
 | |
| 			else {
 | |
| 				if constexpr (meta::is_c_str_v<T> || meta::is_string_of_v<T, char>) {
 | |
| 					if constexpr (global) {
 | |
| 						push(L, std::forward<Value>(value));
 | |
| 						lua_setglobal(L, &key[0]);
 | |
| 						(void)tableindex;
 | |
| 					}
 | |
| 					else {
 | |
| 						push(L, std::forward<Value>(value));
 | |
| 						lua_setfield(L, tableindex, &key[0]);
 | |
| 					}
 | |
| 				}
 | |
| #if SOL_LUA_VESION_I_ >= 503
 | |
| 				else if constexpr (std::is_integral_v<T> && !std::is_same_v<bool, T>) {
 | |
| 					push(L, std::forward<Value>(value));
 | |
| 					lua_seti(L, tableindex, static_cast<lua_Integer>(key));
 | |
| 				}
 | |
| #endif // Lua 5.3.x
 | |
| 				else {
 | |
| 					push(L, std::forward<Key>(key));
 | |
| 					push(L, std::forward<Value>(value));
 | |
| 					lua_settable(L, tableindex);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename... Args, bool b, bool raw, typename C>
 | |
| 	struct field_setter<std::tuple<Args...>, b, raw, C> {
 | |
| 		template <bool g, std::size_t I, typename Keys, typename Value>
 | |
| 		void apply(std::index_sequence<I>, lua_State* L, Keys&& keys, Value&& value, int tableindex) {
 | |
| 			I < 1 ? set_field<g, raw>(L, std::get<I>(std::forward<Keys>(keys)), std::forward<Value>(value), tableindex)
 | |
| 				 : set_field<g, raw>(L, std::get<I>(std::forward<Keys>(keys)), std::forward<Value>(value));
 | |
| 		}
 | |
| 
 | |
| 		template <bool g, std::size_t I0, std::size_t I1, std::size_t... I, typename Keys, typename Value>
 | |
| 		void apply(std::index_sequence<I0, I1, I...>, lua_State* L, Keys&& keys, Value&& value, int tableindex) {
 | |
| 			I0 < 1 ? get_field<g, raw>(L, std::get<I0>(std::forward<Keys>(keys)), tableindex)
 | |
| 				  : get_field<g, raw>(L, std::get<I0>(std::forward<Keys>(keys)), -1);
 | |
| 			apply<false>(std::index_sequence<I1, I...>(), L, std::forward<Keys>(keys), std::forward<Value>(value), -1);
 | |
| 		}
 | |
| 
 | |
| 		template <bool g, std::size_t I0, std::size_t... I, typename Keys, typename Value>
 | |
| 		void top_apply(std::index_sequence<I0, I...>, lua_State* L, Keys&& keys, Value&& value, int tableindex) {
 | |
| 			apply<g>(std::index_sequence<I0, I...>(), L, std::forward<Keys>(keys), std::forward<Value>(value), tableindex);
 | |
| 			lua_pop(L, static_cast<int>(sizeof...(I)));
 | |
| 		}
 | |
| 
 | |
| 		template <typename Keys, typename Value>
 | |
| 		void set(lua_State* L, Keys&& keys, Value&& value, int tableindex = -3) {
 | |
| 			top_apply<b>(std::make_index_sequence<sizeof...(Args)>(), L, std::forward<Keys>(keys), std::forward<Value>(value), tableindex);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename A, typename B, bool b, bool raw, typename C>
 | |
| 	struct field_setter<std::pair<A, B>, b, raw, C> {
 | |
| 		template <typename Keys, typename Value>
 | |
| 		void set(lua_State* L, Keys&& keys, Value&& value, int tableindex = -1) {
 | |
| 			get_field<b, raw>(L, std::get<0>(std::forward<Keys>(keys)), tableindex);
 | |
| 			set_field<false, raw>(L, std::get<1>(std::forward<Keys>(keys)), std::forward<Value>(value), lua_gettop(L));
 | |
| 			lua_pop(L, 1);
 | |
| 		}
 | |
| 	};
 | |
| }} // namespace sol::stack
 | |
| 
 | |
| // end of sol/stack_field.hpp
 | |
| 
 | |
| // beginning of sol/stack_probe.hpp
 | |
| 
 | |
| namespace sol {
 | |
| namespace stack {
 | |
| 	template <typename T, typename P, bool b, bool raw, typename>
 | |
| 	struct probe_field_getter {
 | |
| 		template <typename Key>
 | |
| 		probe get(lua_State* L, Key&& key, int tableindex = -2) {
 | |
| 			if constexpr(!b) {
 | |
| 				if (!maybe_indexable(L, tableindex)) {
 | |
| 					return probe(false, 0);
 | |
| 				}
 | |
| 			}
 | |
| 			get_field<b, raw>(L, std::forward<Key>(key), tableindex);
 | |
| 			return probe(check<P>(L), 1);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename A, typename B, typename P, bool b, bool raw, typename C>
 | |
| 	struct probe_field_getter<std::pair<A, B>, P, b, raw, C> {
 | |
| 		template <typename Keys>
 | |
| 		probe get(lua_State* L, Keys&& keys, int tableindex = -2) {
 | |
| 			if (!b && !maybe_indexable(L, tableindex)) {
 | |
| 				return probe(false, 0);
 | |
| 			}
 | |
| 			get_field<b, raw>(L, std::get<0>(keys), tableindex);
 | |
| 			if (!maybe_indexable(L)) {
 | |
| 				return probe(false, 1);
 | |
| 			}
 | |
| 			get_field<false, raw>(L, std::get<1>(keys), tableindex);
 | |
| 			return probe(check<P>(L), 2);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename... Args, typename P, bool b, bool raw, typename C>
 | |
| 	struct probe_field_getter<std::tuple<Args...>, P, b, raw, C> {
 | |
| 		template <std::size_t I, typename Keys>
 | |
| 		probe apply(std::index_sequence<I>, int sofar, lua_State* L, Keys&& keys, int tableindex) {
 | |
| 			get_field<(I<1) && b, raw>(L, std::get<I>(keys), tableindex);
 | |
| 			return probe(check<P>(L), sofar);
 | |
| 		}
 | |
| 
 | |
| 		template <std::size_t I, std::size_t I1, std::size_t... In, typename Keys>
 | |
| 		probe apply(std::index_sequence<I, I1, In...>, int sofar, lua_State* L, Keys&& keys, int tableindex) {
 | |
| 			get_field < I<1 && b, raw>(L, std::get<I>(keys), tableindex);
 | |
| 			if (!maybe_indexable(L)) {
 | |
| 				return probe(false, sofar);
 | |
| 			}
 | |
| 			return apply(std::index_sequence<I1, In...>(), sofar + 1, L, std::forward<Keys>(keys), -1);
 | |
| 		}
 | |
| 
 | |
| 		template <typename Keys>
 | |
| 		probe get(lua_State* L, Keys&& keys, int tableindex = -2) {
 | |
| 			if constexpr (!b) {
 | |
| 				if (!maybe_indexable(L, tableindex)) {
 | |
| 					return probe(false, 0);
 | |
| 				}
 | |
| 				return apply(std::index_sequence_for<Args...>(), 1, L, std::forward<Keys>(keys), tableindex);
 | |
| 			}
 | |
| 			else {
 | |
| 				return apply(std::index_sequence_for<Args...>(), 1, L, std::forward<Keys>(keys), tableindex);
 | |
| 			}
 | |
| 		}
 | |
| 	};
 | |
| }
 | |
| } // namespace sol::stack
 | |
| 
 | |
| // end of sol/stack_probe.hpp
 | |
| 
 | |
| #include <cstring>
 | |
| #include <array>
 | |
| 
 | |
| namespace sol {
 | |
| 	namespace detail {
 | |
| 		using typical_chunk_name_t = char[SOL_ID_SIZE_I_];
 | |
| 		using typical_file_chunk_name_t = char[SOL_FILE_ID_SIZE_I_];
 | |
| 
 | |
| 		inline const std::string& default_chunk_name() {
 | |
| 			static const std::string name = "";
 | |
| 			return name;
 | |
| 		}
 | |
| 
 | |
| 		template <std::size_t N>
 | |
| 		const char* make_chunk_name(const string_view& code, const std::string& chunkname, char (&basechunkname)[N]) {
 | |
| 			if (chunkname.empty()) {
 | |
| 				auto it = code.cbegin();
 | |
| 				auto e = code.cend();
 | |
| 				std::size_t i = 0;
 | |
| 				static const std::size_t n = N - 4;
 | |
| 				for (i = 0; i < n && it != e; ++i, ++it) {
 | |
| 					basechunkname[i] = *it;
 | |
| 				}
 | |
| 				if (it != e) {
 | |
| 					for (std::size_t c = 0; c < 3; ++i, ++c) {
 | |
| 						basechunkname[i] = '.';
 | |
| 					}
 | |
| 				}
 | |
| 				basechunkname[i] = '\0';
 | |
| 				return &basechunkname[0];
 | |
| 			}
 | |
| 			else {
 | |
| 				return chunkname.c_str();
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		inline void clear_entries(stack_reference r) {
 | |
| 			stack::push(r.lua_state(), lua_nil);
 | |
| 			while (lua_next(r.lua_state(), -2)) {
 | |
| 				absolute_index key(r.lua_state(), -2);
 | |
| 				auto pn = stack::pop_n(r.lua_state(), 1);
 | |
| 				stack::set_field<false, true>(r.lua_state(), key, lua_nil, r.stack_index());
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		inline void clear_entries(const reference& registry_reference) {
 | |
| 			auto pp = stack::push_pop(registry_reference);
 | |
| 			stack_reference ref(registry_reference.lua_state(), -1);
 | |
| 			clear_entries(ref);
 | |
| 		}
 | |
| 	} // namespace detail
 | |
| 
 | |
| 	namespace stack {
 | |
| 		namespace stack_detail {
 | |
| 			template <typename T>
 | |
| 			inline int push_as_upvalues(lua_State* L, T& item) {
 | |
| 				typedef std::decay_t<T> TValue;
 | |
| 				static const std::size_t itemsize = sizeof(TValue);
 | |
| 				static const std::size_t voidsize = sizeof(void*);
 | |
| 				static const std::size_t voidsizem1 = voidsize - 1;
 | |
| 				static const std::size_t data_t_count = (sizeof(TValue) + voidsizem1) / voidsize;
 | |
| 				typedef std::array<void*, data_t_count> data_t;
 | |
| 
 | |
| 				data_t data { {} };
 | |
| 				std::memcpy(&data[0], std::addressof(item), itemsize);
 | |
| 				int pushcount = 0;
 | |
| 				for (const auto& v : data) {
 | |
| 					lua_pushlightuserdata(L, v);
 | |
| 					pushcount += 1;
 | |
| 				}
 | |
| 				return pushcount;
 | |
| 			}
 | |
| 
 | |
| 			template <typename T>
 | |
| 			inline std::pair<T, int> get_as_upvalues(lua_State* L, int index = 2) {
 | |
| 				static const std::size_t data_t_count = (sizeof(T) + (sizeof(void*) - 1)) / sizeof(void*);
 | |
| 				typedef std::array<void*, data_t_count> data_t;
 | |
| 				data_t voiddata { {} };
 | |
| 				for (std::size_t i = 0, d = 0; d < sizeof(T); ++i, d += sizeof(void*)) {
 | |
| 					voiddata[i] = lua_touserdata(L, upvalue_index(index++));
 | |
| 				}
 | |
| 				return std::pair<T, int>(*reinterpret_cast<T*>(static_cast<void*>(voiddata.data())), index);
 | |
| 			}
 | |
| 
 | |
| 			template <typename T>
 | |
| 			inline std::pair<T, int> get_as_upvalues_using_function(lua_State* L, int function_index = -1) {
 | |
| 				static const std::size_t data_t_count = (sizeof(T) + (sizeof(void*) - 1)) / sizeof(void*);
 | |
| 				typedef std::array<void*, data_t_count> data_t;
 | |
| 				function_index = lua_absindex(L, function_index);
 | |
| 				int index = 0;
 | |
| 				data_t voiddata { {} };
 | |
| 				for (std::size_t d = 0; d < sizeof(T); d += sizeof(void*)) {
 | |
| 					// first upvalue is nullptr to respect environment shenanigans
 | |
| 					// So +2 instead of +1
 | |
| 					const char* upvalue_name = lua_getupvalue(L, function_index, index + 2);
 | |
| 					if (upvalue_name == nullptr) {
 | |
| 						// We should freak out here...
 | |
| 						break;
 | |
| 					}
 | |
| 					voiddata[index] = lua_touserdata(L, -1);
 | |
| 					++index;
 | |
| 				}
 | |
| 				lua_pop(L, index);
 | |
| 				return std::pair<T, int>(*reinterpret_cast<T*>(static_cast<void*>(voiddata.data())), index);
 | |
| 			}
 | |
| 
 | |
| 			template <typename Fx, typename... Args>
 | |
| 			static decltype(auto) eval(types<>, std::index_sequence<>, lua_State*, int, record&, Fx&& fx, Args&&... args) {
 | |
| 				return std::forward<Fx>(fx)(std::forward<Args>(args)...);
 | |
| 			}
 | |
| 
 | |
| 			template <typename Fx, typename Arg, typename... Args, std::size_t I, std::size_t... Is, typename... FxArgs>
 | |
| 			static decltype(auto) eval(
 | |
| 			     types<Arg, Args...>, std::index_sequence<I, Is...>, lua_State* L, int start, record& tracking, Fx&& fx, FxArgs&&... fxargs) {
 | |
| 				return eval(types<Args...>(),
 | |
| 				     std::index_sequence<Is...>(),
 | |
| 				     L,
 | |
| 				     start,
 | |
| 				     tracking,
 | |
| 				     std::forward<Fx>(fx),
 | |
| 				     std::forward<FxArgs>(fxargs)...,
 | |
| 				     stack_detail::unchecked_get<Arg>(L, start + tracking.used, tracking));
 | |
| 			}
 | |
| 
 | |
| 			template <bool checkargs = detail::default_safe_function_calls, std::size_t... I, typename R, typename... Args, typename Fx, typename... FxArgs>
 | |
| 			inline decltype(auto) call(types<R>, types<Args...> ta, std::index_sequence<I...> tai, lua_State* L, int start, Fx&& fx, FxArgs&&... args) {
 | |
| 				static_assert(meta::all<meta::is_not_move_only<Args>...>::value,
 | |
| 				     "One of the arguments being bound is a move-only type, and it is not being taken by reference: this will break your code. Please take "
 | |
| 				     "a reference and std::move it manually if this was your intention.");
 | |
| 				if constexpr (checkargs) {
 | |
| 					argument_handler<types<R, Args...>> handler {};
 | |
| 					multi_check<Args...>(L, start, handler);
 | |
| 				}
 | |
| 				record tracking {};
 | |
| 				if constexpr (std::is_void_v<R>) {
 | |
| 					eval(ta, tai, L, start, tracking, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
 | |
| 				}
 | |
| 				else {
 | |
| 					return eval(ta, tai, L, start, tracking, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
 | |
| 				}
 | |
| 			}
 | |
| 		} // namespace stack_detail
 | |
| 
 | |
| 		template <typename T>
 | |
| 		int set_ref(lua_State* L, T&& arg, int tableindex = -2) {
 | |
| 			push(L, std::forward<T>(arg));
 | |
| 			return luaL_ref(L, tableindex);
 | |
| 		}
 | |
| 
 | |
| 		template <bool check_args = detail::default_safe_function_calls, typename R, typename... Args, typename Fx, typename... FxArgs>
 | |
| 		inline decltype(auto) call(types<R> tr, types<Args...> ta, lua_State* L, int start, Fx&& fx, FxArgs&&... args) {
 | |
| 			using args_indices = std::make_index_sequence<sizeof...(Args)>;
 | |
| 			if constexpr (std::is_void_v<R>) {
 | |
| 				stack_detail::call<check_args>(tr, ta, args_indices(), L, start, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
 | |
| 			}
 | |
| 			else {
 | |
| 				return stack_detail::call<check_args>(tr, ta, args_indices(), L, start, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		template <bool check_args = detail::default_safe_function_calls, typename R, typename... Args, typename Fx, typename... FxArgs>
 | |
| 		inline decltype(auto) call(types<R> tr, types<Args...> ta, lua_State* L, Fx&& fx, FxArgs&&... args) {
 | |
| 			if constexpr (std::is_void_v<R>) {
 | |
| 				call<check_args>(tr, ta, L, 1, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
 | |
| 			}
 | |
| 			else {
 | |
| 				return call<check_args>(tr, ta, L, 1, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		template <bool check_args = detail::default_safe_function_calls, typename R, typename... Args, typename Fx, typename... FxArgs>
 | |
| 		inline decltype(auto) call_from_top(types<R> tr, types<Args...> ta, lua_State* L, Fx&& fx, FxArgs&&... args) {
 | |
| 			using expected_count_t = meta::count_for_pack<lua_size, Args...>;
 | |
| 			if constexpr (std::is_void_v<R>) {
 | |
| 				call<check_args>(tr,
 | |
| 				     ta,
 | |
| 				     L,
 | |
| 				     (std::max)(static_cast<int>(lua_gettop(L) - expected_count_t::value), static_cast<int>(0)),
 | |
| 				     std::forward<Fx>(fx),
 | |
| 				     std::forward<FxArgs>(args)...);
 | |
| 			}
 | |
| 			else {
 | |
| 				return call<check_args>(tr,
 | |
| 				     ta,
 | |
| 				     L,
 | |
| 				     (std::max)(static_cast<int>(lua_gettop(L) - expected_count_t::value), static_cast<int>(0)),
 | |
| 				     std::forward<Fx>(fx),
 | |
| 				     std::forward<FxArgs>(args)...);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		template <bool check_args = detail::default_safe_function_calls, bool clean_stack = true, typename Ret0, typename... Ret, typename... Args,
 | |
| 		     typename Fx, typename... FxArgs>
 | |
| 		inline int call_into_lua(types<Ret0, Ret...> tr, types<Args...> ta, lua_State* L, int start, Fx&& fx, FxArgs&&... fxargs) {
 | |
| 			if constexpr (std::is_void_v<Ret0>) {
 | |
| 				call<check_args>(tr, ta, L, start, std::forward<Fx>(fx), std::forward<FxArgs>(fxargs)...);
 | |
| 				if constexpr (clean_stack) {
 | |
| 					lua_settop(L, 0);
 | |
| 				}
 | |
| 				return 0;
 | |
| 			}
 | |
| 			else {
 | |
| 				(void)tr;
 | |
| 				decltype(auto) r
 | |
| 				     = call<check_args>(types<meta::return_type_t<Ret0, Ret...>>(), ta, L, start, std::forward<Fx>(fx), std::forward<FxArgs>(fxargs)...);
 | |
| 				using R = meta::unqualified_t<decltype(r)>;
 | |
| 				using is_stack = meta::any<is_stack_based<R>, std::is_same<R, absolute_index>, std::is_same<R, ref_index>, std::is_same<R, raw_index>>;
 | |
| 				if constexpr (clean_stack && !is_stack::value) {
 | |
| 					lua_settop(L, 0);
 | |
| 				}
 | |
| 				return push_reference(L, std::forward<decltype(r)>(r));
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		template <bool check_args = detail::default_safe_function_calls, bool clean_stack = true, typename Fx, typename... FxArgs>
 | |
| 		inline int call_lua(lua_State* L, int start, Fx&& fx, FxArgs&&... fxargs) {
 | |
| 			using traits_type = lua_bind_traits<meta::unqualified_t<Fx>>;
 | |
| 			using args_list = typename traits_type::args_list;
 | |
| 			using returns_list = typename traits_type::returns_list;
 | |
| 			return call_into_lua<check_args, clean_stack>(returns_list(), args_list(), L, start, std::forward<Fx>(fx), std::forward<FxArgs>(fxargs)...);
 | |
| 		}
 | |
| 
 | |
| 		inline call_syntax get_call_syntax(lua_State* L, const string_view& key, int index) {
 | |
| 			if (lua_gettop(L) < 1) {
 | |
| 				return call_syntax::dot;
 | |
| 			}
 | |
| 			luaL_getmetatable(L, key.data());
 | |
| 			auto pn = pop_n(L, 1);
 | |
| 			if (lua_compare(L, -1, index, LUA_OPEQ) != 1) {
 | |
| 				return call_syntax::dot;
 | |
| 			}
 | |
| 			return call_syntax::colon;
 | |
| 		}
 | |
| 
 | |
| 		inline void script(
 | |
| 		     lua_State* L, lua_Reader reader, void* data, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
 | |
| 			detail::typical_chunk_name_t basechunkname = {};
 | |
| 			const char* chunknametarget = detail::make_chunk_name("lua_Reader", chunkname, basechunkname);
 | |
| 			if (lua_load(L, reader, data, chunknametarget, to_string(mode).c_str()) || lua_pcall(L, 0, LUA_MULTRET, 0)) {
 | |
| 				lua_error(L);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		inline void script(
 | |
| 		     lua_State* L, const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
 | |
| 
 | |
| 			detail::typical_chunk_name_t basechunkname = {};
 | |
| 			const char* chunknametarget = detail::make_chunk_name(code, chunkname, basechunkname);
 | |
| 			if (luaL_loadbufferx(L, code.data(), code.size(), chunknametarget, to_string(mode).c_str()) || lua_pcall(L, 0, LUA_MULTRET, 0)) {
 | |
| 				lua_error(L);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		inline void script_file(lua_State* L, const std::string& filename, load_mode mode = load_mode::any) {
 | |
| 			if (luaL_loadfilex(L, filename.c_str(), to_string(mode).c_str()) || lua_pcall(L, 0, LUA_MULTRET, 0)) {
 | |
| 				lua_error(L);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		inline void luajit_exception_handler(lua_State* L, int (*handler)(lua_State*, lua_CFunction) = detail::c_trampoline) {
 | |
| #if SOL_IS_ON(SOL_USE_LUAJIT_EXCEPTION_TRAMPOLINE_I_)
 | |
| 			if (L == nullptr) {
 | |
| 				return;
 | |
| 			}
 | |
| #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
 | |
| 			luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
 | |
| #endif // make sure stack doesn't overflow
 | |
| 			lua_pushlightuserdata(L, (void*)handler);
 | |
| 			auto pn = pop_n(L, 1);
 | |
| 			luaJIT_setmode(L, -1, LUAJIT_MODE_WRAPCFUNC | LUAJIT_MODE_ON);
 | |
| #else
 | |
| 			(void)L;
 | |
| 			(void)handler;
 | |
| #endif
 | |
| 		}
 | |
| 
 | |
| 		inline void luajit_exception_off(lua_State* L) {
 | |
| #if SOL_IS_ON(SOL_USE_LUAJIT_EXCEPTION_TRAMPOLINE_I_)
 | |
| 			if (L == nullptr) {
 | |
| 				return;
 | |
| 			}
 | |
| 			luaJIT_setmode(L, -1, LUAJIT_MODE_WRAPCFUNC | LUAJIT_MODE_OFF);
 | |
| #else
 | |
| 			(void)L;
 | |
| #endif
 | |
| 		}
 | |
| 	} // namespace stack
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/stack.hpp
 | |
| 
 | |
| // beginning of sol/object.hpp
 | |
| 
 | |
| // beginning of sol/make_reference.hpp
 | |
| 
 | |
| namespace sol {
 | |
| 
 | |
| 	template <typename R = reference, bool should_pop = !is_stack_based_v<R>, typename T>
 | |
| 	R make_reference(lua_State* L, T&& value) {
 | |
| 		int backpedal = stack::push(L, std::forward<T>(value));
 | |
| 		R r = stack::get<R>(L, -backpedal);
 | |
| 		if (should_pop) {
 | |
| 			lua_pop(L, backpedal);
 | |
| 		}
 | |
| 		return r;
 | |
| 	}
 | |
| 
 | |
| 	template <typename T, typename R = reference, bool should_pop = !is_stack_based_v<R>, typename... Args>
 | |
| 	R make_reference(lua_State* L, Args&&... args) {
 | |
| 		int backpedal = stack::push<T>(L, std::forward<Args>(args)...);
 | |
| 		R r = stack::get<R>(L, -backpedal);
 | |
| 		if (should_pop) {
 | |
| 			lua_pop(L, backpedal);
 | |
| 		}
 | |
| 		return r;
 | |
| 	}
 | |
| 
 | |
| 	template <typename R = reference, bool should_pop = !is_stack_based_v<R>, typename T>
 | |
| 	R make_reference_userdata(lua_State* L, T&& value) {
 | |
| 		int backpedal = stack::push_userdata(L, std::forward<T>(value));
 | |
| 		R r = stack::get<R>(L, -backpedal);
 | |
| 		if (should_pop) {
 | |
| 			lua_pop(L, backpedal);
 | |
| 		}
 | |
| 		return r;
 | |
| 	}
 | |
| 
 | |
| 	template <typename T, typename R = reference, bool should_pop = !is_stack_based_v<R>, typename... Args>
 | |
| 	R make_reference_userdata(lua_State* L, Args&&... args) {
 | |
| 		int backpedal = stack::push_userdata<T>(L, std::forward<Args>(args)...);
 | |
| 		R r = stack::get<R>(L, -backpedal);
 | |
| 		if (should_pop) {
 | |
| 			lua_pop(L, backpedal);
 | |
| 		}
 | |
| 		return r;
 | |
| 	}
 | |
| 
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/make_reference.hpp
 | |
| 
 | |
| // beginning of sol/object_base.hpp
 | |
| 
 | |
| namespace sol {
 | |
| 
 | |
| 	template <typename ref_t>
 | |
| 	class basic_object_base : public ref_t {
 | |
| 	private:
 | |
| 		using base_t = ref_t;
 | |
| 		
 | |
| 		template <typename T>
 | |
| 		decltype(auto) as_stack(std::true_type) const {
 | |
| 			return stack::get<T>(base_t::lua_state(), base_t::stack_index());
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		decltype(auto) as_stack(std::false_type) const {
 | |
| 			base_t::push();
 | |
| 			return stack::pop<T>(base_t::lua_state());
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		bool is_stack(std::true_type) const {
 | |
| 			return stack::check<T>(base_t::lua_state(), base_t::stack_index(), no_panic);
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		bool is_stack(std::false_type) const {
 | |
| 			int r = base_t::registry_index();
 | |
| 			if (r == LUA_REFNIL)
 | |
| 				return meta::any_same<meta::unqualified_t<T>, lua_nil_t, nullopt_t, std::nullptr_t>::value ? true : false;
 | |
| 			if (r == LUA_NOREF)
 | |
| 				return false;
 | |
| 			auto pp = stack::push_pop(*this);
 | |
| 			return stack::check<T>(base_t::lua_state(), -1, no_panic);
 | |
| 		}
 | |
| 
 | |
| 	public:
 | |
| 		basic_object_base() noexcept = default;
 | |
| 		basic_object_base(const basic_object_base&) = default;
 | |
| 		basic_object_base(basic_object_base&&) = default;
 | |
| 		basic_object_base& operator=(const basic_object_base&) = default;
 | |
| 		basic_object_base& operator=(basic_object_base&&) = default;
 | |
| 		template <typename T, typename... Args, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_object_base>>> = meta::enabler>
 | |
| 		basic_object_base(T&& arg, Args&&... args)
 | |
| 		: base_t(std::forward<T>(arg), std::forward<Args>(args)...) {
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		decltype(auto) as() const {
 | |
| 			return as_stack<T>(is_stack_based<base_t>());
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		bool is() const {
 | |
| 			return is_stack<T>(is_stack_based<base_t>());
 | |
| 		}
 | |
| 	};
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/object_base.hpp
 | |
| 
 | |
| namespace sol {
 | |
| 
 | |
| 	template <typename base_type>
 | |
| 	class basic_object : public basic_object_base<base_type> {
 | |
| 	private:
 | |
| 		typedef basic_object_base<base_type> base_t;
 | |
| 
 | |
| 		template <bool invert_and_pop = false>
 | |
| 		basic_object(std::integral_constant<bool, invert_and_pop>, lua_State* L, int index = -1) noexcept
 | |
| 		: base_t(L, index) {
 | |
| 			if (invert_and_pop) {
 | |
| 				lua_pop(L, -index);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 	protected:
 | |
| 		basic_object(detail::no_safety_tag, lua_nil_t n) : base_t(n) {
 | |
| 		}
 | |
| 		basic_object(detail::no_safety_tag, lua_State* L, int index) : base_t(L, index) {
 | |
| 		}
 | |
| 		basic_object(lua_State* L, detail::global_tag t) : base_t(L, t) {
 | |
| 		}
 | |
| 		basic_object(detail::no_safety_tag, lua_State* L, ref_index index) : base_t(L, index) {
 | |
| 		}
 | |
| 		template <typename T,
 | |
| 		     meta::enable<meta::neg<meta::any_same<meta::unqualified_t<T>, basic_object>>, meta::neg<std::is_same<base_type, stack_reference>>,
 | |
| 		          meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
 | |
| 		basic_object(detail::no_safety_tag, T&& r) noexcept : base_t(std::forward<T>(r)) {
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
 | |
| 		basic_object(detail::no_safety_tag, lua_State* L, T&& r) noexcept : base_t(L, std::forward<T>(r)) {
 | |
| 		}
 | |
| 
 | |
| 	public:
 | |
| 		basic_object() noexcept = default;
 | |
| 		template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_object>>, meta::neg<std::is_same<base_type, stack_reference>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
 | |
| 		basic_object(T&& r)
 | |
| 		: base_t(std::forward<T>(r)) {
 | |
| 		}
 | |
| 		template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
 | |
| 		basic_object(lua_State* L, T&& r)
 | |
| 		: base_t(L, std::forward<T>(r)) {
 | |
| 		}
 | |
| 		basic_object(lua_nil_t r)
 | |
| 		: base_t(r) {
 | |
| 		}
 | |
| 		basic_object(const basic_object&) = default;
 | |
| 		basic_object(basic_object&&) = default;
 | |
| 		basic_object(const stack_reference& r) noexcept
 | |
| 		: basic_object(r.lua_state(), r.stack_index()) {
 | |
| 		}
 | |
| 		basic_object(stack_reference&& r) noexcept
 | |
| 		: basic_object(r.lua_state(), r.stack_index()) {
 | |
| 		}
 | |
| 		template <typename Super>
 | |
| 		basic_object(const proxy_base<Super>& r) noexcept
 | |
| 		: basic_object(r.operator basic_object()) {
 | |
| 		}
 | |
| 		template <typename Super>
 | |
| 		basic_object(proxy_base<Super>&& r) noexcept
 | |
| 		: basic_object(r.operator basic_object()) {
 | |
| 		}
 | |
| 		basic_object(lua_State* L, lua_nil_t r) noexcept
 | |
| 		: base_t(L, r) {
 | |
| 		}
 | |
| 		basic_object(lua_State* L, int index = -1) noexcept
 | |
| 		: base_t(L, index) {
 | |
| 		}
 | |
| 		basic_object(lua_State* L, absolute_index index) noexcept
 | |
| 		: base_t(L, index) {
 | |
| 		}
 | |
| 		basic_object(lua_State* L, raw_index index) noexcept
 | |
| 		: base_t(L, index) {
 | |
| 		}
 | |
| 		basic_object(lua_State* L, ref_index index) noexcept
 | |
| 		: base_t(L, index) {
 | |
| 		}
 | |
| 		template <typename T, typename... Args>
 | |
| 		basic_object(lua_State* L, in_place_type_t<T>, Args&&... args) noexcept
 | |
| 		: basic_object(std::integral_constant<bool, !is_stack_based<base_t>::value>(), L, -stack::push<T>(L, std::forward<Args>(args)...)) {
 | |
| 		}
 | |
| 		template <typename T, typename... Args>
 | |
| 		basic_object(lua_State* L, in_place_t, T&& arg, Args&&... args) noexcept
 | |
| 		: basic_object(L, in_place_type<T>, std::forward<T>(arg), std::forward<Args>(args)...) {
 | |
| 		}
 | |
| 		basic_object& operator=(const basic_object&) = default;
 | |
| 		basic_object& operator=(basic_object&&) = default;
 | |
| 		basic_object& operator=(const base_type& b) {
 | |
| 			base_t::operator=(b);
 | |
| 			return *this;
 | |
| 		}
 | |
| 		basic_object& operator=(base_type&& b) {
 | |
| 			base_t::operator=(std::move(b));
 | |
| 			return *this;
 | |
| 		}
 | |
| 		template <typename Super>
 | |
| 		basic_object& operator=(const proxy_base<Super>& r) {
 | |
| 			this->operator=(r.operator basic_object());
 | |
| 			return *this;
 | |
| 		}
 | |
| 		template <typename Super>
 | |
| 		basic_object& operator=(proxy_base<Super>&& r) {
 | |
| 			this->operator=(r.operator basic_object());
 | |
| 			return *this;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	object make_object(lua_State* L, T&& value) {
 | |
| 		return make_reference<object, true>(L, std::forward<T>(value));
 | |
| 	}
 | |
| 
 | |
| 	template <typename T, typename... Args>
 | |
| 	object make_object(lua_State* L, Args&&... args) {
 | |
| 		return make_reference<T, object, true>(L, std::forward<Args>(args)...);
 | |
| 	}
 | |
| 
 | |
| 	template <typename T>
 | |
| 	object make_object_userdata(lua_State* L, T&& value) {
 | |
| 		return make_reference_userdata<object, true>(L, std::forward<T>(value));
 | |
| 	}
 | |
| 
 | |
| 	template <typename T, typename... Args>
 | |
| 	object make_object_userdata(lua_State* L, Args&&... args) {
 | |
| 		return make_reference_userdata<T, object, true>(L, std::forward<Args>(args)...);
 | |
| 	}
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/object.hpp
 | |
| 
 | |
| // beginning of sol/function.hpp
 | |
| 
 | |
| // beginning of sol/unsafe_function.hpp
 | |
| 
 | |
| // beginning of sol/function_result.hpp
 | |
| 
 | |
| // beginning of sol/protected_function_result.hpp
 | |
| 
 | |
| // beginning of sol/proxy_base.hpp
 | |
| 
 | |
| namespace sol {
 | |
| 	struct proxy_base_tag {};
 | |
| 
 | |
| 	namespace detail {
 | |
| 		template <typename T>
 | |
| 		using proxy_key_t = meta::conditional_t<meta::is_specialization_of_v<meta::unqualified_t<T>, std::tuple>, T,
 | |
| 		     std::tuple<meta::conditional_t<std::is_array_v<meta::unqualified_t<T>>, std::remove_reference_t<T>&, meta::unqualified_t<T>>>>;
 | |
| 	}
 | |
| 
 | |
| 	template <typename Super>
 | |
| 	struct proxy_base : proxy_base_tag {
 | |
| 		operator std::string() const {
 | |
| 			const Super& super = *static_cast<const Super*>(static_cast<const void*>(this));
 | |
| 			return super.template get<std::string>();
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, meta::enable<meta::neg<meta::is_string_constructible<T>>, is_proxy_primitive<meta::unqualified_t<T>>> = meta::enabler>
 | |
| 		operator T() const {
 | |
| 			const Super& super = *static_cast<const Super*>(static_cast<const void*>(this));
 | |
| 			return super.template get<T>();
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, meta::enable<meta::neg<meta::is_string_constructible<T>>, meta::neg<is_proxy_primitive<meta::unqualified_t<T>>>> = meta::enabler>
 | |
| 		operator T&() const {
 | |
| 			const Super& super = *static_cast<const Super*>(static_cast<const void*>(this));
 | |
| 			return super.template get<T&>();
 | |
| 		}
 | |
| 
 | |
| 		lua_State* lua_state() const {
 | |
| 			const Super& super = *static_cast<const Super*>(static_cast<const void*>(this));
 | |
| 			return super.lua_state();
 | |
| 		}
 | |
| 	};
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/proxy_base.hpp
 | |
| 
 | |
| // beginning of sol/stack_iterator.hpp
 | |
| 
 | |
| #include <limits>
 | |
| #include <iterator>
 | |
| 
 | |
| namespace sol {
 | |
| 	template <typename proxy_t, bool is_const>
 | |
| 	struct stack_iterator {
 | |
| 		typedef meta::conditional_t<is_const, const proxy_t, proxy_t> reference;
 | |
| 		typedef meta::conditional_t<is_const, const proxy_t*, proxy_t*> pointer;
 | |
| 		typedef proxy_t value_type;
 | |
| 		typedef std::ptrdiff_t difference_type;
 | |
| 		typedef std::random_access_iterator_tag iterator_category;
 | |
| 		lua_State* L;
 | |
| 		int index;
 | |
| 		int stacktop;
 | |
| 		proxy_t sp;
 | |
| 
 | |
| 		stack_iterator()
 | |
| 			: L(nullptr), index((std::numeric_limits<int>::max)()), stacktop((std::numeric_limits<int>::max)()), sp() {
 | |
| 		}
 | |
| 		stack_iterator(const stack_iterator<proxy_t, true>& r)
 | |
| 			: L(r.L), index(r.index), stacktop(r.stacktop), sp(r.sp) {
 | |
| 		}
 | |
| 		stack_iterator(lua_State* luastate, int idx, int topidx)
 | |
| 			: L(luastate), index(idx), stacktop(topidx), sp(luastate, idx) {
 | |
| 		}
 | |
| 
 | |
| 		reference operator*() {
 | |
| 			return proxy_t(L, index);
 | |
| 		}
 | |
| 
 | |
| 		reference operator*() const {
 | |
| 			return proxy_t(L, index);
 | |
| 		}
 | |
| 
 | |
| 		pointer operator->() {
 | |
| 			sp = proxy_t(L, index);
 | |
| 			return &sp;
 | |
| 		}
 | |
| 
 | |
| 		pointer operator->() const {
 | |
| 			const_cast<proxy_t&>(sp) = proxy_t(L, index);
 | |
| 			return &sp;
 | |
| 		}
 | |
| 
 | |
| 		stack_iterator& operator++() {
 | |
| 			++index;
 | |
| 			return *this;
 | |
| 		}
 | |
| 
 | |
| 		stack_iterator operator++(int) {
 | |
| 			auto r = *this;
 | |
| 			this->operator++();
 | |
| 			return r;
 | |
| 		}
 | |
| 
 | |
| 		stack_iterator& operator--() {
 | |
| 			--index;
 | |
| 			return *this;
 | |
| 		}
 | |
| 
 | |
| 		stack_iterator operator--(int) {
 | |
| 			auto r = *this;
 | |
| 			this->operator--();
 | |
| 			return r;
 | |
| 		}
 | |
| 
 | |
| 		stack_iterator& operator+=(difference_type idx) {
 | |
| 			index += static_cast<int>(idx);
 | |
| 			return *this;
 | |
| 		}
 | |
| 
 | |
| 		stack_iterator& operator-=(difference_type idx) {
 | |
| 			index -= static_cast<int>(idx);
 | |
| 			return *this;
 | |
| 		}
 | |
| 
 | |
| 		difference_type operator-(const stack_iterator& r) const {
 | |
| 			return index - r.index;
 | |
| 		}
 | |
| 
 | |
| 		stack_iterator operator+(difference_type idx) const {
 | |
| 			stack_iterator r = *this;
 | |
| 			r += idx;
 | |
| 			return r;
 | |
| 		}
 | |
| 
 | |
| 		reference operator[](difference_type idx) const {
 | |
| 			return proxy_t(L, index + static_cast<int>(idx));
 | |
| 		}
 | |
| 
 | |
| 		bool operator==(const stack_iterator& r) const {
 | |
| 			if (stacktop == (std::numeric_limits<int>::max)()) {
 | |
| 				return r.index == r.stacktop;
 | |
| 			}
 | |
| 			else if (r.stacktop == (std::numeric_limits<int>::max)()) {
 | |
| 				return index == stacktop;
 | |
| 			}
 | |
| 			return index == r.index;
 | |
| 		}
 | |
| 
 | |
| 		bool operator!=(const stack_iterator& r) const {
 | |
| 			return !(this->operator==(r));
 | |
| 		}
 | |
| 
 | |
| 		bool operator<(const stack_iterator& r) const {
 | |
| 			return index < r.index;
 | |
| 		}
 | |
| 
 | |
| 		bool operator>(const stack_iterator& r) const {
 | |
| 			return index > r.index;
 | |
| 		}
 | |
| 
 | |
| 		bool operator<=(const stack_iterator& r) const {
 | |
| 			return index <= r.index;
 | |
| 		}
 | |
| 
 | |
| 		bool operator>=(const stack_iterator& r) const {
 | |
| 			return index >= r.index;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename proxy_t, bool is_const>
 | |
| 	inline stack_iterator<proxy_t, is_const> operator+(typename stack_iterator<proxy_t, is_const>::difference_type n, const stack_iterator<proxy_t, is_const>& r) {
 | |
| 		return r + n;
 | |
| 	}
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/stack_iterator.hpp
 | |
| 
 | |
| // beginning of sol/stack_proxy.hpp
 | |
| 
 | |
| // beginning of sol/stack_proxy_base.hpp
 | |
| 
 | |
| namespace sol {
 | |
| 	struct stack_proxy_base : public proxy_base<stack_proxy_base> {
 | |
| 	private:
 | |
| 		lua_State* L;
 | |
| 		int index;
 | |
| 
 | |
| 	public:
 | |
| 		stack_proxy_base()
 | |
| 			: L(nullptr), index(0) {
 | |
| 		}
 | |
| 		stack_proxy_base(lua_State* L, int index)
 | |
| 			: L(L), index(index) {
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		decltype(auto) get() const {
 | |
| 			return stack::get<T>(L, stack_index());
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		bool is() const {
 | |
| 			return stack::check<T>(L, stack_index());
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		decltype(auto) as() const {
 | |
| 			return get<T>();
 | |
| 		}
 | |
| 
 | |
| 		type get_type() const noexcept {
 | |
| 			return type_of(lua_state(), stack_index());
 | |
| 		}
 | |
| 
 | |
| 		int push() const {
 | |
| 			return push(L);
 | |
| 		}
 | |
| 
 | |
| 		int push(lua_State* Ls) const {
 | |
| 			lua_pushvalue(Ls, index);
 | |
| 			return 1;
 | |
| 		}
 | |
| 
 | |
| 		lua_State* lua_state() const {
 | |
| 			return L;
 | |
| 		}
 | |
| 		int stack_index() const {
 | |
| 			return index;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	namespace stack {
 | |
| 		template <>
 | |
| 		struct unqualified_getter<stack_proxy_base> {
 | |
| 			static stack_proxy_base get(lua_State* L, int index = -1) {
 | |
| 				return stack_proxy_base(L, index);
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <>
 | |
| 		struct unqualified_pusher<stack_proxy_base> {
 | |
| 			static int push(lua_State*, const stack_proxy_base& ref) {
 | |
| 				return ref.push();
 | |
| 			}
 | |
| 		};
 | |
| 	} // namespace stack
 | |
| 
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/stack_proxy_base.hpp
 | |
| 
 | |
| namespace sol {
 | |
| 	struct stack_proxy : public stack_proxy_base {
 | |
| 	public:
 | |
| 		stack_proxy() : stack_proxy_base() {
 | |
| 		}
 | |
| 		stack_proxy(lua_State* L, int index) : stack_proxy_base(L, index) {
 | |
| 		}
 | |
| 
 | |
| 		template <typename... Ret, typename... Args>
 | |
| 		decltype(auto) call(Args&&... args);
 | |
| 
 | |
| 		template <typename... Args>
 | |
| 		decltype(auto) operator()(Args&&... args) {
 | |
| 			return call<>(std::forward<Args>(args)...);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	namespace stack {
 | |
| 		template <>
 | |
| 		struct unqualified_getter<stack_proxy> {
 | |
| 			static stack_proxy get(lua_State* L, int index, record& tracking) {
 | |
| 				tracking.use(0);
 | |
| 				return stack_proxy(L, index);
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <>
 | |
| 		struct unqualified_pusher<stack_proxy> {
 | |
| 			static int push(lua_State*, const stack_proxy& ref) {
 | |
| 				return ref.push();
 | |
| 			}
 | |
| 		};
 | |
| 	} // namespace stack
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/stack_proxy.hpp
 | |
| 
 | |
| #include <cstdint>
 | |
| 
 | |
| namespace sol {
 | |
| 	struct protected_function_result : public proxy_base<protected_function_result> {
 | |
| 	private:
 | |
| 		lua_State* L;
 | |
| 		int index;
 | |
| 		int returncount;
 | |
| 		int popcount;
 | |
| 		call_status err;
 | |
| 
 | |
| 	public:
 | |
| 		typedef stack_proxy reference_type;
 | |
| 		typedef stack_proxy value_type;
 | |
| 		typedef stack_proxy* pointer;
 | |
| 		typedef std::ptrdiff_t difference_type;
 | |
| 		typedef std::size_t size_type;
 | |
| 		typedef stack_iterator<stack_proxy, false> iterator;
 | |
| 		typedef stack_iterator<stack_proxy, true> const_iterator;
 | |
| 		typedef std::reverse_iterator<iterator> reverse_iterator;
 | |
| 		typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
 | |
| 
 | |
| 		protected_function_result() noexcept = default;
 | |
| 		protected_function_result(lua_State* Ls, int idx = -1, int retnum = 0, int popped = 0, call_status pferr = call_status::ok) noexcept
 | |
| 		: L(Ls), index(idx), returncount(retnum), popcount(popped), err(pferr) {
 | |
| 		}
 | |
| 
 | |
| 		// We do not want anyone to copy these around willy-nilly
 | |
| 		// Will likely break people, but also will probably get rid of quiet bugs that have
 | |
| 		// been lurking. (E.g., Vanilla Lua will just quietly discard over-pops and under-pops:
 | |
| 		// LuaJIT and other Lua engines will implode and segfault at random later times.)
 | |
| 		protected_function_result(const protected_function_result&) = delete;
 | |
| 		protected_function_result& operator=(const protected_function_result&) = delete;
 | |
| 
 | |
| 		protected_function_result(protected_function_result&& o) noexcept
 | |
| 		: L(o.L), index(o.index), returncount(o.returncount), popcount(o.popcount), err(o.err) {
 | |
| 			// Must be manual, otherwise destructor will screw us
 | |
| 			// return count being 0 is enough to keep things clean
 | |
| 			// but we will be thorough
 | |
| 			o.abandon();
 | |
| 		}
 | |
| 		protected_function_result& operator=(protected_function_result&& o) noexcept {
 | |
| 			L = o.L;
 | |
| 			index = o.index;
 | |
| 			returncount = o.returncount;
 | |
| 			popcount = o.popcount;
 | |
| 			err = o.err;
 | |
| 			// Must be manual, otherwise destructor will screw us
 | |
| 			// return count being 0 is enough to keep things clean
 | |
| 			// but we will be thorough
 | |
| 			o.abandon();
 | |
| 			return *this;
 | |
| 		}
 | |
| 
 | |
| 		protected_function_result(const unsafe_function_result& o) = delete;
 | |
| 		protected_function_result& operator=(const unsafe_function_result& o) = delete;
 | |
| 		protected_function_result(unsafe_function_result&& o) noexcept;
 | |
| 		protected_function_result& operator=(unsafe_function_result&& o) noexcept;
 | |
| 
 | |
| 		call_status status() const noexcept {
 | |
| 			return err;
 | |
| 		}
 | |
| 
 | |
| 		bool valid() const noexcept {
 | |
| 			return status() == call_status::ok || status() == call_status::yielded;
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		decltype(auto) get(int index_offset = 0) const {
 | |
| 			using UT = meta::unqualified_t<T>;
 | |
| 			int target = index + index_offset;
 | |
| 			if constexpr (meta::is_optional_v<UT>) {
 | |
| 				using ValueType = typename UT::value_type;
 | |
| 				if constexpr (std::is_same_v<ValueType, error>) {
 | |
| 					if (valid()) {
 | |
| 						return UT();
 | |
| 					}
 | |
| 					return UT(error(detail::direct_error, stack::get<std::string>(L, target)));
 | |
| 				}
 | |
| 				else {
 | |
| 					if (!valid()) {
 | |
| 						return UT();
 | |
| 					}
 | |
| 					return stack::get<UT>(L, target);
 | |
| 				}
 | |
| 			}
 | |
| 			else {
 | |
| 				if constexpr (std::is_same_v<T, error>) {
 | |
| #if SOL_IS_ON(SOL_SAFE_PROXIES_I_)
 | |
| 					if (valid()) {
 | |
| 						type t = type_of(L, target);
 | |
| 						type_panic_c_str(L, target, t, type::none, "bad get from protected_function_result (is an error)");
 | |
| 					}
 | |
| #endif // Check Argument Safety
 | |
| 					return error(detail::direct_error, stack::get<std::string>(L, target));
 | |
| 				}
 | |
| 				else {
 | |
| #if SOL_IS_ON(SOL_SAFE_PROXIES_I_)
 | |
| 					if (!valid()) {
 | |
| 						type t = type_of(L, target);
 | |
| 						type_panic_c_str(L, target, t, type::none, "bad get from protected_function_result (is not an error)");
 | |
| 					}
 | |
| #endif // Check Argument Safety
 | |
| 					return stack::get<T>(L, target);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		type get_type(int index_offset = 0) const noexcept {
 | |
| 			return type_of(L, index + static_cast<int>(index_offset));
 | |
| 		}
 | |
| 
 | |
| 		stack_proxy operator[](difference_type index_offset) const {
 | |
| 			return stack_proxy(L, index + static_cast<int>(index_offset));
 | |
| 		}
 | |
| 
 | |
| 		iterator begin() {
 | |
| 			return iterator(L, index, stack_index() + return_count());
 | |
| 		}
 | |
| 		iterator end() {
 | |
| 			return iterator(L, stack_index() + return_count(), stack_index() + return_count());
 | |
| 		}
 | |
| 		const_iterator begin() const {
 | |
| 			return const_iterator(L, index, stack_index() + return_count());
 | |
| 		}
 | |
| 		const_iterator end() const {
 | |
| 			return const_iterator(L, stack_index() + return_count(), stack_index() + return_count());
 | |
| 		}
 | |
| 		const_iterator cbegin() const {
 | |
| 			return begin();
 | |
| 		}
 | |
| 		const_iterator cend() const {
 | |
| 			return end();
 | |
| 		}
 | |
| 
 | |
| 		reverse_iterator rbegin() {
 | |
| 			return std::reverse_iterator<iterator>(begin());
 | |
| 		}
 | |
| 		reverse_iterator rend() {
 | |
| 			return std::reverse_iterator<iterator>(end());
 | |
| 		}
 | |
| 		const_reverse_iterator rbegin() const {
 | |
| 			return std::reverse_iterator<const_iterator>(begin());
 | |
| 		}
 | |
| 		const_reverse_iterator rend() const {
 | |
| 			return std::reverse_iterator<const_iterator>(end());
 | |
| 		}
 | |
| 		const_reverse_iterator crbegin() const {
 | |
| 			return std::reverse_iterator<const_iterator>(cbegin());
 | |
| 		}
 | |
| 		const_reverse_iterator crend() const {
 | |
| 			return std::reverse_iterator<const_iterator>(cend());
 | |
| 		}
 | |
| 
 | |
| 		lua_State* lua_state() const noexcept {
 | |
| 			return L;
 | |
| 		};
 | |
| 		int stack_index() const noexcept {
 | |
| 			return index;
 | |
| 		};
 | |
| 		int return_count() const noexcept {
 | |
| 			return returncount;
 | |
| 		};
 | |
| 		int pop_count() const noexcept {
 | |
| 			return popcount;
 | |
| 		};
 | |
| 		void abandon() noexcept {
 | |
| 			// L = nullptr;
 | |
| 			index = 0;
 | |
| 			returncount = 0;
 | |
| 			popcount = 0;
 | |
| 			err = call_status::runtime;
 | |
| 		}
 | |
| 		~protected_function_result() {
 | |
| 			stack::remove(L, index, popcount);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	namespace stack {
 | |
| 		template <>
 | |
| 		struct unqualified_pusher<protected_function_result> {
 | |
| 			static int push(lua_State* L, const protected_function_result& pfr) {
 | |
| #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
 | |
| 				luaL_checkstack(L, static_cast<int>(pfr.pop_count()), detail::not_enough_stack_space_generic);
 | |
| #endif // make sure stack doesn't overflow
 | |
| 				int p = 0;
 | |
| 				for (int i = 0; i < pfr.pop_count(); ++i) {
 | |
| 					lua_pushvalue(L, i + pfr.stack_index());
 | |
| 					++p;
 | |
| 				}
 | |
| 				return p;
 | |
| 			}
 | |
| 		};
 | |
| 	} // namespace stack
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/protected_function_result.hpp
 | |
| 
 | |
| // beginning of sol/unsafe_function_result.hpp
 | |
| 
 | |
| #include <cstdint>
 | |
| 
 | |
| namespace sol {
 | |
| 	struct unsafe_function_result : public proxy_base<unsafe_function_result> {
 | |
| 	private:
 | |
| 		lua_State* L;
 | |
| 		int index;
 | |
| 		int returncount;
 | |
| 
 | |
| 	public:
 | |
| 		typedef stack_proxy reference_type;
 | |
| 		typedef stack_proxy value_type;
 | |
| 		typedef stack_proxy* pointer;
 | |
| 		typedef std::ptrdiff_t difference_type;
 | |
| 		typedef std::size_t size_type;
 | |
| 		typedef stack_iterator<stack_proxy, false> iterator;
 | |
| 		typedef stack_iterator<stack_proxy, true> const_iterator;
 | |
| 		typedef std::reverse_iterator<iterator> reverse_iterator;
 | |
| 		typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
 | |
| 
 | |
| 		unsafe_function_result() noexcept = default;
 | |
| 		unsafe_function_result(lua_State* Ls, int idx = -1, int retnum = 0) noexcept : L(Ls), index(idx), returncount(retnum) {
 | |
| 		}
 | |
| 
 | |
| 		// We do not want anyone to copy these around willy-nilly
 | |
| 		// Will likely break people, but also will probably get rid of quiet bugs that have
 | |
| 		// been lurking. (E.g., Vanilla Lua will just quietly discard over-pops and under-pops:
 | |
| 		// LuaJIT and other Lua engines will implode and segfault at random later times.)
 | |
| 		unsafe_function_result(const unsafe_function_result&) = delete;
 | |
| 		unsafe_function_result& operator=(const unsafe_function_result&) = delete;
 | |
| 
 | |
| 		unsafe_function_result(unsafe_function_result&& o) noexcept : L(o.L), index(o.index), returncount(o.returncount) {
 | |
| 			// Must be manual, otherwise destructor will screw us
 | |
| 			// return count being 0 is enough to keep things clean
 | |
| 			// but will be thorough
 | |
| 			o.abandon();
 | |
| 		}
 | |
| 		unsafe_function_result& operator=(unsafe_function_result&& o) noexcept {
 | |
| 			L = o.L;
 | |
| 			index = o.index;
 | |
| 			returncount = o.returncount;
 | |
| 			// Must be manual, otherwise destructor will screw us
 | |
| 			// return count being 0 is enough to keep things clean
 | |
| 			// but will be thorough
 | |
| 			o.abandon();
 | |
| 			return *this;
 | |
| 		}
 | |
| 
 | |
| 		unsafe_function_result(const protected_function_result& o) = delete;
 | |
| 		unsafe_function_result& operator=(const protected_function_result& o) = delete;
 | |
| 		unsafe_function_result(protected_function_result&& o) noexcept;
 | |
| 		unsafe_function_result& operator=(protected_function_result&& o) noexcept;
 | |
| 
 | |
| 		template <typename T>
 | |
| 		decltype(auto) get(difference_type index_offset = 0) const {
 | |
| 			return stack::get<T>(L, index + static_cast<int>(index_offset));
 | |
| 		}
 | |
| 
 | |
| 		type get_type(difference_type index_offset = 0) const noexcept {
 | |
| 			return type_of(L, index + static_cast<int>(index_offset));
 | |
| 		}
 | |
| 
 | |
| 		stack_proxy operator[](difference_type index_offset) const {
 | |
| 			return stack_proxy(L, index + static_cast<int>(index_offset));
 | |
| 		}
 | |
| 
 | |
| 		iterator begin() {
 | |
| 			return iterator(L, index, stack_index() + return_count());
 | |
| 		}
 | |
| 		iterator end() {
 | |
| 			return iterator(L, stack_index() + return_count(), stack_index() + return_count());
 | |
| 		}
 | |
| 		const_iterator begin() const {
 | |
| 			return const_iterator(L, index, stack_index() + return_count());
 | |
| 		}
 | |
| 		const_iterator end() const {
 | |
| 			return const_iterator(L, stack_index() + return_count(), stack_index() + return_count());
 | |
| 		}
 | |
| 		const_iterator cbegin() const {
 | |
| 			return begin();
 | |
| 		}
 | |
| 		const_iterator cend() const {
 | |
| 			return end();
 | |
| 		}
 | |
| 
 | |
| 		reverse_iterator rbegin() {
 | |
| 			return std::reverse_iterator<iterator>(begin());
 | |
| 		}
 | |
| 		reverse_iterator rend() {
 | |
| 			return std::reverse_iterator<iterator>(end());
 | |
| 		}
 | |
| 		const_reverse_iterator rbegin() const {
 | |
| 			return std::reverse_iterator<const_iterator>(begin());
 | |
| 		}
 | |
| 		const_reverse_iterator rend() const {
 | |
| 			return std::reverse_iterator<const_iterator>(end());
 | |
| 		}
 | |
| 		const_reverse_iterator crbegin() const {
 | |
| 			return std::reverse_iterator<const_iterator>(cbegin());
 | |
| 		}
 | |
| 		const_reverse_iterator crend() const {
 | |
| 			return std::reverse_iterator<const_iterator>(cend());
 | |
| 		}
 | |
| 
 | |
| 		call_status status() const noexcept {
 | |
| 			return call_status::ok;
 | |
| 		}
 | |
| 
 | |
| 		bool valid() const noexcept {
 | |
| 			return status() == call_status::ok || status() == call_status::yielded;
 | |
| 		}
 | |
| 
 | |
| 		lua_State* lua_state() const {
 | |
| 			return L;
 | |
| 		};
 | |
| 		int stack_index() const {
 | |
| 			return index;
 | |
| 		};
 | |
| 		int return_count() const {
 | |
| 			return returncount;
 | |
| 		};
 | |
| 		void abandon() noexcept {
 | |
| 			// L = nullptr;
 | |
| 			index = 0;
 | |
| 			returncount = 0;
 | |
| 		}
 | |
| 		~unsafe_function_result() {
 | |
| 			lua_pop(L, returncount);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	namespace stack {
 | |
| 		template <>
 | |
| 		struct unqualified_pusher<unsafe_function_result> {
 | |
| 			static int push(lua_State* L, const unsafe_function_result& fr) {
 | |
| 				int p = 0;
 | |
| 				for (int i = 0; i < fr.return_count(); ++i) {
 | |
| 					lua_pushvalue(L, i + fr.stack_index());
 | |
| 					++p;
 | |
| 				}
 | |
| 				return p;
 | |
| 			}
 | |
| 		};
 | |
| 	} // namespace stack
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/unsafe_function_result.hpp
 | |
| 
 | |
| #include <cstdint>
 | |
| 
 | |
| namespace sol {
 | |
| 
 | |
| 	namespace detail {
 | |
| 		template <>
 | |
| 		struct is_speshul<unsafe_function_result> : std::true_type {};
 | |
| 		template <>
 | |
| 		struct is_speshul<protected_function_result> : std::true_type {};
 | |
| 
 | |
| 		template <std::size_t I, typename... Args, typename T>
 | |
| 		stack_proxy get(types<Args...>, meta::index_value<0>, meta::index_value<I>, const T& fr) {
 | |
| 			return stack_proxy(fr.lua_state(), static_cast<int>(fr.stack_index() + I));
 | |
| 		}
 | |
| 
 | |
| 		template <std::size_t I, std::size_t N, typename Arg, typename... Args, typename T, meta::enable<meta::boolean<(N > 0)>> = meta::enabler>
 | |
| 		stack_proxy get(types<Arg, Args...>, meta::index_value<N>, meta::index_value<I>, const T& fr) {
 | |
| 			return get(types<Args...>(), meta::index_value<N - 1>(), meta::index_value<I + lua_size<Arg>::value>(), fr);
 | |
| 		}
 | |
| 	} // namespace detail
 | |
| 
 | |
| 	template <>
 | |
| 	struct tie_size<unsafe_function_result> : std::integral_constant<std::size_t, SIZE_MAX> {};
 | |
| 
 | |
| 	template <>
 | |
| 	struct tie_size<protected_function_result> : std::integral_constant<std::size_t, SIZE_MAX> {};
 | |
| 
 | |
| 	template <std::size_t I>
 | |
| 	stack_proxy get(const unsafe_function_result& fr) {
 | |
| 		return stack_proxy(fr.lua_state(), static_cast<int>(fr.stack_index() + I));
 | |
| 	}
 | |
| 
 | |
| 	template <std::size_t I, typename... Args>
 | |
| 	stack_proxy get(types<Args...> t, const unsafe_function_result& fr) {
 | |
| 		return detail::get(t, meta::index_value<I>(), meta::index_value<0>(), fr);
 | |
| 	}
 | |
| 
 | |
| 	template <std::size_t I>
 | |
| 	stack_proxy get(const protected_function_result& fr) {
 | |
| 		return stack_proxy(fr.lua_state(), static_cast<int>(fr.stack_index() + I));
 | |
| 	}
 | |
| 
 | |
| 	template <std::size_t I, typename... Args>
 | |
| 	stack_proxy get(types<Args...> t, const protected_function_result& fr) {
 | |
| 		return detail::get(t, meta::index_value<I>(), meta::index_value<0>(), fr);
 | |
| 	}
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/function_result.hpp
 | |
| 
 | |
| // beginning of sol/function_types.hpp
 | |
| 
 | |
| // beginning of sol/function_types_core.hpp
 | |
| 
 | |
| // beginning of sol/wrapper.hpp
 | |
| 
 | |
| namespace sol {
 | |
| 
 | |
| 	namespace detail {
 | |
| 		template <typename T>
 | |
| 		using array_return_type = meta::conditional_t<std::is_array<T>::value, std::add_lvalue_reference_t<T>, T>;
 | |
| 	}
 | |
| 
 | |
| 	template <typename F, typename = void>
 | |
| 	struct wrapper {
 | |
| 		typedef lua_bind_traits<meta::unqualified_t<F>> traits_type;
 | |
| 		typedef typename traits_type::args_list args_list;
 | |
| 		typedef typename traits_type::args_list free_args_list;
 | |
| 		typedef typename traits_type::returns_list returns_list;
 | |
| 
 | |
| 		template <typename... Args>
 | |
| 		static decltype(auto) call(F& f, Args&&... args) {
 | |
| 			return f(std::forward<Args>(args)...);
 | |
| 		}
 | |
| 
 | |
| 		struct caller {
 | |
| 			template <typename... Args>
 | |
| 			decltype(auto) operator()(F& fx, Args&&... args) const {
 | |
| 				return call(fx, std::forward<Args>(args)...);
 | |
| 			}
 | |
| 		};
 | |
| 	};
 | |
| 
 | |
| 	template <typename F>
 | |
| 	struct wrapper<F, std::enable_if_t<std::is_function<std::remove_pointer_t<meta::unqualified_t<F>>>::value>> {
 | |
| 		typedef lua_bind_traits<std::remove_pointer_t<meta::unqualified_t<F>>> traits_type;
 | |
| 		typedef typename traits_type::args_list args_list;
 | |
| 		typedef typename traits_type::args_list free_args_list;
 | |
| 		typedef typename traits_type::returns_list returns_list;
 | |
| 
 | |
| 		template <F fx, typename... Args>
 | |
| 		static decltype(auto) invoke(Args&&... args) {
 | |
| 			return fx(std::forward<Args>(args)...);
 | |
| 		}
 | |
| 
 | |
| 		template <typename... Args>
 | |
| 		static decltype(auto) call(F& fx, Args&&... args) {
 | |
| 			return fx(std::forward<Args>(args)...);
 | |
| 		}
 | |
| 
 | |
| 		struct caller {
 | |
| 			template <typename... Args>
 | |
| 			decltype(auto) operator()(F& fx, Args&&... args) const {
 | |
| 				return call(fx, std::forward<Args>(args)...);
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <F fx>
 | |
| 		struct invoker {
 | |
| 			template <typename... Args>
 | |
| 			decltype(auto) operator()(Args&&... args) const {
 | |
| 				return invoke<fx>(std::forward<Args>(args)...);
 | |
| 			}
 | |
| 		};
 | |
| 	};
 | |
| 
 | |
| 	template <typename F>
 | |
| 	struct wrapper<F, std::enable_if_t<std::is_member_object_pointer<meta::unqualified_t<F>>::value>> {
 | |
| 		typedef lua_bind_traits<meta::unqualified_t<F>> traits_type;
 | |
| 		typedef typename traits_type::object_type object_type;
 | |
| 		typedef typename traits_type::return_type return_type;
 | |
| 		typedef typename traits_type::args_list args_list;
 | |
| 		typedef types<object_type&, return_type> free_args_list;
 | |
| 		typedef typename traits_type::returns_list returns_list;
 | |
| 
 | |
| 		template <F fx>
 | |
| 		static auto call(object_type& mem) -> detail::array_return_type<decltype(mem.*fx)> {
 | |
| 			return mem.*fx;
 | |
| 		}
 | |
| 
 | |
| 		template <F fx, typename Arg, typename... Args>
 | |
| 		static decltype(auto) invoke(object_type& mem, Arg&& arg, Args&&...) {
 | |
| 			return mem.*fx = std::forward<Arg>(arg);
 | |
| 		}
 | |
| 
 | |
| 		template <typename Fx>
 | |
| 		static auto call(Fx&& fx, object_type& mem) -> detail::array_return_type<decltype(mem.*fx)> {
 | |
| 			return mem.*fx;
 | |
| 		}
 | |
| 
 | |
| 		template <typename Fx, typename Arg, typename... Args>
 | |
| 		static void call(Fx&& fx, object_type& mem, Arg&& arg, Args&&...) {
 | |
| 			using actual_type = meta::unqualified_t<detail::array_return_type<decltype(mem.*fx)>>;
 | |
| 			if constexpr (std::is_array_v<actual_type>) {
 | |
| 				using std::cbegin;
 | |
| 				using std::cend;
 | |
| 				auto first = cbegin(arg);
 | |
| 				auto last = cend(arg);
 | |
| 				for (std::size_t i = 0; first != last; ++i, ++first) {
 | |
| 					(mem.*fx)[i] = *first;
 | |
| 				}
 | |
| 			}
 | |
| 			else {
 | |
| 				(mem.*fx) = std::forward<Arg>(arg);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		struct caller {
 | |
| 			template <typename Fx, typename... Args>
 | |
| 			decltype(auto) operator()(Fx&& fx, object_type& mem, Args&&... args) const {
 | |
| 				return call(std::forward<Fx>(fx), mem, std::forward<Args>(args)...);
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <F fx>
 | |
| 		struct invoker {
 | |
| 			template <typename... Args>
 | |
| 			decltype(auto) operator()(Args&&... args) const {
 | |
| 				return invoke<fx>(std::forward<Args>(args)...);
 | |
| 			}
 | |
| 		};
 | |
| 	};
 | |
| 
 | |
| 	template <typename F, typename R, typename O, typename... FArgs>
 | |
| 	struct member_function_wrapper {
 | |
| 		typedef O object_type;
 | |
| 		typedef lua_bind_traits<F> traits_type;
 | |
| 		typedef typename traits_type::args_list args_list;
 | |
| 		typedef types<object_type&, FArgs...> free_args_list;
 | |
| 		typedef meta::tuple_types<R> returns_list;
 | |
| 
 | |
| 		template <F fx, typename... Args>
 | |
| 		static R invoke(O& mem, Args&&... args) {
 | |
| 			return (mem.*fx)(std::forward<Args>(args)...);
 | |
| 		}
 | |
| 
 | |
| 		template <typename Fx, typename... Args>
 | |
| 		static R call(Fx&& fx, O& mem, Args&&... args) {
 | |
| 			return (mem.*fx)(std::forward<Args>(args)...);
 | |
| 		}
 | |
| 
 | |
| 		struct caller {
 | |
| 			template <typename Fx, typename... Args>
 | |
| 			decltype(auto) operator()(Fx&& fx, O& mem, Args&&... args) const {
 | |
| 				return call(std::forward<Fx>(fx), mem, std::forward<Args>(args)...);
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <F fx>
 | |
| 		struct invoker {
 | |
| 			template <typename... Args>
 | |
| 			decltype(auto) operator()(O& mem, Args&&... args) const {
 | |
| 				return invoke<fx>(mem, std::forward<Args>(args)...);
 | |
| 			}
 | |
| 		};
 | |
| 	};
 | |
| 
 | |
| 	template <typename R, typename O, typename... Args>
 | |
| 	struct wrapper<R (O::*)(Args...)> : public member_function_wrapper<R (O::*)(Args...), R, O, Args...> {};
 | |
| 
 | |
| 	template <typename R, typename O, typename... Args>
 | |
| 	struct wrapper<R (O::*)(Args...) const> : public member_function_wrapper<R (O::*)(Args...) const, R, O, Args...> {};
 | |
| 
 | |
| 	template <typename R, typename O, typename... Args>
 | |
| 	struct wrapper<R (O::*)(Args...) const volatile> : public member_function_wrapper<R (O::*)(Args...) const volatile, R, O, Args...> {};
 | |
| 
 | |
| 	template <typename R, typename O, typename... Args>
 | |
| 	struct wrapper<R (O::*)(Args...)&> : public member_function_wrapper<R (O::*)(Args...)&, R, O, Args...> {};
 | |
| 
 | |
| 	template <typename R, typename O, typename... Args>
 | |
| 	struct wrapper<R (O::*)(Args...) const&> : public member_function_wrapper<R (O::*)(Args...) const&, R, O, Args...> {};
 | |
| 
 | |
| 	template <typename R, typename O, typename... Args>
 | |
| 	struct wrapper<R (O::*)(Args...) const volatile&> : public member_function_wrapper<R (O::*)(Args...) const volatile&, R, O, Args...> {};
 | |
| 
 | |
| 	template <typename R, typename O, typename... Args>
 | |
| 	struct wrapper<R (O::*)(Args..., ...)&> : public member_function_wrapper<R (O::*)(Args..., ...)&, R, O, Args...> {};
 | |
| 
 | |
| 	template <typename R, typename O, typename... Args>
 | |
| 	struct wrapper<R (O::*)(Args..., ...) const&> : public member_function_wrapper<R (O::*)(Args..., ...) const&, R, O, Args...> {};
 | |
| 
 | |
| 	template <typename R, typename O, typename... Args>
 | |
| 	struct wrapper<R (O::*)(Args..., ...) const volatile&> : public member_function_wrapper<R (O::*)(Args..., ...) const volatile&, R, O, Args...> {};
 | |
| 
 | |
| 	template <typename R, typename O, typename... Args>
 | |
| 	struct wrapper<R (O::*)(Args...) &&> : public member_function_wrapper<R (O::*)(Args...)&, R, O, Args...> {};
 | |
| 
 | |
| 	template <typename R, typename O, typename... Args>
 | |
| 	struct wrapper<R (O::*)(Args...) const&&> : public member_function_wrapper<R (O::*)(Args...) const&, R, O, Args...> {};
 | |
| 
 | |
| 	template <typename R, typename O, typename... Args>
 | |
| 	struct wrapper<R (O::*)(Args...) const volatile&&> : public member_function_wrapper<R (O::*)(Args...) const volatile&, R, O, Args...> {};
 | |
| 
 | |
| 	template <typename R, typename O, typename... Args>
 | |
| 	struct wrapper<R (O::*)(Args..., ...) &&> : public member_function_wrapper<R (O::*)(Args..., ...)&, R, O, Args...> {};
 | |
| 
 | |
| 	template <typename R, typename O, typename... Args>
 | |
| 	struct wrapper<R (O::*)(Args..., ...) const&&> : public member_function_wrapper<R (O::*)(Args..., ...) const&, R, O, Args...> {};
 | |
| 
 | |
| 	template <typename R, typename O, typename... Args>
 | |
| 	struct wrapper<R (O::*)(Args..., ...) const volatile&&> : public member_function_wrapper<R (O::*)(Args..., ...) const volatile&, R, O, Args...> {};
 | |
| 
 | |
| #if SOL_IS_ON(SOL_USE_NOEXCEPT_FUNCTION_TYPE_I_)
 | |
| 	// noexcept has become a part of a function's type
 | |
| 
 | |
| 	template <typename R, typename O, typename... Args>
 | |
| 	struct wrapper<R (O::*)(Args...) noexcept> : public member_function_wrapper<R (O::*)(Args...) noexcept, R, O, Args...> {};
 | |
| 
 | |
| 	template <typename R, typename O, typename... Args>
 | |
| 	struct wrapper<R (O::*)(Args...) const noexcept> : public member_function_wrapper<R (O::*)(Args...) const noexcept, R, O, Args...> {};
 | |
| 
 | |
| 	template <typename R, typename O, typename... Args>
 | |
| 	struct wrapper<R (O::*)(Args...) const volatile noexcept> : public member_function_wrapper<R (O::*)(Args...) const volatile noexcept, R, O, Args...> {};
 | |
| 
 | |
| 	template <typename R, typename O, typename... Args>
 | |
| 	struct wrapper<R (O::*)(Args...) & noexcept> : public member_function_wrapper<R (O::*)(Args...) & noexcept, R, O, Args...> {};
 | |
| 
 | |
| 	template <typename R, typename O, typename... Args>
 | |
| 	struct wrapper<R (O::*)(Args...) const& noexcept> : public member_function_wrapper<R (O::*)(Args...) const& noexcept, R, O, Args...> {};
 | |
| 
 | |
| 	template <typename R, typename O, typename... Args>
 | |
| 	struct wrapper<R (O::*)(Args...) const volatile& noexcept> : public member_function_wrapper<R (O::*)(Args...) const volatile& noexcept, R, O, Args...> {};
 | |
| 
 | |
| 	template <typename R, typename O, typename... Args>
 | |
| 	struct wrapper<R (O::*)(Args..., ...) & noexcept> : public member_function_wrapper<R (O::*)(Args..., ...) & noexcept, R, O, Args...> {};
 | |
| 
 | |
| 	template <typename R, typename O, typename... Args>
 | |
| 	struct wrapper<R (O::*)(Args..., ...) const& noexcept> : public member_function_wrapper<R (O::*)(Args..., ...) const& noexcept, R, O, Args...> {};
 | |
| 
 | |
| 	template <typename R, typename O, typename... Args>
 | |
| 	struct wrapper<R (O::*)(Args..., ...) const volatile& noexcept>
 | |
| 	: public member_function_wrapper<R (O::*)(Args..., ...) const volatile& noexcept, R, O, Args...> {};
 | |
| 
 | |
| 	template <typename R, typename O, typename... Args>
 | |
| 	struct wrapper<R (O::*)(Args...) && noexcept> : public member_function_wrapper<R (O::*)(Args...) & noexcept, R, O, Args...> {};
 | |
| 
 | |
| 	template <typename R, typename O, typename... Args>
 | |
| 	struct wrapper<R (O::*)(Args...) const&& noexcept> : public member_function_wrapper<R (O::*)(Args...) const& noexcept, R, O, Args...> {};
 | |
| 
 | |
| 	template <typename R, typename O, typename... Args>
 | |
| 	struct wrapper<R (O::*)(Args...) const volatile&& noexcept> : public member_function_wrapper<R (O::*)(Args...) const volatile& noexcept, R, O, Args...> {};
 | |
| 
 | |
| 	template <typename R, typename O, typename... Args>
 | |
| 	struct wrapper<R (O::*)(Args..., ...) && noexcept> : public member_function_wrapper<R (O::*)(Args..., ...) & noexcept, R, O, Args...> {};
 | |
| 
 | |
| 	template <typename R, typename O, typename... Args>
 | |
| 	struct wrapper<R (O::*)(Args..., ...) const&& noexcept> : public member_function_wrapper<R (O::*)(Args..., ...) const& noexcept, R, O, Args...> {};
 | |
| 
 | |
| 	template <typename R, typename O, typename... Args>
 | |
| 	struct wrapper<R (O::*)(Args..., ...) const volatile&& noexcept>
 | |
| 	: public member_function_wrapper<R (O::*)(Args..., ...) const volatile& noexcept, R, O, Args...> {};
 | |
| 
 | |
| #endif // noexcept is part of a function's type
 | |
| 
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/wrapper.hpp
 | |
| 
 | |
| #include <memory>
 | |
| 
 | |
| namespace sol {
 | |
| namespace function_detail {
 | |
| 	template <typename Fx, int start = 1, bool is_yielding = false>
 | |
| 	int call(lua_State* L) {
 | |
| 		Fx& fx = stack::get<user<Fx>>(L, upvalue_index(start));
 | |
| 		int nr = fx(L);
 | |
| 		if (is_yielding) {
 | |
| 			return lua_yield(L, nr);
 | |
| 		}
 | |
| 		else {
 | |
| 			return nr;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| } // namespace sol::function_detail
 | |
| 
 | |
| // end of sol/function_types_core.hpp
 | |
| 
 | |
| // beginning of sol/function_types_templated.hpp
 | |
| 
 | |
| // beginning of sol/call.hpp
 | |
| 
 | |
| // beginning of sol/property.hpp
 | |
| 
 | |
| #include <type_traits>
 | |
| #include <utility>
 | |
| 
 | |
| namespace sol {
 | |
| 	namespace detail {
 | |
| 		struct no_prop {};
 | |
| 	}
 | |
| 
 | |
| 	template <typename R, typename W>
 | |
| 	struct property_wrapper : detail::ebco<R, 0>, detail::ebco<W, 1> {
 | |
| 	private:
 | |
| 		using read_base_t = detail::ebco<R, 0>;
 | |
| 		using write_base_t = detail::ebco<W, 1>;
 | |
| 
 | |
| 	public:
 | |
| 		template <typename Rx, typename Wx>
 | |
| 		property_wrapper(Rx&& r, Wx&& w)
 | |
| 		: read_base_t(std::forward<Rx>(r)), write_base_t(std::forward<Wx>(w)) {
 | |
| 		}
 | |
| 
 | |
| 		W& write() {
 | |
| 			return write_base_t::value();
 | |
| 		}
 | |
| 
 | |
| 		const W& write() const {
 | |
| 			return write_base_t::value();
 | |
| 		}
 | |
| 
 | |
| 		R& read() {
 | |
| 			return read_base_t::value();
 | |
| 		}
 | |
| 
 | |
| 		const R& read() const {
 | |
| 			return read_base_t::value();
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename F, typename G>
 | |
| 	inline decltype(auto) property(F&& f, G&& g) {
 | |
| 		typedef lua_bind_traits<meta::unqualified_t<F>> left_traits;
 | |
| 		typedef lua_bind_traits<meta::unqualified_t<G>> right_traits;
 | |
| 		if constexpr (left_traits::free_arity < right_traits::free_arity) {
 | |
| 			return property_wrapper<std::decay_t<F>, std::decay_t<G>>(std::forward<F>(f), std::forward<G>(g));
 | |
| 		}
 | |
| 		else {
 | |
| 			return property_wrapper<std::decay_t<G>, std::decay_t<F>>(std::forward<G>(g), std::forward<F>(f));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	template <typename F>
 | |
| 	inline decltype(auto) property(F&& f) {
 | |
| 		typedef lua_bind_traits<meta::unqualified_t<F>> left_traits;
 | |
| 		if constexpr (left_traits::free_arity < 2) {
 | |
| 			return property_wrapper<std::decay_t<F>, detail::no_prop>(std::forward<F>(f), detail::no_prop());
 | |
| 		}
 | |
| 		else {
 | |
| 			return property_wrapper<detail::no_prop, std::decay_t<F>>(detail::no_prop(), std::forward<F>(f));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	template <typename F>
 | |
| 	inline decltype(auto) readonly_property(F&& f) {
 | |
| 		return property_wrapper<std::decay_t<F>, detail::no_prop>(std::forward<F>(f), detail::no_prop());
 | |
| 	}
 | |
| 
 | |
| 	template <typename F>
 | |
| 	inline decltype(auto) writeonly_property(F&& f) {
 | |
| 		return property_wrapper<detail::no_prop, std::decay_t<F>>(detail::no_prop(), std::forward<F>(f));
 | |
| 	}
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct readonly_wrapper : detail::ebco<T> {
 | |
| 	private:
 | |
| 		using base_t = detail::ebco<T>;
 | |
| 
 | |
| 	public:
 | |
| 		using base_t::base_t;
 | |
| 
 | |
| 		operator T&() {
 | |
| 			return base_t::value();
 | |
| 		}
 | |
| 		operator const T&() const {
 | |
| 			return base_t::value();
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	// Allow someone to make a member variable readonly (const)
 | |
| 	template <typename R, typename T>
 | |
| 	inline auto readonly(R T::*v) {
 | |
| 		return readonly_wrapper<meta::unqualified_t<decltype(v)>>(v);
 | |
| 	}
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct var_wrapper : detail::ebco<T> {
 | |
| 	private:
 | |
| 		using base_t = detail::ebco<T>;
 | |
| 
 | |
| 	public:
 | |
| 		using base_t::base_t;
 | |
| 	};
 | |
| 
 | |
| 	template <typename V>
 | |
| 	inline auto var(V&& v) {
 | |
| 		typedef std::decay_t<V> T;
 | |
| 		return var_wrapper<T>(std::forward<V>(v));
 | |
| 	}
 | |
| 
 | |
| 	namespace meta {
 | |
| 		template <typename T>
 | |
| 		struct is_member_object : std::is_member_object_pointer<T> {};
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct is_member_object<readonly_wrapper<T>> : std::true_type {};
 | |
| 
 | |
| 		template <typename T>
 | |
| 		inline constexpr bool is_member_object_v = is_member_object<T>::value;
 | |
| 	} // namespace meta
 | |
| 
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/property.hpp
 | |
| 
 | |
| // beginning of sol/protect.hpp
 | |
| 
 | |
| #include <utility>
 | |
| 
 | |
| namespace sol {
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct protect_t {
 | |
| 		T value;
 | |
| 
 | |
| 		template <typename Arg, typename... Args, meta::disable<std::is_same<protect_t, meta::unqualified_t<Arg>>> = meta::enabler>
 | |
| 		protect_t(Arg&& arg, Args&&... args)
 | |
| 		: value(std::forward<Arg>(arg), std::forward<Args>(args)...) {
 | |
| 		}
 | |
| 
 | |
| 		protect_t(const protect_t&) = default;
 | |
| 		protect_t(protect_t&&) = default;
 | |
| 		protect_t& operator=(const protect_t&) = default;
 | |
| 		protect_t& operator=(protect_t&&) = default;
 | |
| 	};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	auto protect(T&& value) {
 | |
| 		return protect_t<std::decay_t<T>>(std::forward<T>(value));
 | |
| 	}
 | |
| 
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/protect.hpp
 | |
| 
 | |
| namespace sol {
 | |
| 	namespace u_detail {
 | |
| 
 | |
| 	} // namespace u_detail
 | |
| 
 | |
| 	namespace policy_detail {
 | |
| 		template <int I, int... In>
 | |
| 		inline void handle_policy(static_stack_dependencies<I, In...>, lua_State* L, int&) {
 | |
| 			if constexpr (sizeof...(In) == 0) {
 | |
| 				(void)L;
 | |
| 				return;
 | |
| 			}
 | |
| 			else {
 | |
| 				absolute_index ai(L, I);
 | |
| 				if (type_of(L, ai) != type::userdata) {
 | |
| 					return;
 | |
| 				}
 | |
| 				lua_createtable(L, static_cast<int>(sizeof...(In)), 0);
 | |
| 				stack_reference deps(L, -1);
 | |
| 				auto per_dep = [&L, &deps](int i) {
 | |
| #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
 | |
| 					luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
 | |
| #endif // make sure stack doesn't overflow
 | |
| 					lua_pushvalue(L, i);
 | |
| 					luaL_ref(L, deps.stack_index());
 | |
| 				};
 | |
| 				(void)per_dep;
 | |
| 				(void)detail::swallow{ int(), (per_dep(In), int())... };
 | |
| 				lua_setuservalue(L, ai);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		template <int... In>
 | |
| 		inline void handle_policy(returns_self_with<In...>, lua_State* L, int& pushed) {
 | |
| 			pushed = stack::push(L, raw_index(1));
 | |
| 			handle_policy(static_stack_dependencies<-1, In...>(), L, pushed);
 | |
| 		}
 | |
| 
 | |
| 		inline void handle_policy(const stack_dependencies& sdeps, lua_State* L, int&) {
 | |
| 			absolute_index ai(L, sdeps.target);
 | |
| 			if (type_of(L, ai) != type::userdata) {
 | |
| 				return;
 | |
| 			}
 | |
| 			lua_createtable(L, static_cast<int>(sdeps.size()), 0);
 | |
| 			stack_reference deps(L, -1);
 | |
| #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
 | |
| 			luaL_checkstack(L, static_cast<int>(sdeps.size()), detail::not_enough_stack_space_generic);
 | |
| #endif // make sure stack doesn't overflow
 | |
| 			for (std::size_t i = 0; i < sdeps.size(); ++i) {
 | |
| 				lua_pushvalue(L, sdeps.stack_indices[i]);
 | |
| 				luaL_ref(L, deps.stack_index());
 | |
| 			}
 | |
| 			lua_setuservalue(L, ai);
 | |
| 		}
 | |
| 
 | |
| 		template <typename P, meta::disable<std::is_base_of<detail::policy_base_tag, meta::unqualified_t<P>>> = meta::enabler>
 | |
| 		inline void handle_policy(P&& p, lua_State* L, int& pushed) {
 | |
| 			pushed = std::forward<P>(p)(L, pushed);
 | |
| 		}
 | |
| 	} // namespace policy_detail
 | |
| 
 | |
| 	namespace function_detail {
 | |
| 		inline int no_construction_error(lua_State* L) {
 | |
| 			return luaL_error(L, "sol: cannot call this constructor (tagged as non-constructible)");
 | |
| 		}
 | |
| 	} // namespace function_detail
 | |
| 
 | |
| 	namespace call_detail {
 | |
| 
 | |
| 		template <typename R, typename W>
 | |
| 		inline auto& pick(std::true_type, property_wrapper<R, W>& f) {
 | |
| 			return f.read();
 | |
| 		}
 | |
| 
 | |
| 		template <typename R, typename W>
 | |
| 		inline auto& pick(std::false_type, property_wrapper<R, W>& f) {
 | |
| 			return f.write();
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, typename List>
 | |
| 		struct void_call : void_call<T, meta::function_args_t<List>> {};
 | |
| 
 | |
| 		template <typename T, typename... Args>
 | |
| 		struct void_call<T, types<Args...>> {
 | |
| 			static void call(Args...) {
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, bool checked, bool clean_stack>
 | |
| 		struct constructor_match {
 | |
| 			T* obj_;
 | |
| 
 | |
| 			constructor_match(T* o) : obj_(o) {
 | |
| 			}
 | |
| 
 | |
| 			template <typename Fx, std::size_t I, typename... R, typename... Args>
 | |
| 			int operator()(types<Fx>, meta::index_value<I>, types<R...> r, types<Args...> a, lua_State* L, int, int start) const {
 | |
| 				detail::default_construct func{};
 | |
| 				return stack::call_into_lua<checked, clean_stack>(r, a, L, start, func, obj_);
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		namespace overload_detail {
 | |
| 			template <std::size_t... M, typename Match, typename... Args>
 | |
| 			inline int overload_match_arity(types<>, std::index_sequence<>, std::index_sequence<M...>, Match&&, lua_State* L, int, int, Args&&...) {
 | |
| 				return luaL_error(L, "sol: no matching function call takes this number of arguments and the specified types");
 | |
| 			}
 | |
| 
 | |
| 			template <typename Fx, typename... Fxs, std::size_t I, std::size_t... In, std::size_t... M, typename Match, typename... Args>
 | |
| 			inline int overload_match_arity(types<Fx, Fxs...>, std::index_sequence<I, In...>, std::index_sequence<M...>, Match&& matchfx, lua_State* L,
 | |
| 			     int fxarity, int start, Args&&... args) {
 | |
| 				typedef lua_bind_traits<meta::unwrap_unqualified_t<Fx>> traits;
 | |
| 				typedef meta::tuple_types<typename traits::return_type> return_types;
 | |
| 				typedef typename traits::free_args_list args_list;
 | |
| 				// compile-time eliminate any functions that we know ahead of time are of improper arity
 | |
| 				if constexpr (!traits::runtime_variadics_t::value
 | |
| 				     && meta::find_in_pack_v<meta::index_value<traits::free_arity>, meta::index_value<M>...>::value) {
 | |
| 					return overload_match_arity(types<Fxs...>(),
 | |
| 					     std::index_sequence<In...>(),
 | |
| 					     std::index_sequence<M...>(),
 | |
| 					     std::forward<Match>(matchfx),
 | |
| 					     L,
 | |
| 					     fxarity,
 | |
| 					     start,
 | |
| 					     std::forward<Args>(args)...);
 | |
| 				}
 | |
| 				else {
 | |
| 					if constexpr (!traits::runtime_variadics_t::value) {
 | |
| 						if (traits::free_arity != fxarity) {
 | |
| 							return overload_match_arity(types<Fxs...>(),
 | |
| 							     std::index_sequence<In...>(),
 | |
| 							     std::index_sequence<traits::free_arity, M...>(),
 | |
| 							     std::forward<Match>(matchfx),
 | |
| 							     L,
 | |
| 							     fxarity,
 | |
| 							     start,
 | |
| 							     std::forward<Args>(args)...);
 | |
| 						}
 | |
| 					}
 | |
| 					stack::record tracking{};
 | |
| 					if (!stack::stack_detail::check_types(args_list(), L, start, no_panic, tracking)) {
 | |
| 						return overload_match_arity(types<Fxs...>(),
 | |
| 						     std::index_sequence<In...>(),
 | |
| 						     std::index_sequence<M...>(),
 | |
| 						     std::forward<Match>(matchfx),
 | |
| 						     L,
 | |
| 						     fxarity,
 | |
| 						     start,
 | |
| 						     std::forward<Args>(args)...);
 | |
| 					}
 | |
| 					return matchfx(types<Fx>(), meta::index_value<I>(), return_types(), args_list(), L, fxarity, start, std::forward<Args>(args)...);
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			template <std::size_t... M, typename Match, typename... Args>
 | |
| 			inline int overload_match_arity_single(
 | |
| 			     types<>, std::index_sequence<>, std::index_sequence<M...>, Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) {
 | |
| 				return overload_match_arity(types<>(),
 | |
| 				     std::index_sequence<>(),
 | |
| 				     std::index_sequence<M...>(),
 | |
| 				     std::forward<Match>(matchfx),
 | |
| 				     L,
 | |
| 				     fxarity,
 | |
| 				     start,
 | |
| 				     std::forward<Args>(args)...);
 | |
| 			}
 | |
| 
 | |
| 			template <typename Fx, std::size_t I, std::size_t... M, typename Match, typename... Args>
 | |
| 			inline int overload_match_arity_single(
 | |
| 			     types<Fx>, std::index_sequence<I>, std::index_sequence<M...>, Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) {
 | |
| 				typedef lua_bind_traits<meta::unwrap_unqualified_t<Fx>> traits;
 | |
| 				typedef meta::tuple_types<typename traits::return_type> return_types;
 | |
| 				typedef typename traits::free_args_list args_list;
 | |
| 				// compile-time eliminate any functions that we know ahead of time are of improper arity
 | |
| 				if constexpr (!traits::runtime_variadics_t::value
 | |
| 				     && meta::find_in_pack_v<meta::index_value<traits::free_arity>, meta::index_value<M>...>::value) {
 | |
| 					return overload_match_arity(types<>(),
 | |
| 					     std::index_sequence<>(),
 | |
| 					     std::index_sequence<M...>(),
 | |
| 					     std::forward<Match>(matchfx),
 | |
| 					     L,
 | |
| 					     fxarity,
 | |
| 					     start,
 | |
| 					     std::forward<Args>(args)...);
 | |
| 				}
 | |
| 				if constexpr (!traits::runtime_variadics_t::value) {
 | |
| 					if (traits::free_arity != fxarity) {
 | |
| 						return overload_match_arity(types<>(),
 | |
| 						     std::index_sequence<>(),
 | |
| 						     std::index_sequence<traits::free_arity, M...>(),
 | |
| 						     std::forward<Match>(matchfx),
 | |
| 						     L,
 | |
| 						     fxarity,
 | |
| 						     start,
 | |
| 						     std::forward<Args>(args)...);
 | |
| 					}
 | |
| 				}
 | |
| 				return matchfx(types<Fx>(), meta::index_value<I>(), return_types(), args_list(), L, fxarity, start, std::forward<Args>(args)...);
 | |
| 			}
 | |
| 
 | |
| 			template <typename Fx, typename Fx1, typename... Fxs, std::size_t I, std::size_t I1, std::size_t... In, std::size_t... M, typename Match,
 | |
| 			     typename... Args>
 | |
| 			inline int overload_match_arity_single(types<Fx, Fx1, Fxs...>, std::index_sequence<I, I1, In...>, std::index_sequence<M...>, Match&& matchfx,
 | |
| 			     lua_State* L, int fxarity, int start, Args&&... args) {
 | |
| 				typedef lua_bind_traits<meta::unwrap_unqualified_t<Fx>> traits;
 | |
| 				typedef meta::tuple_types<typename traits::return_type> return_types;
 | |
| 				typedef typename traits::free_args_list args_list;
 | |
| 				// compile-time eliminate any functions that we know ahead of time are of improper arity
 | |
| 				if constexpr (!traits::runtime_variadics_t::value
 | |
| 				     && meta::find_in_pack_v<meta::index_value<traits::free_arity>, meta::index_value<M>...>::value) {
 | |
| 					return overload_match_arity(types<Fx1, Fxs...>(),
 | |
| 					     std::index_sequence<I1, In...>(),
 | |
| 					     std::index_sequence<M...>(),
 | |
| 					     std::forward<Match>(matchfx),
 | |
| 					     L,
 | |
| 					     fxarity,
 | |
| 					     start,
 | |
| 					     std::forward<Args>(args)...);
 | |
| 				}
 | |
| 				else {
 | |
| 					if constexpr (!traits::runtime_variadics_t::value) {
 | |
| 						if (traits::free_arity != fxarity) {
 | |
| 							return overload_match_arity(types<Fx1, Fxs...>(),
 | |
| 							     std::index_sequence<I1, In...>(),
 | |
| 							     std::index_sequence<traits::free_arity, M...>(),
 | |
| 							     std::forward<Match>(matchfx),
 | |
| 							     L,
 | |
| 							     fxarity,
 | |
| 							     start,
 | |
| 							     std::forward<Args>(args)...);
 | |
| 						}
 | |
| 					}
 | |
| 					stack::record tracking{};
 | |
| 					if (!stack::stack_detail::check_types(args_list(), L, start, no_panic, tracking)) {
 | |
| 						return overload_match_arity(types<Fx1, Fxs...>(),
 | |
| 						     std::index_sequence<I1, In...>(),
 | |
| 						     std::index_sequence<M...>(),
 | |
| 						     std::forward<Match>(matchfx),
 | |
| 						     L,
 | |
| 						     fxarity,
 | |
| 						     start,
 | |
| 						     std::forward<Args>(args)...);
 | |
| 					}
 | |
| 					return matchfx(types<Fx>(), meta::index_value<I>(), return_types(), args_list(), L, fxarity, start, std::forward<Args>(args)...);
 | |
| 				}
 | |
| 			}
 | |
| 		} // namespace overload_detail
 | |
| 
 | |
| 		template <typename... Functions, typename Match, typename... Args>
 | |
| 		inline int overload_match_arity(Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) {
 | |
| 			return overload_detail::overload_match_arity_single(types<Functions...>(),
 | |
| 			     std::make_index_sequence<sizeof...(Functions)>(),
 | |
| 			     std::index_sequence<>(),
 | |
| 			     std::forward<Match>(matchfx),
 | |
| 			     L,
 | |
| 			     fxarity,
 | |
| 			     start,
 | |
| 			     std::forward<Args>(args)...);
 | |
| 		}
 | |
| 
 | |
| 		template <typename... Functions, typename Match, typename... Args>
 | |
| 		inline int overload_match(Match&& matchfx, lua_State* L, int start, Args&&... args) {
 | |
| 			int fxarity = lua_gettop(L) - (start - 1);
 | |
| 			return overload_match_arity<Functions...>(std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, typename... TypeLists, typename Match, typename... Args>
 | |
| 		inline int construct_match(Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) {
 | |
| 			// use same overload resolution matching as all other parts of the framework
 | |
| 			return overload_match_arity<decltype(void_call<T, TypeLists>::call)...>(
 | |
| 			     std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, bool checked, bool clean_stack, typename... TypeLists>
 | |
| 		inline int construct_trampolined(lua_State* L) {
 | |
| 			static const auto& meta = usertype_traits<T>::metatable();
 | |
| 			int argcount = lua_gettop(L);
 | |
| 			call_syntax syntax = argcount > 0 ? stack::get_call_syntax(L, usertype_traits<T>::user_metatable(), 1) : call_syntax::dot;
 | |
| 			argcount -= static_cast<int>(syntax);
 | |
| 
 | |
| 			T* obj = detail::usertype_allocate<T>(L);
 | |
| 			reference userdataref(L, -1);
 | |
| 			stack::stack_detail::undefined_metatable umf(L, &meta[0], &stack::stack_detail::set_undefined_methods_on<T>);
 | |
| 			umf();
 | |
| 
 | |
| 			// put userdata at the first index
 | |
| 			lua_insert(L, 1);
 | |
| 			construct_match<T, TypeLists...>(constructor_match<T, checked, clean_stack>(obj), L, argcount, 1 + static_cast<int>(syntax));
 | |
| 
 | |
| 			userdataref.push();
 | |
| 			return 1;
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, bool checked, bool clean_stack, typename... TypeLists>
 | |
| 		inline int construct(lua_State* L) {
 | |
| 			return detail::static_trampoline<&construct_trampolined<T, checked, clean_stack, TypeLists...>>(L);
 | |
| 		}
 | |
| 
 | |
| 		template <typename F, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename = void>
 | |
| 		struct agnostic_lua_call_wrapper {
 | |
| 			template <typename Fx, typename... Args>
 | |
| 			static int call(lua_State* L, Fx&& f, Args&&... args) {
 | |
| 				using uFx = meta::unqualified_t<Fx>;
 | |
| 				static constexpr bool is_ref = is_lua_reference_v<uFx>;
 | |
| 				if constexpr (is_ref) {
 | |
| 					if constexpr (is_index) {
 | |
| 						return stack::push(L, std::forward<Fx>(f), std::forward<Args>(args)...);
 | |
| 					}
 | |
| 					else {
 | |
| 						std::forward<Fx>(f) = stack::unqualified_get<F>(L, boost + (is_variable ? 3 : 1));
 | |
| 						return 0;
 | |
| 					}
 | |
| 				}
 | |
| 				else {
 | |
| 					using wrap = wrapper<uFx>;
 | |
| 					using traits_type = typename wrap::traits_type;
 | |
| 					using fp_t = typename traits_type::function_pointer_type;
 | |
| 					constexpr bool is_function_pointer_convertible
 | |
| 					     = std::is_class_v<uFx> && std::is_convertible_v<std::decay_t<Fx>, fp_t>;
 | |
| 					if constexpr (is_function_pointer_convertible) {
 | |
| 						fp_t fx = f;
 | |
| 						return agnostic_lua_call_wrapper<fp_t, is_index, is_variable, checked, boost, clean_stack>{}.call(
 | |
| 						     L, fx, std::forward<Args>(args)...);
 | |
| 					}
 | |
| 					else {
 | |
| 						using returns_list = typename wrap::returns_list;
 | |
| 						using args_list = typename wrap::free_args_list;
 | |
| 						using caller = typename wrap::caller;
 | |
| 						return stack::call_into_lua<checked, clean_stack>(
 | |
| 						     returns_list(), args_list(), L, boost + 1, caller(), std::forward<Fx>(f), std::forward<Args>(args)...);
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
 | |
| 		struct agnostic_lua_call_wrapper<var_wrapper<T>, is_index, is_variable, checked, boost, clean_stack, C> {
 | |
| 			template <typename F>
 | |
| 			static int call(lua_State* L, F&& f) {
 | |
| 				if constexpr (is_index) {
 | |
| 					constexpr bool is_stack = is_stack_based_v<meta::unqualified_t<decltype(detail::unwrap(f.value()))>>;
 | |
| 					if constexpr (clean_stack && !is_stack) {
 | |
| 						lua_settop(L, 0);
 | |
| 					}
 | |
| 					return stack::push_reference(L, detail::unwrap(f.value()));
 | |
| 				}
 | |
| 				else {
 | |
| 					if constexpr (std::is_const_v<meta::unwrapped_t<T>>) {
 | |
| 						(void)f;
 | |
| 						return luaL_error(L, "sol: cannot write to a readonly (const) variable");
 | |
| 					}
 | |
| 					else {
 | |
| 						using R = meta::unwrapped_t<T>;
 | |
| 						if constexpr (std::is_assignable_v<std::add_lvalue_reference_t<meta::unqualified_t<R>>, R>) {
 | |
| 							detail::unwrap(f.value()) = stack::unqualified_get<meta::unwrapped_t<T>>(L, boost + (is_variable ? 3 : 1));
 | |
| 							if (clean_stack) {
 | |
| 								lua_settop(L, 0);
 | |
| 							}
 | |
| 							return 0;
 | |
| 						}
 | |
| 						else {
 | |
| 							return luaL_error(L, "sol: cannot write to this variable: copy assignment/constructor not available");
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
 | |
| 		struct agnostic_lua_call_wrapper<lua_CFunction_ref, is_index, is_variable, checked, boost, clean_stack, C> {
 | |
| 			static int call(lua_State* L, lua_CFunction_ref f) {
 | |
| 				return f(L);
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
 | |
| 		struct agnostic_lua_call_wrapper<lua_CFunction, is_index, is_variable, checked, boost, clean_stack, C> {
 | |
| 			static int call(lua_State* L, lua_CFunction f) {
 | |
| 				return f(L);
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| #if SOL_IS_ON(SOL_USE_NOEXCEPT_FUNCTION_TYPE_I_)
 | |
| 		template <bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
 | |
| 		struct agnostic_lua_call_wrapper<detail::lua_CFunction_noexcept, is_index, is_variable, checked, boost, clean_stack, C> {
 | |
| 			static int call(lua_State* L, detail::lua_CFunction_noexcept f) {
 | |
| 				return f(L);
 | |
| 			}
 | |
| 		};
 | |
| #endif // noexcept function types
 | |
| 
 | |
| 		template <bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
 | |
| 		struct agnostic_lua_call_wrapper<detail::no_prop, is_index, is_variable, checked, boost, clean_stack, C> {
 | |
| 			static int call(lua_State* L, const detail::no_prop&) {
 | |
| 				return luaL_error(L, is_index ? "sol: cannot read from a writeonly property" : "sol: cannot write to a readonly property");
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
 | |
| 		struct agnostic_lua_call_wrapper<no_construction, is_index, is_variable, checked, boost, clean_stack, C> {
 | |
| 			static int call(lua_State* L, const no_construction&) {
 | |
| 				return function_detail::no_construction_error(L);
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <typename... Args, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
 | |
| 		struct agnostic_lua_call_wrapper<bases<Args...>, is_index, is_variable, checked, boost, clean_stack, C> {
 | |
| 			static int call(lua_State*, const bases<Args...>&) {
 | |
| 				// Uh. How did you even call this, lul
 | |
| 				return 0;
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
 | |
| 		struct agnostic_lua_call_wrapper<std::reference_wrapper<T>, is_index, is_variable, checked, boost, clean_stack, C> {
 | |
| 			static int call(lua_State* L, std::reference_wrapper<T> f) {
 | |
| 				agnostic_lua_call_wrapper<T, is_index, is_variable, checked, boost, clean_stack> alcw{};
 | |
| 				return alcw.call(L, f.get());
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename F, bool is_index, bool is_variable, bool checked = detail::default_safe_function_calls, int boost = 0,
 | |
| 		     bool clean_stack = true, typename = void>
 | |
| 		struct lua_call_wrapper {
 | |
| 			template <typename Fx, typename... Args>
 | |
| 			static int call(lua_State* L, Fx&& fx, Args&&... args) {
 | |
| 				if constexpr (std::is_member_function_pointer_v<F>) {
 | |
| 					using wrap = wrapper<F>;
 | |
| 					using object_type = typename wrap::object_type;
 | |
| 					if constexpr (sizeof...(Args) < 1) {
 | |
| 						using Ta = meta::conditional_t<std::is_void_v<T>, object_type, T>;
 | |
| 						static_assert(std::is_base_of_v<object_type, Ta>, "It seems like you might have accidentally bound a class type with a member function method that does not correspond to the class. For example, there could be a small type in your new_usertype<T>(...) binding, where you specify one class \"T\" but then bind member methods from a complete unrelated class. Check things over!");
 | |
| #if SOL_IS_ON(SOL_SAFE_USERTYPE_I_)
 | |
| 						auto maybeo = stack::check_get<Ta*>(L, 1);
 | |
| 						if (!maybeo || maybeo.value() == nullptr) {
 | |
| 							return luaL_error(L,
 | |
| 							     "sol: received nil for 'self' argument (use ':' for accessing member functions, make sure member variables are "
 | |
| 							     "preceeded by the "
 | |
| 							     "actual object with '.' syntax)");
 | |
| 						}
 | |
| 						object_type* o = static_cast<object_type*>(maybeo.value());
 | |
| 						return call(L, std::forward<Fx>(fx), *o);
 | |
| #else
 | |
| 						object_type& o = static_cast<object_type&>(*stack::unqualified_get<non_null<Ta*>>(L, 1));
 | |
| 						return call(L, std::forward<Fx>(fx), o);
 | |
| #endif // Safety
 | |
| 					}
 | |
| 					else {
 | |
| 						using returns_list = typename wrap::returns_list;
 | |
| 						using args_list = typename wrap::args_list;
 | |
| 						using caller = typename wrap::caller;
 | |
| 						return stack::call_into_lua<checked, clean_stack>(
 | |
| 						     returns_list(), args_list(), L, boost + (is_variable ? 3 : 2), caller(), std::forward<Fx>(fx), std::forward<Args>(args)...);
 | |
| 					}
 | |
| 				}
 | |
| 				else if constexpr (std::is_member_object_pointer_v<F>) {
 | |
| 					using wrap = wrapper<F>;
 | |
| 					using object_type = typename wrap::object_type;
 | |
| 					if constexpr (is_index) {
 | |
| 						if constexpr (sizeof...(Args) < 1) {
 | |
| 							using Ta = meta::conditional_t<std::is_void_v<T>, object_type, T>;
 | |
| 							static_assert(std::is_base_of_v<object_type, Ta>, "It seems like you might have accidentally bound a class type with a member function method that does not correspond to the class. For example, there could be a small type in your new_usertype<T>(...) binding, where you specify one class \"T\" but then bind member methods from a complete unrelated class. Check things over!");
 | |
| #if SOL_IS_ON(SOL_SAFE_USERTYPE_I_)
 | |
| 							auto maybeo = stack::check_get<Ta*>(L, 1);
 | |
| 							if (!maybeo || maybeo.value() == nullptr) {
 | |
| 								if (is_variable) {
 | |
| 									return luaL_error(L, "sol: 'self' argument is lua_nil (bad '.' access?)");
 | |
| 								}
 | |
| 								return luaL_error(L, "sol: 'self' argument is lua_nil (pass 'self' as first argument)");
 | |
| 							}
 | |
| 							object_type* o = static_cast<object_type*>(maybeo.value());
 | |
| 							return call(L, std::forward<Fx>(fx), *o);
 | |
| #else
 | |
| 							object_type& o = static_cast<object_type&>(*stack::get<non_null<Ta*>>(L, 1));
 | |
| 							return call(L, std::forward<Fx>(fx), o);
 | |
| #endif // Safety
 | |
| 						}
 | |
| 						else {
 | |
| 							using returns_list = typename wrap::returns_list;
 | |
| 							using caller = typename wrap::caller;
 | |
| 							return stack::call_into_lua<checked, clean_stack>(returns_list(),
 | |
| 							     types<>(),
 | |
| 							     L,
 | |
| 							     boost + (is_variable ? 3 : 2),
 | |
| 							     caller(),
 | |
| 							     std::forward<Fx>(fx),
 | |
| 							     std::forward<Args>(args)...);
 | |
| 						}
 | |
| 					}
 | |
| 					else {
 | |
| 						using traits_type = lua_bind_traits<F>;
 | |
| 						using return_type = typename traits_type::return_type;
 | |
| 						constexpr bool ret_is_const = std::is_const_v<std::remove_reference_t<return_type>>;
 | |
| 						if constexpr (ret_is_const) {
 | |
| 							(void)fx;
 | |
| 							(void)detail::swallow{ 0, (static_cast<void>(args), 0)... };
 | |
| 							return luaL_error(L, "sol: cannot write to a readonly (const) variable");
 | |
| 						}
 | |
| 						else {
 | |
| 							using u_return_type = meta::unqualified_t<return_type>;
 | |
| 							constexpr bool is_assignable = std::is_copy_assignable_v<u_return_type> || std::is_array_v<u_return_type>;
 | |
| 							if constexpr (!is_assignable) {
 | |
| 								(void)fx;
 | |
| 								(void)detail::swallow{ 0, ((void)args, 0)... };
 | |
| 								return luaL_error(L, "sol: cannot write to this variable: copy assignment/constructor not available");
 | |
| 							}
 | |
| 							else {
 | |
| 								using args_list = typename wrap::args_list;
 | |
| 								using caller = typename wrap::caller;
 | |
| 								if constexpr (sizeof...(Args) > 0) {
 | |
| 									return stack::call_into_lua<checked, clean_stack>(types<void>(),
 | |
| 									     args_list(),
 | |
| 									     L,
 | |
| 									     boost + (is_variable ? 3 : 2),
 | |
| 									     caller(),
 | |
| 									     std::forward<Fx>(fx),
 | |
| 									     std::forward<Args>(args)...);
 | |
| 								}
 | |
| 								else {
 | |
| 									using Ta = meta::conditional_t<std::is_void_v<T>, object_type, T>;
 | |
| #if SOL_IS_ON(SOL_SAFE_USERTYPE_I_)
 | |
| 									auto maybeo = stack::check_get<Ta*>(L, 1);
 | |
| 									if (!maybeo || maybeo.value() == nullptr) {
 | |
| 										if (is_variable) {
 | |
| 											return luaL_error(L, "sol: received nil for 'self' argument (bad '.' access?)");
 | |
| 										}
 | |
| 										return luaL_error(L, "sol: received nil for 'self' argument (pass 'self' as first argument)");
 | |
| 									}
 | |
| 									object_type* po = static_cast<object_type*>(maybeo.value());
 | |
| 									object_type& o = *po;
 | |
| #else
 | |
| 									object_type& o = static_cast<object_type&>(*stack::get<non_null<Ta*>>(L, 1));
 | |
| #endif // Safety
 | |
| 
 | |
| 									return stack::call_into_lua<checked, clean_stack>(
 | |
| 									     types<void>(), args_list(), L, boost + (is_variable ? 3 : 2), caller(), std::forward<Fx>(fx), o);
 | |
| 								}
 | |
| 							}
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 				else {
 | |
| 					agnostic_lua_call_wrapper<F, is_index, is_variable, checked, boost, clean_stack> alcw{};
 | |
| 					return alcw.call(L, std::forward<Fx>(fx), std::forward<Args>(args)...);
 | |
| 				}
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename F, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
 | |
| 		struct lua_call_wrapper<T, readonly_wrapper<F>, is_index, is_variable, checked, boost, clean_stack, C> {
 | |
| 			using traits_type = lua_bind_traits<F>;
 | |
| 			using wrap = wrapper<F>;
 | |
| 			using object_type = typename wrap::object_type;
 | |
| 
 | |
| 			static int call(lua_State* L, readonly_wrapper<F>&& rw) {
 | |
| 				if constexpr (!is_index) {
 | |
| 					(void)rw;
 | |
| 					return luaL_error(L, "sol: cannot write to a sol::readonly variable");
 | |
| 				}
 | |
| 				else {
 | |
| 					lua_call_wrapper<T, F, true, is_variable, checked, boost, clean_stack, C> lcw;
 | |
| 					return lcw.call(L, std::move(rw.value()));
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			static int call(lua_State* L, readonly_wrapper<F>&& rw, object_type& o) {
 | |
| 				if constexpr (!is_index) {
 | |
| 					(void)o;
 | |
| 					return call(L, std::move(rw));
 | |
| 				}
 | |
| 				else {
 | |
| 					lua_call_wrapper<T, F, true, is_variable, checked, boost, clean_stack, C> lcw;
 | |
| 					return lcw.call(L, rw.value(), o);
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			static int call(lua_State* L, const readonly_wrapper<F>& rw) {
 | |
| 				if constexpr (!is_index) {
 | |
| 					(void)rw;
 | |
| 					return luaL_error(L, "sol: cannot write to a sol::readonly variable");
 | |
| 				}
 | |
| 				else {
 | |
| 					lua_call_wrapper<T, F, true, is_variable, checked, boost, clean_stack, C> lcw;
 | |
| 					return lcw.call(L, rw.value());
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			static int call(lua_State* L, const readonly_wrapper<F>& rw, object_type& o) {
 | |
| 				if constexpr (!is_index) {
 | |
| 					(void)o;
 | |
| 					return call(L, rw);
 | |
| 				}
 | |
| 				else {
 | |
| 					lua_call_wrapper<T, F, true, is_variable, checked, boost, clean_stack, C> lcw;
 | |
| 					return lcw.call(L, rw.value(), o);
 | |
| 				}
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename... Args, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
 | |
| 		struct lua_call_wrapper<T, constructor_list<Args...>, is_index, is_variable, checked, boost, clean_stack, C> {
 | |
| 			typedef constructor_list<Args...> F;
 | |
| 
 | |
| 			static int call(lua_State* L, F&) {
 | |
| 				const auto& meta = usertype_traits<T>::metatable();
 | |
| 				int argcount = lua_gettop(L);
 | |
| 				call_syntax syntax = argcount > 0 ? stack::get_call_syntax(L, usertype_traits<T>::user_metatable(), 1) : call_syntax::dot;
 | |
| 				argcount -= static_cast<int>(syntax);
 | |
| 
 | |
| 				T* obj = detail::usertype_allocate<T>(L);
 | |
| 				reference userdataref(L, -1);
 | |
| 				stack::stack_detail::undefined_metatable umf(L, &meta[0], &stack::stack_detail::set_undefined_methods_on<T>);
 | |
| 				umf();
 | |
| 
 | |
| 				// put userdata at the first index
 | |
| 				lua_insert(L, 1);
 | |
| 				construct_match<T, Args...>(constructor_match<T, checked, clean_stack>(obj), L, argcount, boost + 1 + 1 + static_cast<int>(syntax));
 | |
| 
 | |
| 				userdataref.push();
 | |
| 				return 1;
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename... Cxs, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
 | |
| 		struct lua_call_wrapper<T, constructor_wrapper<Cxs...>, is_index, is_variable, checked, boost, clean_stack, C> {
 | |
| 			typedef constructor_wrapper<Cxs...> F;
 | |
| 
 | |
| 			struct onmatch {
 | |
| 				template <typename Fx, std::size_t I, typename... R, typename... Args>
 | |
| 				int operator()(types<Fx>, meta::index_value<I>, types<R...> r, types<Args...> a, lua_State* L, int, int start, F& f) {
 | |
| 					const auto& meta = usertype_traits<T>::metatable();
 | |
| 					T* obj = detail::usertype_allocate<T>(L);
 | |
| 					reference userdataref(L, -1);
 | |
| 					stack::stack_detail::undefined_metatable umf(L, &meta[0], &stack::stack_detail::set_undefined_methods_on<T>);
 | |
| 					umf();
 | |
| 
 | |
| 					auto& func = std::get<I>(f.functions);
 | |
| 					// put userdata at the first index
 | |
| 					lua_insert(L, 1);
 | |
| 					stack::call_into_lua<checked, clean_stack>(r, a, L, boost + 1 + start, func, detail::implicit_wrapper<T>(obj));
 | |
| 
 | |
| 					userdataref.push();
 | |
| 					return 1;
 | |
| 				}
 | |
| 			};
 | |
| 
 | |
| 			static int call(lua_State* L, F& f) {
 | |
| 				call_syntax syntax = stack::get_call_syntax(L, usertype_traits<T>::user_metatable(), 1);
 | |
| 				int syntaxval = static_cast<int>(syntax);
 | |
| 				int argcount = lua_gettop(L) - syntaxval;
 | |
| 				return construct_match<T, meta::pop_front_type_t<meta::function_args_t<Cxs>>...>(onmatch(), L, argcount, 1 + syntaxval, f);
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename Fx, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
 | |
| 		struct lua_call_wrapper<T, destructor_wrapper<Fx>, is_index, is_variable, checked, boost, clean_stack, C> {
 | |
| 
 | |
| 			template <typename F>
 | |
| 			static int call(lua_State* L, F&& f) {
 | |
| 				if constexpr (std::is_void_v<Fx>) {
 | |
| 					return detail::usertype_alloc_destruct<T>(L);
 | |
| 				}
 | |
| 				else {
 | |
| 					using uFx = meta::unqualified_t<Fx>;
 | |
| 					lua_call_wrapper<T, uFx, is_index, is_variable, checked, boost, clean_stack> lcw{};
 | |
| 					return lcw.call(L, std::forward<F>(f).fx);
 | |
| 				}
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename... Fs, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
 | |
| 		struct lua_call_wrapper<T, overload_set<Fs...>, is_index, is_variable, checked, boost, clean_stack, C> {
 | |
| 			typedef overload_set<Fs...> F;
 | |
| 
 | |
| 			struct on_match {
 | |
| 				template <typename Fx, std::size_t I, typename... R, typename... Args>
 | |
| 				int operator()(types<Fx>, meta::index_value<I>, types<R...>, types<Args...>, lua_State* L, int, int, F& fx) {
 | |
| 					auto& f = std::get<I>(fx.functions);
 | |
| 					return lua_call_wrapper<T, Fx, is_index, is_variable, checked, boost>{}.call(L, f);
 | |
| 				}
 | |
| 			};
 | |
| 
 | |
| 			static int call(lua_State* L, F& fx) {
 | |
| 				return overload_match_arity<Fs...>(on_match(), L, lua_gettop(L), 1, fx);
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename... Fs, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
 | |
| 		struct lua_call_wrapper<T, factory_wrapper<Fs...>, is_index, is_variable, checked, boost, clean_stack, C> {
 | |
| 			typedef factory_wrapper<Fs...> F;
 | |
| 
 | |
| 			struct on_match {
 | |
| 				template <typename Fx, std::size_t I, typename... R, typename... Args>
 | |
| 				int operator()(types<Fx>, meta::index_value<I>, types<R...>, types<Args...>, lua_State* L, int, int, F& fx) {
 | |
| 					auto& f = std::get<I>(fx.functions);
 | |
| 					return lua_call_wrapper<T, Fx, is_index, is_variable, checked, boost, clean_stack>{}.call(L, f);
 | |
| 				}
 | |
| 			};
 | |
| 
 | |
| 			static int call(lua_State* L, F& fx) {
 | |
| 				return overload_match_arity<Fs...>(on_match(), L, lua_gettop(L) - boost, 1 + boost, fx);
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename R, typename W, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
 | |
| 		struct lua_call_wrapper<T, property_wrapper<R, W>, is_index, is_variable, checked, boost, clean_stack, C> {
 | |
| 			typedef meta::conditional_t<is_index, R, W> P;
 | |
| 			typedef meta::unqualified_t<P> U;
 | |
| 			typedef wrapper<U> wrap;
 | |
| 			typedef lua_bind_traits<U> traits_type;
 | |
| 			typedef meta::unqualified_t<typename traits_type::template arg_at<0>> object_type;
 | |
| 
 | |
| 			template <typename F, typename... Args>
 | |
| 			static int call(lua_State* L, F&& f, Args&&... args) {
 | |
| 				constexpr bool is_specialized = meta::any<std::is_same<U, detail::no_prop>,
 | |
| 				     meta::is_specialization_of<U, var_wrapper>,
 | |
| 				     meta::is_specialization_of<U, constructor_wrapper>,
 | |
| 				     meta::is_specialization_of<U, constructor_list>,
 | |
| 				     std::is_member_pointer<U>>::value;
 | |
| 				if constexpr (is_specialized) {
 | |
| 					if constexpr (is_index) {
 | |
| 						decltype(auto) p = f.read();
 | |
| 						lua_call_wrapper<T, meta::unqualified_t<decltype(p)>, is_index, is_variable, checked, boost, clean_stack> lcw{};
 | |
| 						return lcw.call(L, p, std::forward<Args>(args)...);
 | |
| 					}
 | |
| 					else {
 | |
| 						decltype(auto) p = f.write();
 | |
| 						lua_call_wrapper<T, meta::unqualified_t<decltype(p)>, is_index, is_variable, checked, boost, clean_stack> lcw{};
 | |
| 						return lcw.call(L, p, std::forward<Args>(args)...);
 | |
| 					}
 | |
| 				}
 | |
| 				else {
 | |
| 					constexpr bool non_class_object_type = meta::any<std::is_void<object_type>,
 | |
| 					     meta::boolean<lua_type_of<meta::unwrap_unqualified_t<object_type>>::value != type::userdata>>::value;
 | |
| 					if constexpr (non_class_object_type) {
 | |
| 						// The type being void means we don't have any arguments, so it might be a free functions?
 | |
| 						using args_list = typename traits_type::free_args_list;
 | |
| 						using returns_list = typename wrap::returns_list;
 | |
| 						using caller = typename wrap::caller;
 | |
| 						if constexpr (is_index) {
 | |
| 							decltype(auto) pf = f.read();
 | |
| 							return stack::call_into_lua<checked, clean_stack>(
 | |
| 							     returns_list(), args_list(), L, boost + (is_variable ? 3 : 2), caller(), pf);
 | |
| 						}
 | |
| 						else {
 | |
| 							decltype(auto) pf = f.write();
 | |
| 							return stack::call_into_lua<checked, clean_stack>(
 | |
| 							     returns_list(), args_list(), L, boost + (is_variable ? 3 : 2), caller(), pf);
 | |
| 						}
 | |
| 					}
 | |
| 					else {
 | |
| 						using args_list = meta::pop_front_type_t<typename traits_type::free_args_list>;
 | |
| 						using Ta = T;
 | |
| 						using Oa = std::remove_pointer_t<object_type>;
 | |
| #if SOL_IS_ON(SOL_SAFE_USERTYPE_I_)
 | |
| 						auto maybeo = stack::check_get<Ta*>(L, 1);
 | |
| 						if (!maybeo || maybeo.value() == nullptr) {
 | |
| 							if (is_variable) {
 | |
| 								return luaL_error(L, "sol: 'self' argument is lua_nil (bad '.' access?)");
 | |
| 							}
 | |
| 							return luaL_error(L, "sol: 'self' argument is lua_nil (pass 'self' as first argument)");
 | |
| 						}
 | |
| 						Oa* o = static_cast<Oa*>(maybeo.value());
 | |
| #else
 | |
| 						Oa* o = static_cast<Oa*>(stack::get<non_null<Ta*>>(L, 1));
 | |
| #endif // Safety
 | |
| 						using returns_list = typename wrap::returns_list;
 | |
| 						using caller = typename wrap::caller;
 | |
| 						if constexpr (is_index) {
 | |
| 							decltype(auto) pf = f.read();
 | |
| 							return stack::call_into_lua<checked, clean_stack>(
 | |
| 							     returns_list(), args_list(), L, boost + (is_variable ? 3 : 2), caller(), pf, detail::implicit_wrapper<Oa>(*o));
 | |
| 						}
 | |
| 						else {
 | |
| 							decltype(auto) pf = f.write();
 | |
| 							return stack::call_into_lua<checked, clean_stack>(
 | |
| 							     returns_list(), args_list(), L, boost + (is_variable ? 3 : 2), caller(), pf, detail::implicit_wrapper<Oa>(*o));
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename V, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
 | |
| 		struct lua_call_wrapper<T, protect_t<V>, is_index, is_variable, checked, boost, clean_stack, C> {
 | |
| 			typedef protect_t<V> F;
 | |
| 
 | |
| 			template <typename... Args>
 | |
| 			static int call(lua_State* L, F& fx, Args&&... args) {
 | |
| 				return lua_call_wrapper<T, V, is_index, is_variable, true, boost, clean_stack>{}.call(L, fx.value, std::forward<Args>(args)...);
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename F, typename... Policies, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
 | |
| 		struct lua_call_wrapper<T, policy_wrapper<F, Policies...>, is_index, is_variable, checked, boost, clean_stack, C> {
 | |
| 			typedef policy_wrapper<F, Policies...> P;
 | |
| 
 | |
| 			template <std::size_t... In>
 | |
| 			static int call(std::index_sequence<In...>, lua_State* L, P& fx) {
 | |
| 				int pushed = lua_call_wrapper<T, F, is_index, is_variable, checked, boost, false, C>{}.call(L, fx.value);
 | |
| 				(void)detail::swallow{ int(), (policy_detail::handle_policy(std::get<In>(fx.policies), L, pushed), int())... };
 | |
| 				return pushed;
 | |
| 			}
 | |
| 
 | |
| 			static int call(lua_State* L, P& fx) {
 | |
| 				typedef typename P::indices indices;
 | |
| 				return call(indices(), L, fx);
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename Y, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
 | |
| 		struct lua_call_wrapper<T, yielding_t<Y>, is_index, is_variable, checked, boost, clean_stack, C> {
 | |
| 			template <typename F>
 | |
| 			static int call(lua_State* L, F&& f) {
 | |
| 				return lua_call_wrapper<T, meta::unqualified_t<Y>, is_index, is_variable, checked, boost, clean_stack>{}.call(L, f.func);
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename Sig, typename P, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
 | |
| 		struct lua_call_wrapper<T, function_arguments<Sig, P>, is_index, is_variable, checked, boost, clean_stack, C> {
 | |
| 			static int call(lua_State* L, const function_arguments<Sig, P>& f) {
 | |
| 				lua_call_wrapper<T, meta::unqualified_t<P>, is_index, is_variable, checked, boost, clean_stack> lcw{};
 | |
| 				return lcw.call(L, std::get<0>(f.arguments));
 | |
| 			}
 | |
| 
 | |
| 			static int call(lua_State* L, function_arguments<Sig, P>&& f) {
 | |
| 				lua_call_wrapper<T, meta::unqualified_t<P>, is_index, is_variable, checked, boost, clean_stack> lcw{};
 | |
| 				return lcw.call(L, std::get<0>(std::move(f.arguments)));
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, bool is_index, bool is_variable, int boost = 0, bool checked = detail::default_safe_function_calls, bool clean_stack = true,
 | |
| 		     typename Fx, typename... Args>
 | |
| 		inline int call_wrapped(lua_State* L, Fx&& fx, Args&&... args) {
 | |
| 			using uFx = meta::unqualified_t<Fx>;
 | |
| 			if constexpr (meta::is_specialization_of_v<uFx, yielding_t>) {
 | |
| 				using real_fx = meta::unqualified_t<decltype(std::forward<Fx>(fx).func)>;
 | |
| 				lua_call_wrapper<T, real_fx, is_index, is_variable, checked, boost, clean_stack> lcw{};
 | |
| 				return lcw.call(L, std::forward<Fx>(fx).func, std::forward<Args>(args)...);
 | |
| 			}
 | |
| 			else {
 | |
| 				lua_call_wrapper<T, uFx, is_index, is_variable, checked, boost, clean_stack> lcw{};
 | |
| 				return lcw.call(L, std::forward<Fx>(fx), std::forward<Args>(args)...);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, bool is_index, bool is_variable, typename F, int start = 1, bool checked = detail::default_safe_function_calls,
 | |
| 		     bool clean_stack = true>
 | |
| 		inline int call_user(lua_State* L) {
 | |
| 			auto& fx = stack::unqualified_get<user<F>>(L, upvalue_index(start));
 | |
| 			using uFx = meta::unqualified_t<F>;
 | |
| 			int nr = call_wrapped<T, is_index, is_variable, 0, checked, clean_stack>(L, fx);
 | |
| 			if constexpr (meta::is_specialization_of_v<uFx, yielding_t>) {
 | |
| 				return lua_yield(L, nr);
 | |
| 			}
 | |
| 			else {
 | |
| 				return nr;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, typename = void>
 | |
| 		struct is_var_bind : std::false_type {};
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct is_var_bind<T, std::enable_if_t<std::is_member_object_pointer<T>::value>> : std::true_type {};
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct is_var_bind<T, std::enable_if_t<is_lua_reference_or_proxy<T>::value>> : std::true_type {};
 | |
| 
 | |
| 		template <>
 | |
| 		struct is_var_bind<detail::no_prop> : std::true_type {};
 | |
| 
 | |
| 		template <typename R, typename W>
 | |
| 		struct is_var_bind<property_wrapper<R, W>> : std::true_type {};
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct is_var_bind<var_wrapper<T>> : std::true_type {};
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct is_var_bind<readonly_wrapper<T>> : is_var_bind<meta::unqualified_t<T>> {};
 | |
| 
 | |
| 		template <typename F, typename... Policies>
 | |
| 		struct is_var_bind<policy_wrapper<F, Policies...>> : is_var_bind<meta::unqualified_t<F>> {};
 | |
| 	} // namespace call_detail
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct is_variable_binding : call_detail::is_var_bind<meta::unqualified_t<T>> {};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	using is_var_wrapper = meta::is_specialization_of<T, var_wrapper>;
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct is_function_binding : meta::neg<is_variable_binding<T>> {};
 | |
| 
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/call.hpp
 | |
| 
 | |
| namespace sol {
 | |
| 	namespace function_detail {
 | |
| 		template <typename F, F fx>
 | |
| 		inline int call_wrapper_variable(std::false_type, lua_State* L) {
 | |
| 			typedef meta::bind_traits<meta::unqualified_t<F>> traits_type;
 | |
| 			typedef typename traits_type::args_list args_list;
 | |
| 			typedef meta::tuple_types<typename traits_type::return_type> return_type;
 | |
| 			return stack::call_into_lua(return_type(), args_list(), L, 1, fx);
 | |
| 		}
 | |
| 
 | |
| 		template <typename R, typename V, V, typename T>
 | |
| 		inline int call_set_assignable(std::false_type, T&&, lua_State* L) {
 | |
| 			return luaL_error(L, "cannot write to this type: copy assignment/constructor not available");
 | |
| 		}
 | |
| 
 | |
| 		template <typename R, typename V, V variable, typename T>
 | |
| 		inline int call_set_assignable(std::true_type, lua_State* L, T&& mem) {
 | |
| 			(mem.*variable) = stack::get<R>(L, 2);
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		template <typename R, typename V, V, typename T>
 | |
| 		inline int call_set_variable(std::false_type, lua_State* L, T&&) {
 | |
| 			return luaL_error(L, "cannot write to a const variable");
 | |
| 		}
 | |
| 
 | |
| 		template <typename R, typename V, V variable, typename T>
 | |
| 		inline int call_set_variable(std::true_type, lua_State* L, T&& mem) {
 | |
| 			return call_set_assignable<R, V, variable>(std::is_assignable<std::add_lvalue_reference_t<R>, R>(), L, std::forward<T>(mem));
 | |
| 		}
 | |
| 
 | |
| 		template <typename V, V variable>
 | |
| 		inline int call_wrapper_variable(std::true_type, lua_State* L) {
 | |
| 			typedef meta::bind_traits<meta::unqualified_t<V>> traits_type;
 | |
| 			typedef typename traits_type::object_type T;
 | |
| 			typedef typename traits_type::return_type R;
 | |
| 			auto& mem = stack::get<T>(L, 1);
 | |
| 			switch (lua_gettop(L)) {
 | |
| 			case 1: {
 | |
| 				decltype(auto) r = (mem.*variable);
 | |
| 				stack::push_reference(L, std::forward<decltype(r)>(r));
 | |
| 				return 1;
 | |
| 			}
 | |
| 			case 2:
 | |
| 				return call_set_variable<R, V, variable>(meta::neg<std::is_const<R>>(), L, mem);
 | |
| 			default:
 | |
| 				return luaL_error(L, "incorrect number of arguments to member variable function call");
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		template <typename F, F fx>
 | |
| 		inline int call_wrapper_function(std::false_type, lua_State* L) {
 | |
| 			return call_wrapper_variable<F, fx>(std::is_member_object_pointer<F>(), L);
 | |
| 		}
 | |
| 
 | |
| 		template <typename F, F fx>
 | |
| 		inline int call_wrapper_function(std::true_type, lua_State* L) {
 | |
| 			return call_detail::call_wrapped<void, false, false>(L, fx);
 | |
| 		}
 | |
| 
 | |
| 		template <typename F, F fx>
 | |
| 		int call_wrapper_entry(lua_State* L) noexcept(meta::bind_traits<F>::is_noexcept) {
 | |
| 			return call_wrapper_function<F, fx>(std::is_member_function_pointer<meta::unqualified_t<F>>(), L);
 | |
| 		}
 | |
| 
 | |
| 		template <typename... Fxs>
 | |
| 		struct c_call_matcher {
 | |
| 			template <typename Fx, std::size_t I, typename R, typename... Args>
 | |
| 			int operator()(types<Fx>, meta::index_value<I>, types<R>, types<Args...>, lua_State* L, int, int) const {
 | |
| 				typedef meta::at_in_pack_t<I, Fxs...> target;
 | |
| 				return target::call(L);
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <typename F, F fx>
 | |
| 		inline int c_call_raw(std::true_type, lua_State* L) {
 | |
| 			return fx(L);
 | |
| 		}
 | |
| 
 | |
| 		template <typename F, F fx>
 | |
| 		inline int c_call_raw(std::false_type, lua_State* L) {
 | |
| #ifdef __clang__
 | |
| 			return detail::trampoline(L, function_detail::call_wrapper_entry<F, fx>);
 | |
| #else
 | |
| 			return detail::typed_static_trampoline<decltype(&function_detail::call_wrapper_entry<F, fx>), (&function_detail::call_wrapper_entry<F, fx>)>(L);
 | |
| #endif // fuck you clang :c
 | |
| 		}
 | |
| 
 | |
| 	} // namespace function_detail
 | |
| 
 | |
| 	template <typename F, F fx>
 | |
| 	inline int c_call(lua_State* L) {
 | |
| 		typedef meta::unqualified_t<F> Fu;
 | |
| 		typedef std::integral_constant<bool,
 | |
| 		     std::is_same<Fu, lua_CFunction>::value
 | |
| #if SOL_IS_ON(SOL_USE_NOEXCEPT_FUNCTION_TYPE_I_)
 | |
| 		          || std::is_same<Fu, detail::lua_CFunction_noexcept>::value
 | |
| #endif
 | |
| 		     >
 | |
| 		     is_raw;
 | |
| 		return function_detail::c_call_raw<F, fx>(is_raw(), L);
 | |
| 	}
 | |
| 
 | |
| 	template <typename F, F f>
 | |
| 	struct wrap {
 | |
| 		typedef F type;
 | |
| 
 | |
| 		static int call(lua_State* L) {
 | |
| 			return c_call<type, f>(L);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename... Fxs>
 | |
| 	inline int c_call(lua_State* L) {
 | |
| 		if constexpr (sizeof...(Fxs) < 2) {
 | |
| 			using target = meta::at_in_pack_t<0, Fxs...>;
 | |
| 			return target::call(L);
 | |
| 		}
 | |
| 		else {
 | |
| 			return call_detail::overload_match_arity<typename Fxs::type...>(function_detail::c_call_matcher<Fxs...>(), L, lua_gettop(L), 1);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/function_types_templated.hpp
 | |
| 
 | |
| // beginning of sol/function_types_stateless.hpp
 | |
| 
 | |
| namespace sol { namespace function_detail {
 | |
| 	template <typename Function, bool is_yielding>
 | |
| 	struct upvalue_free_function {
 | |
| 		using function_type = std::remove_pointer_t<std::decay_t<Function>>;
 | |
| 		using traits_type = meta::bind_traits<function_type>;
 | |
| 
 | |
| 		static int real_call(lua_State* L)
 | |
| #if SOL_IS_ON(SOL_COMPILER_VCXX_I_)
 | |
| 		// MSVC is broken, what a surprise...
 | |
| #else
 | |
| 			noexcept(traits_type::is_noexcept)
 | |
| #endif
 | |
| 		{
 | |
| 			auto udata = stack::stack_detail::get_as_upvalues<function_type*>(L);
 | |
| 			function_type* fx = udata.first;
 | |
| 			return call_detail::call_wrapped<void, true, false>(L, fx);
 | |
| 		}
 | |
| 
 | |
| 		static int call(lua_State* L) {
 | |
| 			int nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L);
 | |
| 			if (is_yielding) {
 | |
| 				return lua_yield(L, nr);
 | |
| 			}
 | |
| 			else {
 | |
| 				return nr;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		int operator()(lua_State* L) {
 | |
| 			return call(L);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T, typename Function, bool is_yielding>
 | |
| 	struct upvalue_member_function {
 | |
| 		typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
 | |
| 		typedef lua_bind_traits<function_type> traits_type;
 | |
| 
 | |
| 		static int real_call(lua_State* L)
 | |
| #if SOL_IS_ON(SOL_COMPILER_VCXX_I_)
 | |
| 		// MSVC is broken, what a surprise...
 | |
| #else
 | |
| 			noexcept(traits_type::is_noexcept)
 | |
| #endif
 | |
| 		{
 | |
| 			// Layout:
 | |
| 			// idx 1...n: verbatim data of member function pointer
 | |
| 			// idx n + 1: is the object's void pointer
 | |
| 			// We don't need to store the size, because the other side is templated
 | |
| 			// with the same member function pointer type
 | |
| 			function_type& memfx = stack::get<user<function_type>>(L, upvalue_index(2));
 | |
| 			auto& item = *static_cast<T*>(stack::get<void*>(L, upvalue_index(3)));
 | |
| 			return call_detail::call_wrapped<T, true, false, -1>(L, memfx, item);
 | |
| 		}
 | |
| 
 | |
| 		static int call(lua_State* L)
 | |
| #if SOL_IS_ON(SOL_COMPILER_VCXX_I_)
 | |
| 		// MSVC is broken, what a surprise...
 | |
| #else
 | |
| 			noexcept(traits_type::is_noexcept)
 | |
| #endif
 | |
| 		{
 | |
| 			int nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L);
 | |
| 			if (is_yielding) {
 | |
| 				return lua_yield(L, nr);
 | |
| 			}
 | |
| 			else {
 | |
| 				return nr;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		int operator()(lua_State* L) {
 | |
| 			return call(L);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T, typename Function, bool is_yielding>
 | |
| 	struct upvalue_member_variable {
 | |
| 		typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
 | |
| 		typedef lua_bind_traits<function_type> traits_type;
 | |
| 
 | |
| 		static int real_call(lua_State* L)
 | |
| #if SOL_IS_ON(SOL_COMPILER_VCXX_I_)
 | |
| 		// MSVC is broken, what a surprise...
 | |
| #else
 | |
| 			noexcept(traits_type::is_noexcept)
 | |
| #endif
 | |
| 		{
 | |
| 			// Layout:
 | |
| 			// idx 1...n: verbatim data of member variable pointer
 | |
| 			// idx n + 1: is the object's void pointer
 | |
| 			// We don't need to store the size, because the other side is templated
 | |
| 			// with the same member function pointer type
 | |
| 			auto memberdata = stack::stack_detail::get_as_upvalues<function_type>(L);
 | |
| 			auto objdata = stack::stack_detail::get_as_upvalues<T*>(L, memberdata.second);
 | |
| 			auto& mem = *objdata.first;
 | |
| 			function_type& var = memberdata.first;
 | |
| 			switch (lua_gettop(L)) {
 | |
| 			case 0:
 | |
| 				return call_detail::call_wrapped<T, true, false, -1>(L, var, mem);
 | |
| 			case 1:
 | |
| 				return call_detail::call_wrapped<T, false, false, -1>(L, var, mem);
 | |
| 			default:
 | |
| 				return luaL_error(L, "sol: incorrect number of arguments to member variable function");
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		static int call(lua_State* L)
 | |
| #if SOL_IS_ON(SOL_COMPILER_VCXX_I_)
 | |
| 		// MSVC is broken, what a surprise...
 | |
| #else
 | |
| 			noexcept(traits_type::is_noexcept)
 | |
| #endif
 | |
| 		{
 | |
| 			int nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L);
 | |
| 			if (is_yielding) {
 | |
| 				return lua_yield(L, nr);
 | |
| 			}
 | |
| 			else {
 | |
| 				return nr;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		int operator()(lua_State* L) {
 | |
| 			return call(L);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T, typename Function, bool is_yielding>
 | |
| 	struct upvalue_member_variable<T, readonly_wrapper<Function>, is_yielding> {
 | |
| 		typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
 | |
| 		typedef lua_bind_traits<function_type> traits_type;
 | |
| 
 | |
| 		static int real_call(lua_State* L)
 | |
| #if SOL_IS_ON(SOL_COMPILER_VCXX_I_)
 | |
| 		// MSVC is broken, what a surprise...
 | |
| #else
 | |
| 			noexcept(traits_type::is_noexcept)
 | |
| #endif
 | |
| 		{
 | |
| 			// Layout:
 | |
| 			// idx 1...n: verbatim data of member variable pointer
 | |
| 			// idx n + 1: is the object's void pointer
 | |
| 			// We don't need to store the size, because the other side is templated
 | |
| 			// with the same member function pointer type
 | |
| 			auto memberdata = stack::stack_detail::get_as_upvalues<function_type>(L);
 | |
| 			auto objdata = stack::stack_detail::get_as_upvalues<T*>(L, memberdata.second);
 | |
| 			auto& mem = *objdata.first;
 | |
| 			function_type& var = memberdata.first;
 | |
| 			switch (lua_gettop(L)) {
 | |
| 			case 0:
 | |
| 				return call_detail::call_wrapped<T, true, false, -1>(L, var, mem);
 | |
| 			default:
 | |
| 				return luaL_error(L, "sol: incorrect number of arguments to member variable function");
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		static int call(lua_State* L)
 | |
| #if SOL_IS_ON(SOL_COMPILER_VCXX_I_)
 | |
| 		// MSVC is broken, what a surprise...
 | |
| #else
 | |
| 			noexcept(traits_type::is_noexcept)
 | |
| #endif
 | |
| 		{
 | |
| 			int nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L);
 | |
| 			if (is_yielding) {
 | |
| 				return lua_yield(L, nr);
 | |
| 			}
 | |
| 			else {
 | |
| 				return nr;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		int operator()(lua_State* L) {
 | |
| 			return call(L);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T, typename Function, bool is_yielding>
 | |
| 	struct upvalue_this_member_function {
 | |
| 		typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
 | |
| 		typedef lua_bind_traits<function_type> traits_type;
 | |
| 
 | |
| 		static int real_call(lua_State* L)
 | |
| #if SOL_IS_ON(SOL_COMPILER_VCXX_I_)
 | |
| 		// MSVC is broken, what a surprise...
 | |
| #else
 | |
| 			noexcept(traits_type::is_noexcept)
 | |
| #endif
 | |
| 		{
 | |
| 			// Layout:
 | |
| 			// idx 1...n: verbatim data of member variable pointer
 | |
| 			function_type& memfx = stack::get<user<function_type>>(L, upvalue_index(2));
 | |
| 			return call_detail::call_wrapped<T, false, false>(L, memfx);
 | |
| 		}
 | |
| 
 | |
| 		static int call(lua_State* L)
 | |
| #if SOL_IS_ON(SOL_COMPILER_VCXX_I_)
 | |
| 		// MSVC is broken, what a surprise...
 | |
| #else
 | |
| 			noexcept(traits_type::is_noexcept)
 | |
| #endif
 | |
| 		{
 | |
| 			int nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L);
 | |
| 			if (is_yielding) {
 | |
| 				return lua_yield(L, nr);
 | |
| 			}
 | |
| 			else {
 | |
| 				return nr;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		int operator()(lua_State* L) {
 | |
| 			return call(L);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T, typename Function, bool is_yielding>
 | |
| 	struct upvalue_this_member_variable {
 | |
| 		typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
 | |
| 
 | |
| 		static int real_call(lua_State* L) noexcept(false) {
 | |
| 			// Layout:
 | |
| 			// idx 1...n: verbatim data of member variable pointer
 | |
| 			auto memberdata = stack::stack_detail::get_as_upvalues<function_type>(L);
 | |
| 			function_type& var = memberdata.first;
 | |
| 			switch (lua_gettop(L)) {
 | |
| 			case 1:
 | |
| 				return call_detail::call_wrapped<T, true, false>(L, var);
 | |
| 			case 2:
 | |
| 				return call_detail::call_wrapped<T, false, false>(L, var);
 | |
| 			default:
 | |
| 				return luaL_error(L, "sol: incorrect number of arguments to member variable function");
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		static int call(lua_State* L) {
 | |
| 			int nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L);
 | |
| 			if (is_yielding) {
 | |
| 				return lua_yield(L, nr);
 | |
| 			}
 | |
| 			else {
 | |
| 				return nr;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		int operator()(lua_State* L) {
 | |
| 			return call(L);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T, typename Function, bool is_yielding>
 | |
| 	struct upvalue_this_member_variable<T, readonly_wrapper<Function>, is_yielding> {
 | |
| 		typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
 | |
| 		typedef lua_bind_traits<function_type> traits_type;
 | |
| 
 | |
| 		static int real_call(lua_State* L) noexcept(false) {
 | |
| 			// Layout:
 | |
| 			// idx 1...n: verbatim data of member variable pointer
 | |
| 			auto memberdata = stack::stack_detail::get_as_upvalues<function_type>(L);
 | |
| 			function_type& var = memberdata.first;
 | |
| 			switch (lua_gettop(L)) {
 | |
| 			case 1:
 | |
| 				return call_detail::call_wrapped<T, true, false>(L, var);
 | |
| 			default:
 | |
| 				return luaL_error(L, "sol: incorrect number of arguments to member variable function");
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		static int call(lua_State* L) {
 | |
| 			int nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L);
 | |
| 			if (is_yielding) {
 | |
| 				return lua_yield(L, nr);
 | |
| 			}
 | |
| 			else {
 | |
| 				return nr;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		int operator()(lua_State* L) {
 | |
| 			return call(L);
 | |
| 		}
 | |
| 	};
 | |
| }} // namespace sol::function_detail
 | |
| 
 | |
| // end of sol/function_types_stateless.hpp
 | |
| 
 | |
| // beginning of sol/function_types_stateful.hpp
 | |
| 
 | |
| namespace sol {
 | |
| namespace function_detail {
 | |
| 	template <typename Func, bool is_yielding, bool no_trampoline>
 | |
| 	struct functor_function {
 | |
| 		typedef std::decay_t<meta::unwrap_unqualified_t<Func>> function_type;
 | |
| 		function_type fx;
 | |
| 
 | |
| 		template <typename... Args>
 | |
| 		functor_function(function_type f, Args&&... args)
 | |
| 		: fx(std::move(f), std::forward<Args>(args)...) {
 | |
| 		}
 | |
| 
 | |
| 		int call(lua_State* L) {
 | |
| 			int nr = call_detail::call_wrapped<void, true, false>(L, fx);
 | |
| 			if (is_yielding) {
 | |
| 				return lua_yield(L, nr);
 | |
| 			}
 | |
| 			else {
 | |
| 				return nr;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		int operator()(lua_State* L) {
 | |
| 			if (!no_trampoline) {
 | |
| 				auto f = [&](lua_State*) -> int { return this->call(L); };
 | |
| 				return detail::trampoline(L, f);
 | |
| 			}
 | |
| 			else {
 | |
| 				return call(L);
 | |
| 			}
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T, typename Function, bool is_yielding>
 | |
| 	struct member_function {
 | |
| 		typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
 | |
| 		typedef meta::function_return_t<function_type> return_type;
 | |
| 		typedef meta::function_args_t<function_type> args_lists;
 | |
| 		function_type invocation;
 | |
| 		T member;
 | |
| 
 | |
| 		template <typename... Args>
 | |
| 		member_function(function_type f, Args&&... args)
 | |
| 		: invocation(std::move(f)), member(std::forward<Args>(args)...) {
 | |
| 		}
 | |
| 
 | |
| 		int call(lua_State* L) {
 | |
| 			int nr = call_detail::call_wrapped<T, true, false, -1>(L, invocation, detail::unwrap(detail::deref(member)));
 | |
| 			if (is_yielding) {
 | |
| 				return lua_yield(L, nr);
 | |
| 			}
 | |
| 			else {
 | |
| 				return nr;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		int operator()(lua_State* L) {
 | |
| 			auto f = [&](lua_State*) -> int { return this->call(L); };
 | |
| 			return detail::trampoline(L, f);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T, typename Function, bool is_yielding>
 | |
| 	struct member_variable {
 | |
| 		typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
 | |
| 		typedef typename meta::bind_traits<function_type>::return_type return_type;
 | |
| 		typedef typename meta::bind_traits<function_type>::args_list args_lists;
 | |
| 		function_type var;
 | |
| 		T member;
 | |
| 		typedef std::add_lvalue_reference_t<meta::unwrapped_t<std::remove_reference_t<decltype(detail::deref(member))>>> M;
 | |
| 
 | |
| 		template <typename... Args>
 | |
| 		member_variable(function_type v, Args&&... args)
 | |
| 		: var(std::move(v)), member(std::forward<Args>(args)...) {
 | |
| 		}
 | |
| 
 | |
| 		int call(lua_State* L) {
 | |
| 			int nr;
 | |
| 			{
 | |
| 				M mem = detail::unwrap(detail::deref(member));
 | |
| 				switch (lua_gettop(L)) {
 | |
| 				case 0:
 | |
| 					nr = call_detail::call_wrapped<T, true, false, -1>(L, var, mem);
 | |
| 					break;
 | |
| 				case 1:
 | |
| 					nr = call_detail::call_wrapped<T, false, false, -1>(L, var, mem);
 | |
| 					break;
 | |
| 				default:
 | |
| 					nr = luaL_error(L, "sol: incorrect number of arguments to member variable function");
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 			if (is_yielding) {
 | |
| 				return lua_yield(L, nr);
 | |
| 			}
 | |
| 			else {
 | |
| 				return nr;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		int operator()(lua_State* L) {
 | |
| 			auto f = [&](lua_State*) -> int { return this->call(L); };
 | |
| 			return detail::trampoline(L, f);
 | |
| 		}
 | |
| 	};
 | |
| }
 | |
| } // namespace sol::function_detail
 | |
| 
 | |
| // end of sol/function_types_stateful.hpp
 | |
| 
 | |
| // beginning of sol/function_types_overloaded.hpp
 | |
| 
 | |
| namespace sol {
 | |
| namespace function_detail {
 | |
| 	template <int start_skew, typename... Functions>
 | |
| 	struct overloaded_function {
 | |
| 		typedef std::tuple<Functions...> overload_list;
 | |
| 		typedef std::make_index_sequence<sizeof...(Functions)> indices;
 | |
| 		overload_list overloads;
 | |
| 
 | |
| 		overloaded_function(overload_list set)
 | |
| 		: overloads(std::move(set)) {
 | |
| 		}
 | |
| 
 | |
| 		overloaded_function(Functions... fxs)
 | |
| 		: overloads(fxs...) {
 | |
| 		}
 | |
| 
 | |
| 		template <typename Fx, std::size_t I, typename... R, typename... Args>
 | |
| 		static int call(types<Fx>, meta::index_value<I>, types<R...>, types<Args...>, lua_State* L, int, int, overload_list& ol) {
 | |
| 			auto& func = std::get<I>(ol);
 | |
| 			int nr = call_detail::call_wrapped<void, true, false, start_skew>(L, func);
 | |
| 			return nr;
 | |
| 		}
 | |
| 
 | |
| 		int operator()(lua_State* L) {
 | |
| 			auto mfx = [](auto&&... args) { return call(std::forward<decltype(args)>(args)...); };
 | |
| 			return call_detail::overload_match<Functions...>(mfx, L, 1 + start_skew, overloads);
 | |
| 		}
 | |
| 	};
 | |
| }
 | |
| } // namespace sol::function_detail
 | |
| 
 | |
| // end of sol/function_types_overloaded.hpp
 | |
| 
 | |
| // beginning of sol/resolve.hpp
 | |
| 
 | |
| namespace sol {
 | |
| 
 | |
| #ifndef __clang__
 | |
| 	// constexpr is fine for not-clang
 | |
| 
 | |
| 	namespace detail {
 | |
| 		template <typename R, typename... Args, typename F, typename = std::invoke_result_t<meta::unqualified_t<F>, Args...>>
 | |
| 		inline constexpr auto resolve_i(types<R(Args...)>, F &&) -> R (meta::unqualified_t<F>::*)(Args...) {
 | |
| 			using Sig = R(Args...);
 | |
| 			typedef meta::unqualified_t<F> Fu;
 | |
| 			return static_cast<Sig Fu::*>(&Fu::operator());
 | |
| 		}
 | |
| 
 | |
| 		template <typename F, typename U = meta::unqualified_t<F>>
 | |
| 		inline constexpr auto resolve_f(std::true_type, F&& f)
 | |
| 		     -> decltype(resolve_i(types<meta::function_signature_t<decltype(&U::operator())>>(), std::forward<F>(f))) {
 | |
| 			return resolve_i(types<meta::function_signature_t<decltype(&U::operator())>>(), std::forward<F>(f));
 | |
| 		}
 | |
| 
 | |
| 		template <typename F>
 | |
| 		inline constexpr void resolve_f(std::false_type, F&&) {
 | |
| 			static_assert(
 | |
| 			     meta::has_deducible_signature<F>::value, "Cannot use no-template-parameter call with an overloaded functor: specify the signature");
 | |
| 		}
 | |
| 
 | |
| 		template <typename F, typename U = meta::unqualified_t<F>>
 | |
| 		inline constexpr auto resolve_i(types<>, F&& f) -> decltype(resolve_f(meta::has_deducible_signature<U>(), std::forward<F>(f))) {
 | |
| 			return resolve_f(meta::has_deducible_signature<U> {}, std::forward<F>(f));
 | |
| 		}
 | |
| 
 | |
| 		template <typename... Args, typename F, typename R = std::invoke_result_t<F&, Args...>>
 | |
| 		inline constexpr auto resolve_i(types<Args...>, F&& f) -> decltype(resolve_i(types<R(Args...)>(), std::forward<F>(f))) {
 | |
| 			return resolve_i(types<R(Args...)>(), std::forward<F>(f));
 | |
| 		}
 | |
| 
 | |
| 		template <typename Sig, typename C>
 | |
| 		inline constexpr Sig C::*resolve_v(std::false_type, Sig C::*mem_func_ptr) {
 | |
| 			return mem_func_ptr;
 | |
| 		}
 | |
| 
 | |
| 		template <typename Sig, typename C>
 | |
| 		inline constexpr Sig C::*resolve_v(std::true_type, Sig C::*mem_variable_ptr) {
 | |
| 			return mem_variable_ptr;
 | |
| 		}
 | |
| 	} // namespace detail
 | |
| 
 | |
| 	template <typename... Args, typename R>
 | |
| 	inline constexpr auto resolve(R fun_ptr(Args...)) -> R (*)(Args...) {
 | |
| 		return fun_ptr;
 | |
| 	}
 | |
| 
 | |
| 	template <typename Sig>
 | |
| 	inline constexpr Sig* resolve(Sig* fun_ptr) {
 | |
| 		return fun_ptr;
 | |
| 	}
 | |
| 
 | |
| 	template <typename... Args, typename R, typename C>
 | |
| 	inline constexpr auto resolve(R (C::*mem_ptr)(Args...)) -> R (C::*)(Args...) {
 | |
| 		return mem_ptr;
 | |
| 	}
 | |
| 
 | |
| 	template <typename Sig, typename C>
 | |
| 	inline constexpr Sig C::*resolve(Sig C::*mem_ptr) {
 | |
| 		return detail::resolve_v(std::is_member_object_pointer<Sig C::*>(), mem_ptr);
 | |
| 	}
 | |
| 
 | |
| 	template <typename... Sig, typename F, meta::disable<std::is_function<meta::unqualified_t<F>>> = meta::enabler>
 | |
| 	inline constexpr auto resolve(F&& f) -> decltype(detail::resolve_i(types<Sig...>(), std::forward<F>(f))) {
 | |
| 		return detail::resolve_i(types<Sig...>(), std::forward<F>(f));
 | |
| 	}
 | |
| #else
 | |
| 
 | |
| 	// Clang has distinct problems with constexpr arguments,
 | |
| 	// so don't use the constexpr versions inside of clang.
 | |
| 
 | |
| 	namespace detail {
 | |
| 		template <typename R, typename... Args, typename F, typename = std::invoke_result_t<meta::unqualified_t<F>, Args...>>
 | |
| 		inline auto resolve_i(types<R(Args...)>, F &&) -> R (meta::unqualified_t<F>::*)(Args...) {
 | |
| 			using Sig = R(Args...);
 | |
| 			typedef meta::unqualified_t<F> Fu;
 | |
| 			return static_cast<Sig Fu::*>(&Fu::operator());
 | |
| 		}
 | |
| 
 | |
| 		template <typename F, typename U = meta::unqualified_t<F>>
 | |
| 		inline auto resolve_f(std::true_type, F&& f)
 | |
| 		     -> decltype(resolve_i(types<meta::function_signature_t<decltype(&U::operator())>>(), std::forward<F>(f))) {
 | |
| 			return resolve_i(types<meta::function_signature_t<decltype(&U::operator())>>(), std::forward<F>(f));
 | |
| 		}
 | |
| 
 | |
| 		template <typename F>
 | |
| 		inline void resolve_f(std::false_type, F&&) {
 | |
| 			static_assert(
 | |
| 			     meta::has_deducible_signature<F>::value, "Cannot use no-template-parameter call with an overloaded functor: specify the signature");
 | |
| 		}
 | |
| 
 | |
| 		template <typename F, typename U = meta::unqualified_t<F>>
 | |
| 		inline auto resolve_i(types<>, F&& f) -> decltype(resolve_f(meta::has_deducible_signature<U>(), std::forward<F>(f))) {
 | |
| 			return resolve_f(meta::has_deducible_signature<U> {}, std::forward<F>(f));
 | |
| 		}
 | |
| 
 | |
| 		template <typename... Args, typename F, typename R = std::invoke_result_t<F&, Args...>>
 | |
| 		inline auto resolve_i(types<Args...>, F&& f) -> decltype(resolve_i(types<R(Args...)>(), std::forward<F>(f))) {
 | |
| 			return resolve_i(types<R(Args...)>(), std::forward<F>(f));
 | |
| 		}
 | |
| 
 | |
| 		template <typename Sig, typename C>
 | |
| 		inline Sig C::*resolve_v(std::false_type, Sig C::*mem_func_ptr) {
 | |
| 			return mem_func_ptr;
 | |
| 		}
 | |
| 
 | |
| 		template <typename Sig, typename C>
 | |
| 		inline Sig C::*resolve_v(std::true_type, Sig C::*mem_variable_ptr) {
 | |
| 			return mem_variable_ptr;
 | |
| 		}
 | |
| 	} // namespace detail
 | |
| 
 | |
| 	template <typename... Args, typename R>
 | |
| 	inline auto resolve(R fun_ptr(Args...)) -> R (*)(Args...) {
 | |
| 		return fun_ptr;
 | |
| 	}
 | |
| 
 | |
| 	template <typename Sig>
 | |
| 	inline Sig* resolve(Sig* fun_ptr) {
 | |
| 		return fun_ptr;
 | |
| 	}
 | |
| 
 | |
| 	template <typename... Args, typename R, typename C>
 | |
| 	inline auto resolve(R (C::*mem_ptr)(Args...)) -> R (C::*)(Args...) {
 | |
| 		return mem_ptr;
 | |
| 	}
 | |
| 
 | |
| 	template <typename Sig, typename C>
 | |
| 	inline Sig C::*resolve(Sig C::*mem_ptr) {
 | |
| 		return detail::resolve_v(std::is_member_object_pointer<Sig C::*>(), mem_ptr);
 | |
| 	}
 | |
| 
 | |
| 	template <typename... Sig, typename F>
 | |
| 	inline auto resolve(F&& f) -> decltype(detail::resolve_i(types<Sig...>(), std::forward<F>(f))) {
 | |
| 		return detail::resolve_i(types<Sig...>(), std::forward<F>(f));
 | |
| 	}
 | |
| 
 | |
| #endif
 | |
| 
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/resolve.hpp
 | |
| 
 | |
| namespace sol {
 | |
| 	namespace function_detail {
 | |
| 		template <typename T>
 | |
| 		struct class_indicator {
 | |
| 			using type = T;
 | |
| 		};
 | |
| 
 | |
| 		struct call_indicator { };
 | |
| 
 | |
| 		template <bool yielding>
 | |
| 		int lua_c_wrapper(lua_State* L) {
 | |
| 			lua_CFunction cf = lua_tocfunction(L, lua_upvalueindex(2));
 | |
| 			int nr = cf(L);
 | |
| 			if constexpr (yielding) {
 | |
| 				return lua_yield(L, nr);
 | |
| 			}
 | |
| 			else {
 | |
| 				return nr;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		template <bool yielding>
 | |
| 		int lua_c_noexcept_wrapper(lua_State* L) noexcept {
 | |
| 			detail::lua_CFunction_noexcept cf = reinterpret_cast<detail::lua_CFunction_noexcept>(lua_tocfunction(L, lua_upvalueindex(2)));
 | |
| 			int nr = cf(L);
 | |
| 			if constexpr (yielding) {
 | |
| 				return lua_yield(L, nr);
 | |
| 			}
 | |
| 			else {
 | |
| 				return nr;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		struct c_function_invocation { };
 | |
| 
 | |
| 		template <bool is_yielding, typename Fx, typename... Args>
 | |
| 		void select(lua_State* L, Fx&& fx, Args&&... args);
 | |
| 
 | |
| 		template <bool is_yielding, bool no_trampoline, typename Fx, typename... Args>
 | |
| 		void select_set_fx(lua_State* L, Args&&... args) {
 | |
| 			lua_CFunction freefunc = no_trampoline ? detail::static_trampoline<function_detail::call<meta::unqualified_t<Fx>, 2, is_yielding>>
 | |
| 			                                       : function_detail::call<meta::unqualified_t<Fx>, 2, is_yielding>;
 | |
| 
 | |
| 			int upvalues = 0;
 | |
| 			upvalues += stack::push(L, nullptr);
 | |
| 			upvalues += stack::push<user<Fx>>(L, std::forward<Args>(args)...);
 | |
| 			stack::push(L, c_closure(freefunc, upvalues));
 | |
| 		}
 | |
| 
 | |
| 		template <bool is_yielding, typename R, typename... A, typename Fx, typename... Args>
 | |
| 		void select_convertible(types<R(A...)>, lua_State* L, Fx&& fx, Args&&... args) {
 | |
| 			using dFx = std::decay_t<meta::unwrap_unqualified_t<Fx>>;
 | |
| 			using fx_ptr_t = R (*)(A...);
 | |
| 			constexpr bool is_convertible = std::is_convertible_v<dFx, fx_ptr_t>;
 | |
| 			if constexpr (is_convertible) {
 | |
| 				fx_ptr_t fxptr = detail::unwrap(std::forward<Fx>(fx));
 | |
| 				select<is_yielding>(L, std::move(fxptr), std::forward<Args>(args)...);
 | |
| 			}
 | |
| 			else {
 | |
| 				using F = function_detail::functor_function<dFx, false, true>;
 | |
| 				select_set_fx<is_yielding, false, F>(L, std::forward<Fx>(fx), std::forward<Args>(args)...);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		template <bool is_yielding, typename Fx, typename... Args>
 | |
| 		void select_convertible(types<>, lua_State* L, Fx&& fx, Args&&... args) {
 | |
| 			typedef meta::function_signature_t<meta::unwrap_unqualified_t<Fx>> Sig;
 | |
| 			select_convertible<is_yielding>(types<Sig>(), L, std::forward<Fx>(fx), std::forward<Args>(args)...);
 | |
| 		}
 | |
| 
 | |
| 		template <bool is_yielding, typename Fx, typename... Args>
 | |
| 		void select_member_variable(lua_State* L, Fx&& fx, Args&&... args) {
 | |
| 			using uFx = meta::unqualified_t<Fx>;
 | |
| 			if constexpr (sizeof...(Args) < 1) {
 | |
| 				using C = typename meta::bind_traits<uFx>::object_type;
 | |
| 				lua_CFunction freefunc = &function_detail::upvalue_this_member_variable<C, Fx, is_yielding>::call;
 | |
| 
 | |
| 				int upvalues = 0;
 | |
| 				upvalues += stack::push(L, nullptr);
 | |
| 				upvalues += stack::stack_detail::push_as_upvalues(L, fx);
 | |
| 				stack::push(L, c_closure(freefunc, upvalues));
 | |
| 			}
 | |
| 			else if constexpr (sizeof...(Args) < 2) {
 | |
| 				using Tu = typename meta::meta_detail::unqualified_non_alias<Args...>::type;
 | |
| 				constexpr bool is_reference = meta::is_specialization_of_v<Tu, std::reference_wrapper> || std::is_pointer_v<Tu>;
 | |
| 				if constexpr (meta::is_specialization_of_v<Tu, function_detail::class_indicator>) {
 | |
| 					lua_CFunction freefunc = &function_detail::upvalue_this_member_variable<typename Tu::type, Fx, is_yielding>::call;
 | |
| 
 | |
| 					int upvalues = 0;
 | |
| 					upvalues += stack::push(L, nullptr);
 | |
| 					upvalues += stack::stack_detail::push_as_upvalues(L, fx);
 | |
| 					stack::push(L, c_closure(freefunc, upvalues));
 | |
| 				}
 | |
| 				else if constexpr (is_reference) {
 | |
| 					typedef std::decay_t<Fx> dFx;
 | |
| 					dFx memfxptr(std::forward<Fx>(fx));
 | |
| 					auto userptr = detail::ptr(std::forward<Args>(args)...);
 | |
| 					lua_CFunction freefunc
 | |
| 					     = &function_detail::upvalue_member_variable<std::decay_t<decltype(*userptr)>, meta::unqualified_t<Fx>, is_yielding>::call;
 | |
| 
 | |
| 					int upvalues = 0;
 | |
| 					upvalues += stack::push(L, nullptr);
 | |
| 					upvalues += stack::stack_detail::push_as_upvalues(L, memfxptr);
 | |
| 					upvalues += stack::push(L, static_cast<void const*>(userptr));
 | |
| 					stack::push(L, c_closure(freefunc, upvalues));
 | |
| 				}
 | |
| 				else {
 | |
| 					using clean_fx = std::remove_pointer_t<std::decay_t<Fx>>;
 | |
| 					using F = function_detail::member_variable<Tu, clean_fx, is_yielding>;
 | |
| 					select_set_fx<false, false, F>(L, std::forward<Fx>(fx), std::forward<Args>(args)...);
 | |
| 				}
 | |
| 			}
 | |
| 			else {
 | |
| 				using C = typename meta::bind_traits<uFx>::object_type;
 | |
| 				using clean_fx = std::remove_pointer_t<std::decay_t<Fx>>;
 | |
| 				using F = function_detail::member_variable<C, clean_fx, is_yielding>;
 | |
| 				select_set_fx<false, false, F>(L, std::forward<Fx>(fx), std::forward<Args>(args)...);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		template <bool is_yielding, typename Fx, typename T, typename... Args>
 | |
| 		void select_member_function_with(lua_State* L, Fx&& fx, T&& obj, Args&&... args) {
 | |
| 			using dFx = std::decay_t<Fx>;
 | |
| 			using Tu = meta::unqualified_t<T>;
 | |
| 			if constexpr (meta::is_specialization_of_v<Tu, function_detail::class_indicator>) {
 | |
| 				(void)obj;
 | |
| 				using C = typename Tu::type;
 | |
| 				lua_CFunction freefunc = &function_detail::upvalue_this_member_function<C, dFx, is_yielding>::call;
 | |
| 
 | |
| 				int upvalues = 0;
 | |
| 				upvalues += stack::push(L, nullptr);
 | |
| 				upvalues += stack::push<user<dFx>>(L, std::forward<Fx>(fx), std::forward<Args>(args)...);
 | |
| 				stack::push(L, c_closure(freefunc, upvalues));
 | |
| 			}
 | |
| 			else {
 | |
| 				constexpr bool is_reference = meta::is_specialization_of_v<Tu, std::reference_wrapper> || std::is_pointer_v<Tu>;
 | |
| 				if constexpr (is_reference) {
 | |
| 					auto userptr = detail::ptr(std::forward<T>(obj));
 | |
| 					lua_CFunction freefunc = &function_detail::upvalue_member_function<std::decay_t<decltype(*userptr)>, dFx, is_yielding>::call;
 | |
| 
 | |
| 					int upvalues = 0;
 | |
| 					upvalues += stack::push(L, nullptr);
 | |
| 					upvalues += stack::push<user<dFx>>(L, std::forward<Fx>(fx), std::forward<Args>(args)...);
 | |
| 					upvalues += stack::push(L, lightuserdata_value(static_cast<void*>(userptr)));
 | |
| 					stack::push(L, c_closure(freefunc, upvalues));
 | |
| 				}
 | |
| 				else {
 | |
| 					using F = function_detail::member_function<Tu, dFx, is_yielding>;
 | |
| 					select_set_fx<false, false, F>(L, std::forward<Fx>(fx), std::forward<T>(obj), std::forward<Args>(args)...);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		template <bool is_yielding, typename Fx, typename... Args>
 | |
| 		void select_member_function(lua_State* L, Fx&& fx, Args&&... args) {
 | |
| 			using dFx = std::decay_t<Fx>;
 | |
| 			if constexpr (sizeof...(Args) < 1) {
 | |
| 				using C = typename meta::bind_traits<meta::unqualified_t<Fx>>::object_type;
 | |
| 				lua_CFunction freefunc = &function_detail::upvalue_this_member_function<C, dFx, is_yielding>::call;
 | |
| 
 | |
| 				int upvalues = 0;
 | |
| 				upvalues += stack::push(L, nullptr);
 | |
| 				upvalues += stack::push<user<dFx>>(L, std::forward<Fx>(fx));
 | |
| 				stack::push(L, c_closure(freefunc, upvalues));
 | |
| 			}
 | |
| 			else {
 | |
| 				select_member_function_with<is_yielding>(L, std::forward<Fx>(fx), std::forward<Args>(args)...);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		template <bool is_yielding, typename Fx, typename... Args>
 | |
| 		void select(lua_State* L, Fx&& fx, Args&&... args) {
 | |
| 			using uFx = meta::unqualified_t<Fx>;
 | |
| 			if constexpr (is_lua_reference_v<uFx>) {
 | |
| 				// TODO: hoist into lambda in this case for yielding???
 | |
| 				stack::push(L, std::forward<Fx>(fx), std::forward<Args>(args)...);
 | |
| 			}
 | |
| 			else if constexpr (is_lua_c_function_v<uFx>) {
 | |
| 				int upvalues = 0;
 | |
| 				upvalues += stack::push(L, nullptr);
 | |
| 				upvalues += stack::push(L, std::forward<Fx>(fx));
 | |
| #if SOL_IS_ON(SOL_USE_NOEXCEPT_FUNCTION_TYPE_I_)
 | |
| 				if constexpr (std::is_nothrow_invocable_r_v<int, uFx, lua_State*>) {
 | |
| 					detail::lua_CFunction_noexcept cf = &lua_c_noexcept_wrapper<is_yielding>;
 | |
| 					lua_pushcclosure(L, reinterpret_cast<lua_CFunction>(cf), 2);
 | |
| 				}
 | |
| 				else {
 | |
| 					lua_CFunction cf = &lua_c_wrapper<is_yielding>;
 | |
| 					lua_pushcclosure(L, cf, 2);
 | |
| 				}
 | |
| #else
 | |
| 				lua_CFunction cf = &function_detail::lua_c_wrapper<is_yielding>;
 | |
| 				lua_pushcclosure(L, cf, 2);
 | |
| #endif
 | |
| 			}
 | |
| 			else if constexpr (std::is_function_v<std::remove_pointer_t<uFx>>) {
 | |
| 				std::decay_t<Fx> target(std::forward<Fx>(fx), std::forward<Args>(args)...);
 | |
| 				lua_CFunction freefunc = &function_detail::upvalue_free_function<Fx, is_yielding>::call;
 | |
| 
 | |
| 				int upvalues = 0;
 | |
| 				upvalues += stack::push(L, nullptr);
 | |
| 				upvalues += stack::stack_detail::push_as_upvalues(L, target);
 | |
| 				stack::push(L, c_closure(freefunc, upvalues));
 | |
| 			}
 | |
| 			else if constexpr (std::is_member_function_pointer_v<uFx>) {
 | |
| 				select_member_function<is_yielding>(L, std::forward<Fx>(fx), std::forward<Args>(args)...);
 | |
| 			}
 | |
| 			else if constexpr (meta::is_member_object_v<uFx>) {
 | |
| 				select_member_variable<is_yielding>(L, std::forward<Fx>(fx), std::forward<Args>(args)...);
 | |
| 			}
 | |
| 			else {
 | |
| 				select_convertible<is_yielding>(types<>(), L, std::forward<Fx>(fx), std::forward<Args>(args)...);
 | |
| 			}
 | |
| 		}
 | |
| 	} // namespace function_detail
 | |
| 
 | |
| 	namespace stack {
 | |
| 		template <typename... Sigs>
 | |
| 		struct unqualified_pusher<function_sig<Sigs...>> {
 | |
| 			template <bool is_yielding, typename Arg0, typename... Args>
 | |
| 			static int push(lua_State* L, Arg0&& arg0, Args&&... args) {
 | |
| 				if constexpr (meta::is_specialization_of_v<meta::unqualified_t<Arg0>, std::function>) {
 | |
| 					if constexpr (is_yielding) {
 | |
| 						return stack::push<meta::unqualified_t<Arg0>>(L, detail::yield_tag, std::forward<Arg0>(arg0), std::forward<Args>(args)...);
 | |
| 					}
 | |
| 					else {
 | |
| 						return stack::push(L, std::forward<Arg0>(arg0), std::forward<Args>(args)...);
 | |
| 					}
 | |
| 				}
 | |
| 				else {
 | |
| 					function_detail::select<is_yielding>(L, std::forward<Arg0>(arg0), std::forward<Args>(args)...);
 | |
| 					return 1;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			template <typename Arg0, typename... Args>
 | |
| 			static int push(lua_State* L, Arg0&& arg0, Args&&... args) {
 | |
| 				if constexpr (std::is_same_v<meta::unqualified_t<Arg0>, detail::yield_tag_t>) {
 | |
| 					push<true>(L, std::forward<Args>(args)...);
 | |
| 				}
 | |
| 				else if constexpr (meta::is_specialization_of_v<meta::unqualified_t<Arg0>, yielding_t>) {
 | |
| 					push<true>(L, std::forward<Arg0>(arg0).func, std::forward<Args>(args)...);
 | |
| 				}
 | |
| 				else {
 | |
| 					push<false>(L, std::forward<Arg0>(arg0), std::forward<Args>(args)...);
 | |
| 				}
 | |
| 				return 1;
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct unqualified_pusher<yielding_t<T>> {
 | |
| 			template <typename... Args>
 | |
| 			static int push(lua_State* L, const yielding_t<T>& f, Args&&... args) {
 | |
| 				if constexpr (meta::is_specialization_of_v<meta::unqualified_t<T>, std::function>) {
 | |
| 					return stack::push<T>(L, detail::yield_tag, f.func, std::forward<Args>(args)...);
 | |
| 				}
 | |
| 				else {
 | |
| 					function_detail::select<true>(L, f.func, std::forward<Args>(args)...);
 | |
| 					return 1;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			template <typename... Args>
 | |
| 			static int push(lua_State* L, yielding_t<T>&& f, Args&&... args) {
 | |
| 				if constexpr (meta::is_specialization_of_v<meta::unqualified_t<T>, std::function>) {
 | |
| 					return stack::push<T>(L, detail::yield_tag, std::move(f.func), std::forward<Args>(args)...);
 | |
| 				}
 | |
| 				else {
 | |
| 					function_detail::select<true>(L, std::move(f.func), std::forward<Args>(args)...);
 | |
| 					return 1;
 | |
| 				}
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename... Args>
 | |
| 		struct unqualified_pusher<function_arguments<T, Args...>> {
 | |
| 			template <std::size_t... I, typename FP>
 | |
| 			static int push_func(std::index_sequence<I...>, lua_State* L, FP&& fp) {
 | |
| 				return stack::push<T>(L, std::get<I>(std::forward<FP>(fp).arguments)...);
 | |
| 			}
 | |
| 
 | |
| 			static int push(lua_State* L, const function_arguments<T, Args...>& fp) {
 | |
| 				return push_func(std::make_index_sequence<sizeof...(Args)>(), L, fp);
 | |
| 			}
 | |
| 
 | |
| 			static int push(lua_State* L, function_arguments<T, Args...>&& fp) {
 | |
| 				return push_func(std::make_index_sequence<sizeof...(Args)>(), L, std::move(fp));
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <typename Signature>
 | |
| 		struct unqualified_pusher<std::function<Signature>> {
 | |
| 			static int push(lua_State* L, detail::yield_tag_t, const std::function<Signature>& fx) {
 | |
| 				if (fx) {
 | |
| 					function_detail::select<true>(L, fx);
 | |
| 					return 1;
 | |
| 				}
 | |
| 				return stack::push(L, lua_nil);
 | |
| 			}
 | |
| 
 | |
| 			static int push(lua_State* L, detail::yield_tag_t, std::function<Signature>&& fx) {
 | |
| 				if (fx) {
 | |
| 					function_detail::select<true>(L, std::move(fx));
 | |
| 					return 1;
 | |
| 				}
 | |
| 				return stack::push(L, lua_nil);
 | |
| 			}
 | |
| 
 | |
| 			static int push(lua_State* L, const std::function<Signature>& fx) {
 | |
| 				if (fx) {
 | |
| 					function_detail::select<false>(L, fx);
 | |
| 					return 1;
 | |
| 				}
 | |
| 				return stack::push(L, lua_nil);
 | |
| 			}
 | |
| 
 | |
| 			static int push(lua_State* L, std::function<Signature>&& fx) {
 | |
| 				if (fx) {
 | |
| 					function_detail::select<false>(L, std::move(fx));
 | |
| 					return 1;
 | |
| 				}
 | |
| 				return stack::push(L, lua_nil);
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <typename Signature>
 | |
| 		struct unqualified_pusher<Signature, std::enable_if_t<std::is_member_pointer<Signature>::value>> {
 | |
| 			template <typename... Args>
 | |
| 			static int push(lua_State* L, Args&&... args) {
 | |
| 				function_detail::select<false>(L, std::forward<Args>(args)...);
 | |
| 				return 1;
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <typename Signature>
 | |
| 		struct unqualified_pusher<Signature,
 | |
| 		     std::enable_if_t<meta::all<std::is_function<std::remove_pointer_t<Signature>>, meta::neg<std::is_same<Signature, lua_CFunction>>,
 | |
| 		          meta::neg<std::is_same<Signature, std::remove_pointer_t<lua_CFunction>>>
 | |
| #if SOL_IS_ON(SOL_USE_NOEXCEPT_FUNCTION_TYPE_I_)
 | |
| 		          ,
 | |
| 		          meta::neg<std::is_same<Signature, detail::lua_CFunction_noexcept>>,
 | |
| 		          meta::neg<std::is_same<Signature, std::remove_pointer_t<detail::lua_CFunction_noexcept>>>
 | |
| #endif // noexcept function types
 | |
| 		          >::value>> {
 | |
| 			template <typename F>
 | |
| 			static int push(lua_State* L, F&& f) {
 | |
| 				function_detail::select<false>(L, std::forward<F>(f));
 | |
| 				return 1;
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <typename... Functions>
 | |
| 		struct unqualified_pusher<overload_set<Functions...>> {
 | |
| 			static int push(lua_State* L, overload_set<Functions...>&& set) {
 | |
| 				using F = function_detail::overloaded_function<0, Functions...>;
 | |
| 				function_detail::select_set_fx<false, false, F>(L, std::move(set.functions));
 | |
| 				return 1;
 | |
| 			}
 | |
| 
 | |
| 			static int push(lua_State* L, const overload_set<Functions...>& set) {
 | |
| 				using F = function_detail::overloaded_function<0, Functions...>;
 | |
| 				function_detail::select_set_fx<false, false, F>(L, set.functions);
 | |
| 				return 1;
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct unqualified_pusher<protect_t<T>> {
 | |
| 			static int push(lua_State* L, protect_t<T>&& pw) {
 | |
| 				lua_CFunction cf = call_detail::call_user<void, false, false, protect_t<T>, 2>;
 | |
| 				int upvalues = 0;
 | |
| 				upvalues += stack::push(L, nullptr);
 | |
| 				upvalues += stack::push<user<protect_t<T>>>(L, std::move(pw.value));
 | |
| 				return stack::push(L, c_closure(cf, upvalues));
 | |
| 			}
 | |
| 
 | |
| 			static int push(lua_State* L, const protect_t<T>& pw) {
 | |
| 				lua_CFunction cf = call_detail::call_user<void, false, false, protect_t<T>, 2>;
 | |
| 				int upvalues = 0;
 | |
| 				upvalues += stack::push(L, nullptr);
 | |
| 				upvalues += stack::push<user<protect_t<T>>>(L, pw.value);
 | |
| 				return stack::push(L, c_closure(cf, upvalues));
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <typename F, typename G>
 | |
| 		struct unqualified_pusher<property_wrapper<F, G>> {
 | |
| 			static int push(lua_State* L, property_wrapper<F, G>&& pw) {
 | |
| 				if constexpr (std::is_void_v<F>) {
 | |
| 					return stack::push(L, std::move(pw.write()));
 | |
| 				}
 | |
| 				else if constexpr (std::is_void_v<G>) {
 | |
| 					return stack::push(L, std::move(pw.read()));
 | |
| 				}
 | |
| 				else {
 | |
| 					return stack::push(L, overload(std::move(pw.read()), std::move(pw.write())));
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			static int push(lua_State* L, const property_wrapper<F, G>& pw) {
 | |
| 				if constexpr (std::is_void_v<F>) {
 | |
| 					return stack::push(L, pw.write);
 | |
| 				}
 | |
| 				else if constexpr (std::is_void_v<G>) {
 | |
| 					return stack::push(L, pw.read);
 | |
| 				}
 | |
| 				else {
 | |
| 					return stack::push(L, overload(pw.read, pw.write));
 | |
| 				}
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct unqualified_pusher<var_wrapper<T>> {
 | |
| 			static int push(lua_State* L, var_wrapper<T>&& vw) {
 | |
| 				return stack::push(L, std::move(vw.value()));
 | |
| 			}
 | |
| 			static int push(lua_State* L, const var_wrapper<T>& vw) {
 | |
| 				return stack::push(L, vw.value());
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <typename... Functions>
 | |
| 		struct unqualified_pusher<factory_wrapper<Functions...>> {
 | |
| 			static int push(lua_State* L, const factory_wrapper<Functions...>& fw) {
 | |
| 				using F = function_detail::overloaded_function<0, Functions...>;
 | |
| 				function_detail::select_set_fx<false, false, F>(L, fw.functions);
 | |
| 				return 1;
 | |
| 			}
 | |
| 
 | |
| 			static int push(lua_State* L, factory_wrapper<Functions...>&& fw) {
 | |
| 				using F = function_detail::overloaded_function<0, Functions...>;
 | |
| 				function_detail::select_set_fx<false, false, F>(L, std::move(fw.functions));
 | |
| 				return 1;
 | |
| 			}
 | |
| 
 | |
| 			static int push(lua_State* L, const factory_wrapper<Functions...>& fw, function_detail::call_indicator) {
 | |
| 				using F = function_detail::overloaded_function<1, Functions...>;
 | |
| 				function_detail::select_set_fx<false, false, F>(L, fw.functions);
 | |
| 				return 1;
 | |
| 			}
 | |
| 
 | |
| 			static int push(lua_State* L, factory_wrapper<Functions...>&& fw, function_detail::call_indicator) {
 | |
| 				using F = function_detail::overloaded_function<1, Functions...>;
 | |
| 				function_detail::select_set_fx<false, false, F>(L, std::move(fw.functions));
 | |
| 				return 1;
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <>
 | |
| 		struct unqualified_pusher<no_construction> {
 | |
| 			static int push(lua_State* L, no_construction) {
 | |
| 				lua_CFunction cf = &function_detail::no_construction_error;
 | |
| 				return stack::push(L, cf);
 | |
| 			}
 | |
| 
 | |
| 			static int push(lua_State* L, no_construction c, function_detail::call_indicator) {
 | |
| 				return push(L, c);
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct unqualified_pusher<detail::tagged<T, no_construction>> {
 | |
| 			static int push(lua_State* L, detail::tagged<T, no_construction>) {
 | |
| 				lua_CFunction cf = &function_detail::no_construction_error;
 | |
| 				return stack::push(L, cf);
 | |
| 			}
 | |
| 
 | |
| 			static int push(lua_State* L, no_construction c, function_detail::call_indicator) {
 | |
| 				return push(L, c);
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename... Lists>
 | |
| 		struct unqualified_pusher<detail::tagged<T, constructor_list<Lists...>>> {
 | |
| 			static int push(lua_State* L, detail::tagged<T, constructor_list<Lists...>>) {
 | |
| 				lua_CFunction cf = call_detail::construct<T, detail::default_safe_function_calls, true, Lists...>;
 | |
| 				return stack::push(L, cf);
 | |
| 			}
 | |
| 
 | |
| 			static int push(lua_State* L, constructor_list<Lists...>) {
 | |
| 				lua_CFunction cf = call_detail::construct<T, detail::default_safe_function_calls, true, Lists...>;
 | |
| 				return stack::push(L, cf);
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <typename L0, typename... Lists>
 | |
| 		struct unqualified_pusher<constructor_list<L0, Lists...>> {
 | |
| 			typedef constructor_list<L0, Lists...> cl_t;
 | |
| 			static int push(lua_State* L, cl_t cl) {
 | |
| 				typedef typename meta::bind_traits<L0>::return_type T;
 | |
| 				return stack::push<detail::tagged<T, cl_t>>(L, cl);
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename... Fxs>
 | |
| 		struct unqualified_pusher<detail::tagged<T, constructor_wrapper<Fxs...>>> {
 | |
| 			static int push(lua_State* L, detail::tagged<T, constructor_wrapper<Fxs...>>&& c) {
 | |
| 				return push(L, std::move(c.value()));
 | |
| 			}
 | |
| 
 | |
| 			static int push(lua_State* L, const detail::tagged<T, const constructor_wrapper<Fxs...>>& c) {
 | |
| 				return push(L, c.value());
 | |
| 			}
 | |
| 
 | |
| 			static int push(lua_State* L, constructor_wrapper<Fxs...>&& c) {
 | |
| 				lua_CFunction cf = call_detail::call_user<T, false, false, constructor_wrapper<Fxs...>, 2>;
 | |
| 				int upvalues = 0;
 | |
| 				upvalues += stack::push(L, nullptr);
 | |
| 				upvalues += stack::push<user<constructor_wrapper<Fxs...>>>(L, std::move(c));
 | |
| 				return stack::push(L, c_closure(cf, upvalues));
 | |
| 			}
 | |
| 
 | |
| 			static int push(lua_State* L, const constructor_wrapper<Fxs...>& c) {
 | |
| 				lua_CFunction cf = call_detail::call_user<T, false, false, constructor_wrapper<Fxs...>, 2>;
 | |
| 				int upvalues = 0;
 | |
| 				upvalues += stack::push(L, nullptr);
 | |
| 				upvalues += stack::push<user<constructor_wrapper<Fxs...>>>(L, c);
 | |
| 				return stack::push(L, c_closure(cf, upvalues));
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <typename F, typename... Fxs>
 | |
| 		struct unqualified_pusher<constructor_wrapper<F, Fxs...>> {
 | |
| 			static int push(lua_State* L, const constructor_wrapper<F, Fxs...>& c) {
 | |
| 				typedef typename meta::bind_traits<F>::template arg_at<0> arg0;
 | |
| 				typedef meta::unqualified_t<std::remove_pointer_t<arg0>> T;
 | |
| 				return stack::push<detail::tagged<T, constructor_wrapper<F, Fxs...>>>(L, c);
 | |
| 			}
 | |
| 
 | |
| 			static int push(lua_State* L, constructor_wrapper<F, Fxs...>&& c) {
 | |
| 				typedef typename meta::bind_traits<F>::template arg_at<0> arg0;
 | |
| 				typedef meta::unqualified_t<std::remove_pointer_t<arg0>> T;
 | |
| 				return stack::push<detail::tagged<T, constructor_wrapper<F, Fxs...>>>(L, std::move(c));
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct unqualified_pusher<detail::tagged<T, destructor_wrapper<void>>> {
 | |
| 			static int push(lua_State* L, destructor_wrapper<void>) {
 | |
| 				lua_CFunction cf = detail::usertype_alloc_destruct<T>;
 | |
| 				return stack::push(L, cf);
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename Fx>
 | |
| 		struct unqualified_pusher<detail::tagged<T, destructor_wrapper<Fx>>> {
 | |
| 			static int push(lua_State* L, destructor_wrapper<Fx>&& c) {
 | |
| 				lua_CFunction cf = call_detail::call_user<T, false, false, destructor_wrapper<Fx>, 2>;
 | |
| 				int upvalues = 0;
 | |
| 				upvalues += stack::push(L, nullptr);
 | |
| 				upvalues += stack::push<user<destructor_wrapper<Fx>>>(L, std::move(c));
 | |
| 				return stack::push(L, c_closure(cf, upvalues));
 | |
| 			}
 | |
| 
 | |
| 			static int push(lua_State* L, const destructor_wrapper<Fx>& c) {
 | |
| 				lua_CFunction cf = call_detail::call_user<T, false, false, destructor_wrapper<Fx>, 2>;
 | |
| 				int upvalues = 0;
 | |
| 				upvalues += stack::push(L, nullptr);
 | |
| 				upvalues += stack::push<user<destructor_wrapper<Fx>>>(L, c);
 | |
| 				return stack::push(L, c_closure(cf, upvalues));
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <typename Fx>
 | |
| 		struct unqualified_pusher<destructor_wrapper<Fx>> {
 | |
| 			static int push(lua_State* L, destructor_wrapper<Fx>&& c) {
 | |
| 				lua_CFunction cf = call_detail::call_user<void, false, false, destructor_wrapper<Fx>, 2>;
 | |
| 				int upvalues = 0;
 | |
| 				upvalues += stack::push(L, nullptr);
 | |
| 				upvalues += stack::push<user<destructor_wrapper<Fx>>>(L, std::move(c));
 | |
| 				return stack::push(L, c_closure(cf, upvalues));
 | |
| 			}
 | |
| 
 | |
| 			static int push(lua_State* L, const destructor_wrapper<Fx>& c) {
 | |
| 				lua_CFunction cf = call_detail::call_user<void, false, false, destructor_wrapper<Fx>, 2>;
 | |
| 				int upvalues = 0;
 | |
| 				upvalues += stack::push(L, nullptr);
 | |
| 				upvalues += stack::push<user<destructor_wrapper<Fx>>>(L, c);
 | |
| 				return stack::push(L, c_closure(cf, upvalues));
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <typename F, typename... Policies>
 | |
| 		struct unqualified_pusher<policy_wrapper<F, Policies...>> {
 | |
| 			using P = policy_wrapper<F, Policies...>;
 | |
| 
 | |
| 			static int push(lua_State* L, const P& p) {
 | |
| 				lua_CFunction cf = call_detail::call_user<void, false, false, P, 2>;
 | |
| 				int upvalues = 0;
 | |
| 				upvalues += stack::push(L, nullptr);
 | |
| 				upvalues += stack::push<user<P>>(L, p);
 | |
| 				return stack::push(L, c_closure(cf, upvalues));
 | |
| 			}
 | |
| 
 | |
| 			static int push(lua_State* L, P&& p) {
 | |
| 				lua_CFunction cf = call_detail::call_user<void, false, false, P, 2>;
 | |
| 				int upvalues = 0;
 | |
| 				upvalues += stack::push(L, nullptr);
 | |
| 				upvalues += stack::push<user<P>>(L, std::move(p));
 | |
| 				return stack::push(L, c_closure(cf, upvalues));
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename F, typename... Policies>
 | |
| 		struct unqualified_pusher<detail::tagged<T, policy_wrapper<F, Policies...>>> {
 | |
| 			using P = policy_wrapper<F, Policies...>;
 | |
| 			using Tagged = detail::tagged<T, P>;
 | |
| 
 | |
| 			static int push(lua_State* L, const Tagged& p) {
 | |
| 				lua_CFunction cf = call_detail::call_user<T, false, false, P, 2>;
 | |
| 				int upvalues = 0;
 | |
| 				upvalues += stack::push(L, nullptr);
 | |
| 				upvalues += stack::push<user<P>>(L, p.value());
 | |
| 				return stack::push(L, c_closure(cf, upvalues));
 | |
| 			}
 | |
| 
 | |
| 			static int push(lua_State* L, Tagged&& p) {
 | |
| 				lua_CFunction cf = call_detail::call_user<T, false, false, P, 2>;
 | |
| 				int upvalues = 0;
 | |
| 				upvalues += stack::push(L, nullptr);
 | |
| 				upvalues += stack::push<user<P>>(L, std::move(p.value()));
 | |
| 				return stack::push(L, c_closure(cf, upvalues));
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct unqualified_pusher<push_invoke_t<T>> {
 | |
| 			static int push(lua_State* L, push_invoke_t<T>&& pi) {
 | |
| 				if constexpr (std::is_invocable_v<std::add_rvalue_reference_t<T>, lua_State*>) {
 | |
| 					return stack::push(L, std::move(pi.value())(L));
 | |
| 				}
 | |
| 				else {
 | |
| 					return stack::push(L, std::move(pi.value())());
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			static int push(lua_State* L, const push_invoke_t<T>& pi) {
 | |
| 				if constexpr (std::is_invocable_v<const T, lua_State*>) {
 | |
| 					return stack::push(L, pi.value()(L));
 | |
| 				}
 | |
| 				else {
 | |
| 					return stack::push(L, pi.value()());
 | |
| 				}
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		namespace stack_detail {
 | |
| 			template <typename Function, typename Handler>
 | |
| 			bool check_function_pointer(lua_State* L, int index, Handler&& handler, record& tracking) noexcept {
 | |
| #if SOL_IS_ON(SOL_GET_FUNCTION_POINTER_UNSAFE_I_)
 | |
| 				tracking.use(1);
 | |
| 				bool success = lua_iscfunction(L, index) == 1;
 | |
| 				if (success) {
 | |
| 					// there must be at LEAST 2 upvalues; otherwise, we didn't serialize it.
 | |
| 					const char* upvalue_name = lua_getupvalue(L, index, 2);
 | |
| 					lua_pop(L, 1);
 | |
| 					success = upvalue_name != nullptr;
 | |
| 				}
 | |
| 				if (!success) {
 | |
| 					// expected type, actual type
 | |
| 					handler(
 | |
| 					     L, index, type::function, type_of(L, index), "type must be a Lua C Function gotten from a function pointer serialized by sol2");
 | |
| 				}
 | |
| 				return success;
 | |
| #else
 | |
| 				return false;
 | |
| #endif
 | |
| 			}
 | |
| 
 | |
| 			template <typename Function>
 | |
| 			Function* get_function_pointer(lua_State* L, int index, record& tracking) noexcept {
 | |
| #if SOL_IS_ON(SOL_GET_FUNCTION_POINTER_UNSAFE_I_)
 | |
| 				tracking.use(1);
 | |
| 				auto udata = stack::stack_detail::get_as_upvalues_using_function<Function*>(L, index);
 | |
| 				Function* fx = udata.first;
 | |
| 				return fx;
 | |
| #else
 | |
| 				static_assert(meta::meta_detail::always_true<Function>::value,
 | |
| #if SOL_IS_DEFAULT_OFF(SOL_GET_FUNCTION_POINTER_UNSAFE_I_)
 | |
| 				     "You are attempting to retrieve a function pointer type. "
 | |
| 				     "This is inherently unsafe in sol2. In order to do this, you must turn on the "
 | |
| 				     "SOL_GET_FUNCTION_POINTER_UNSAFE configuration macro, as detailed in the documentation. "
 | |
| 				     "Please be careful!"
 | |
| #else
 | |
| 				     "You are attempting to retrieve a function pointer type. "
 | |
| 				     "You explicitly turned off the ability to do this by defining "
 | |
| 				     "SOL_GET_FUNCTION_POINTER_UNSAFE or similar to be off. "
 | |
| 				     "Please reconsider this!"
 | |
| #endif
 | |
| 				);
 | |
| 				return nullptr;
 | |
| #endif
 | |
| 			}
 | |
| 		} // namespace stack_detail
 | |
| 	}      // namespace stack
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/function_types.hpp
 | |
| 
 | |
| // beginning of sol/dump_handler.hpp
 | |
| 
 | |
| #include <cstdint>
 | |
| #include <exception>
 | |
| 
 | |
| namespace sol {
 | |
| 
 | |
| 	class dump_error : public error {
 | |
| 	private:
 | |
| 		int ec_;
 | |
| 
 | |
| 	public:
 | |
| 		dump_error(int error_code_) : error("dump returned non-zero error of " + std::to_string(error_code_)), ec_(error_code_) {
 | |
| 		}
 | |
| 
 | |
| 		int error_code() const {
 | |
| 			return ec_;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	inline int dump_pass_on_error(lua_State* L, int result_code, lua_Writer writer_function, void* userdata, bool strip) {
 | |
| 		(void)L;
 | |
| 		(void)writer_function;
 | |
| 		(void)userdata;
 | |
| 		(void)strip;
 | |
| 		return result_code;
 | |
| 	}
 | |
| 
 | |
| 	inline int dump_panic_on_error(lua_State* L, int result_code, lua_Writer writer_function, void* userdata, bool strip) {
 | |
| 		(void)L;
 | |
| 		(void)writer_function;
 | |
| 		(void)userdata;
 | |
| 		(void)strip;
 | |
| 		return luaL_error(L, "a non-zero error code (%d) was returned by the lua_Writer for the dump function", result_code);
 | |
| 	}
 | |
| 
 | |
| 	inline int dump_throw_on_error(lua_State* L, int result_code, lua_Writer writer_function, void* userdata, bool strip) {
 | |
| #if SOL_IS_OFF(SOL_EXCEPTIONS_I_)
 | |
| 		return dump_panic_on_error(L, result_code, writer_function, userdata, strip);
 | |
| #else
 | |
| 		(void)L;
 | |
| 		(void)writer_function;
 | |
| 		(void)userdata;
 | |
| 		(void)strip;
 | |
| 		throw dump_error(result_code);
 | |
| #endif // no exceptions stuff
 | |
| 	}
 | |
| 
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/dump_handler.hpp
 | |
| 
 | |
| #include <cstdint>
 | |
| 
 | |
| namespace sol {
 | |
| 	template <typename ref_t, bool aligned = false>
 | |
| 	class basic_function : public basic_object<ref_t> {
 | |
| 	private:
 | |
| 		using base_t = basic_object<ref_t>;
 | |
| 
 | |
| 		void luacall(std::ptrdiff_t argcount, std::ptrdiff_t resultcount) const {
 | |
| 			lua_call(lua_state(), static_cast<int>(argcount), static_cast<int>(resultcount));
 | |
| 		}
 | |
| 
 | |
| 		template <std::size_t... I, typename... Ret>
 | |
| 		auto invoke(types<Ret...>, std::index_sequence<I...>, std::ptrdiff_t n) const {
 | |
| 			luacall(n, lua_size<std::tuple<Ret...>>::value);
 | |
| 			return stack::pop<std::tuple<Ret...>>(lua_state());
 | |
| 		}
 | |
| 
 | |
| 		template <std::size_t I, typename Ret, meta::enable<meta::neg<std::is_void<Ret>>> = meta::enabler>
 | |
| 		Ret invoke(types<Ret>, std::index_sequence<I>, std::ptrdiff_t n) const {
 | |
| 			luacall(n, lua_size<Ret>::value);
 | |
| 			return stack::pop<Ret>(lua_state());
 | |
| 		}
 | |
| 
 | |
| 		template <std::size_t I>
 | |
| 		void invoke(types<void>, std::index_sequence<I>, std::ptrdiff_t n) const {
 | |
| 			luacall(n, 0);
 | |
| 		}
 | |
| 
 | |
| 		unsafe_function_result invoke(types<>, std::index_sequence<>, std::ptrdiff_t n) const {
 | |
| 			int stacksize = lua_gettop(lua_state());
 | |
| 			int firstreturn = (std::max)(1, stacksize - static_cast<int>(n));
 | |
| 			luacall(n, LUA_MULTRET);
 | |
| 			int poststacksize = lua_gettop(lua_state());
 | |
| 			int returncount = poststacksize - (firstreturn - 1);
 | |
| 			return unsafe_function_result(lua_state(), firstreturn, returncount);
 | |
| 		}
 | |
| 
 | |
| 	public:
 | |
| 		using base_t::lua_state;
 | |
| 
 | |
| 		basic_function() = default;
 | |
| 		template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_function>>, meta::neg<std::is_same<base_t, stack_reference>>, meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
 | |
| 		basic_function(T&& r) noexcept
 | |
| 		: base_t(std::forward<T>(r)) {
 | |
| #if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
 | |
| 			if (!is_function<meta::unqualified_t<T>>::value) {
 | |
| 				auto pp = stack::push_pop(*this);
 | |
| 				constructor_handler handler{};
 | |
| 				stack::check<basic_function>(lua_state(), -1, handler);
 | |
| 			}
 | |
| #endif // Safety
 | |
| 		}
 | |
| 		basic_function(const basic_function&) = default;
 | |
| 		basic_function& operator=(const basic_function&) = default;
 | |
| 		basic_function(basic_function&&) = default;
 | |
| 		basic_function& operator=(basic_function&&) = default;
 | |
| 		basic_function(const stack_reference& r)
 | |
| 		: basic_function(r.lua_state(), r.stack_index()) {
 | |
| 		}
 | |
| 		basic_function(stack_reference&& r)
 | |
| 		: basic_function(r.lua_state(), r.stack_index()) {
 | |
| 		}
 | |
| 		basic_function(lua_nil_t n)
 | |
| 		: base_t(n) {
 | |
| 		}
 | |
| 		template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
 | |
| 		basic_function(lua_State* L, T&& r)
 | |
| 		: base_t(L, std::forward<T>(r)) {
 | |
| #if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
 | |
| 			auto pp = stack::push_pop(*this);
 | |
| 			constructor_handler handler{};
 | |
| 			stack::check<basic_function>(lua_state(), -1, handler);
 | |
| #endif // Safety
 | |
| 		}
 | |
| 		basic_function(lua_State* L, int index = -1)
 | |
| 		: base_t(L, index) {
 | |
| #if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
 | |
| 			constructor_handler handler{};
 | |
| 			stack::check<basic_function>(L, index, handler);
 | |
| #endif // Safety
 | |
| 		}
 | |
| 		basic_function(lua_State* L, ref_index index)
 | |
| 		: base_t(L, index) {
 | |
| #if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
 | |
| 			auto pp = stack::push_pop(*this);
 | |
| 			constructor_handler handler{};
 | |
| 			stack::check<basic_function>(lua_state(), -1, handler);
 | |
| #endif // Safety
 | |
| 		}
 | |
| 
 | |
| 		template <typename Fx>
 | |
| 		int dump(lua_Writer writer, void* userdata, bool strip, Fx&& on_error) const {
 | |
| 			this->push();
 | |
| 			auto ppn = stack::push_popper_n<false>(this->lua_state(), 1);
 | |
| 			int r = lua_dump(this->lua_state(), writer, userdata, strip ? 1 : 0);
 | |
| 			if (r != 0) {
 | |
| 				return on_error(this->lua_state(), r, writer, userdata, strip);
 | |
| 			}
 | |
| 			return r;
 | |
| 		}
 | |
| 
 | |
| 		int dump(lua_Writer writer, void* userdata, bool strip = false) const {
 | |
| 			return dump(writer, userdata, strip, &dump_throw_on_error);
 | |
| 		}
 | |
| 
 | |
| 		template <typename Container = bytecode>
 | |
| 		Container dump() const {
 | |
| 			Container bc;
 | |
| 			(void)dump(static_cast<lua_Writer>(&basic_insert_dump_writer<Container>), static_cast<void*>(&bc), false, &dump_panic_on_error);
 | |
| 			return bc;
 | |
| 		}
 | |
| 
 | |
| 		template <typename Container = bytecode, typename Fx>
 | |
| 		Container dump(Fx&& on_error) const {
 | |
| 			Container bc;
 | |
| 			(void)dump(static_cast<lua_Writer>(&basic_insert_dump_writer<Container>), static_cast<void*>(&bc), false, std::forward<Fx>(on_error));
 | |
| 			return bc;
 | |
| 		}
 | |
| 
 | |
| 		template <typename... Args>
 | |
| 		unsafe_function_result operator()(Args&&... args) const {
 | |
| 			return call<>(std::forward<Args>(args)...);
 | |
| 		}
 | |
| 
 | |
| 		template <typename... Ret, typename... Args>
 | |
| 		decltype(auto) operator()(types<Ret...>, Args&&... args) const {
 | |
| 			return call<Ret...>(std::forward<Args>(args)...);
 | |
| 		}
 | |
| 
 | |
| 		template <typename... Ret, typename... Args>
 | |
| 		decltype(auto) call(Args&&... args) const {
 | |
| 			if (!aligned) {
 | |
| 				base_t::push();
 | |
| 			}
 | |
| 			int pushcount = stack::multi_push_reference(lua_state(), std::forward<Args>(args)...);
 | |
| 			return invoke(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), static_cast<std::ptrdiff_t>(pushcount));
 | |
| 		}
 | |
| 	};
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/unsafe_function.hpp
 | |
| 
 | |
| // beginning of sol/protected_function.hpp
 | |
| 
 | |
| // beginning of sol/protected_handler.hpp
 | |
| 
 | |
| #include <cstdint>
 | |
| 
 | |
| namespace sol {
 | |
| 	namespace detail {
 | |
| 		inline const char(&default_handler_name())[9]{
 | |
| 			static const char name[9] = "sol.\xF0\x9F\x94\xA9";
 | |
| 			return name;
 | |
| 		}
 | |
| 
 | |
| 		template <bool b, typename target_t = reference>
 | |
| 		struct protected_handler {
 | |
| 			typedef is_stack_based<target_t> is_stack;
 | |
| 			const target_t& target;
 | |
| 			int stackindex;
 | |
| 
 | |
| 			protected_handler(std::false_type, const target_t& target)
 | |
| 				: target(target), stackindex(0) {
 | |
| 				if (b) {
 | |
| 					stackindex = lua_gettop(target.lua_state()) + 1;
 | |
| 					target.push();
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			protected_handler(std::true_type, const target_t& target)
 | |
| 				: target(target), stackindex(0) {
 | |
| 				if (b) {
 | |
| 					stackindex = target.stack_index();
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			protected_handler(const target_t& target)
 | |
| 				: protected_handler(is_stack(), target) {
 | |
| 			}
 | |
| 
 | |
| 			bool valid() const noexcept {
 | |
| 				return b;
 | |
| 			}
 | |
| 
 | |
| 			~protected_handler() {
 | |
| 				if constexpr (!is_stack::value) {
 | |
| 					if (stackindex != 0) {
 | |
| 						lua_remove(target.lua_state(), stackindex);
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <typename base_t, typename T>
 | |
| 		basic_function<base_t> force_cast(T& p) {
 | |
| 			return p;
 | |
| 		}
 | |
| 
 | |
| 		template <typename Reference, bool is_main_ref = false>
 | |
| 		static Reference get_default_handler(lua_State* L) {
 | |
| 			if (is_stack_based<Reference>::value || L == nullptr)
 | |
| 				return Reference(L, lua_nil);
 | |
| 			L = is_main_ref ? main_thread(L, L) : L;
 | |
| 			lua_getglobal(L, default_handler_name());
 | |
| 			auto pp = stack::pop_n(L, 1);
 | |
| 			return Reference(L, -1);
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		static void set_default_handler(lua_State* L, const T& ref) {
 | |
| 			if (L == nullptr) {
 | |
| 				return;
 | |
| 			}
 | |
| 			if (!ref.valid()) {
 | |
| #if SOL_IS_ON(SOL_SAFE_STACK_CHECK_I_)
 | |
| 				luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
 | |
| #endif // make sure stack doesn't overflow
 | |
| 				lua_pushnil(L);
 | |
| 				lua_setglobal(L, default_handler_name());
 | |
| 			}
 | |
| 			else {
 | |
| 				ref.push(L);
 | |
| 				lua_setglobal(L, default_handler_name());
 | |
| 			}
 | |
| 		}
 | |
| 	} // namespace detail
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/protected_handler.hpp
 | |
| 
 | |
| #include <cstdint>
 | |
| #include <algorithm>
 | |
| 
 | |
| namespace sol {
 | |
| 	
 | |
| 	namespace detail {
 | |
| 		template <bool b, typename handler_t>
 | |
| 		inline void handle_protected_exception(lua_State* L, optional<const std::exception&> maybe_ex, const char* error, detail::protected_handler<b, handler_t>& h) {
 | |
| 			h.stackindex = 0;
 | |
| 			if (b) {
 | |
| 				h.target.push();
 | |
| 				detail::call_exception_handler(L, maybe_ex, error);
 | |
| 				lua_call(L, 1, 1);
 | |
| 			}
 | |
| 			else {
 | |
| 				detail::call_exception_handler(L, maybe_ex, error);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	template <typename ref_t, bool aligned = false, typename handler_t = reference>
 | |
| 	class basic_protected_function : public basic_object<ref_t> {
 | |
| 	private:
 | |
| 		using base_t = basic_object<ref_t>;
 | |
| 
 | |
| 	public:
 | |
| 		using is_stack_handler = is_stack_based<handler_t>;
 | |
| 
 | |
| 		static handler_t get_default_handler(lua_State* L) {
 | |
| 			return detail::get_default_handler<handler_t, is_main_threaded<base_t>::value>(L);
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		static void set_default_handler(const T& ref) {
 | |
| 			detail::set_default_handler(ref.lua_state(), ref);
 | |
| 		}
 | |
| 
 | |
| 	private:
 | |
| 		template <bool b>
 | |
| 		call_status luacall(std::ptrdiff_t argcount, std::ptrdiff_t resultcount, detail::protected_handler<b, handler_t>& h) const {
 | |
| 			return static_cast<call_status>(lua_pcall(lua_state(), static_cast<int>(argcount), static_cast<int>(resultcount), h.stackindex));
 | |
| 		}
 | |
| 
 | |
| 		template <std::size_t... I, bool b, typename... Ret>
 | |
| 		auto invoke(types<Ret...>, std::index_sequence<I...>, std::ptrdiff_t n, detail::protected_handler<b, handler_t>& h) const {
 | |
| 			luacall(n, sizeof...(Ret), h);
 | |
| 			return stack::pop<std::tuple<Ret...>>(lua_state());
 | |
| 		}
 | |
| 
 | |
| 		template <std::size_t I, bool b, typename Ret>
 | |
| 		Ret invoke(types<Ret>, std::index_sequence<I>, std::ptrdiff_t n, detail::protected_handler<b, handler_t>& h) const {
 | |
| 			luacall(n, 1, h);
 | |
| 			return stack::pop<Ret>(lua_state());
 | |
| 		}
 | |
| 
 | |
| 		template <std::size_t I, bool b>
 | |
| 		void invoke(types<void>, std::index_sequence<I>, std::ptrdiff_t n, detail::protected_handler<b, handler_t>& h) const {
 | |
| 			luacall(n, 0, h);
 | |
| 		}
 | |
| 
 | |
| 		template <bool b>
 | |
| 		protected_function_result invoke(types<>, std::index_sequence<>, std::ptrdiff_t n, detail::protected_handler<b, handler_t>& h) const {
 | |
| 			int stacksize = lua_gettop(lua_state());
 | |
| 			int poststacksize = stacksize;
 | |
| 			int firstreturn = 1;
 | |
| 			int returncount = 0;
 | |
| 			call_status code = call_status::ok;
 | |
| #if !defined(SOL_NO_EXCEPTIONS) || !SOL_NO_EXCEPTIONS
 | |
| #if (!defined(SOL_EXCEPTIONS_SAFE_PROPAGATION) || !SOL_NO_EXCEPTIONS_SAFE_PROPAGATION) || (defined(SOL_LUAJIT) && SOL_LUAJIT)
 | |
| 			try {
 | |
| #endif // Safe Exception Propagation
 | |
| #endif // No Exceptions
 | |
| 				firstreturn = (std::max)(1, static_cast<int>(stacksize - n - static_cast<int>(h.valid() && !is_stack_handler::value)));
 | |
| 				code = luacall(n, LUA_MULTRET, h);
 | |
| 				poststacksize = lua_gettop(lua_state()) - static_cast<int>(h.valid() && !is_stack_handler::value);
 | |
| 				returncount = poststacksize - (firstreturn - 1);
 | |
| #ifndef SOL_NO_EXCEPTIONS
 | |
| #if (!defined(SOL_EXCEPTIONS_SAFE_PROPAGATION) || !SOL_NO_EXCEPTIONS_SAFE_PROPAGATION) || (defined(SOL_LUAJIT) && SOL_LUAJIT)
 | |
| 			}
 | |
| 			// Handle C++ errors thrown from C++ functions bound inside of lua
 | |
| 			catch (const char* error) {
 | |
| 				detail::handle_protected_exception(lua_state(), optional<const std::exception&>(nullopt), error, h);
 | |
| 				firstreturn = lua_gettop(lua_state());
 | |
| 				return protected_function_result(lua_state(), firstreturn, 0, 1, call_status::runtime);
 | |
| 			}
 | |
| 			catch (const std::string& error) {
 | |
| 				detail::handle_protected_exception(lua_state(), optional<const std::exception&>(nullopt), error.c_str(), h);
 | |
| 				firstreturn = lua_gettop(lua_state());
 | |
| 				return protected_function_result(lua_state(), firstreturn, 0, 1, call_status::runtime);
 | |
| 			}
 | |
| 			catch (const std::exception& error) {
 | |
| 				detail::handle_protected_exception(lua_state(), optional<const std::exception&>(error), error.what(), h);
 | |
| 				firstreturn = lua_gettop(lua_state());
 | |
| 				return protected_function_result(lua_state(), firstreturn, 0, 1, call_status::runtime);
 | |
| 			}
 | |
| #if (!defined(SOL_EXCEPTIONS_SAFE_PROPAGATION) || !SOL_NO_EXCEPTIONS_SAFE_PROPAGATION)
 | |
| 			// LuaJIT cannot have the catchall when the safe propagation is on
 | |
| 			// but LuaJIT will swallow all C++ errors 
 | |
| 			// if we don't at least catch std::exception ones
 | |
| 			catch (...) {
 | |
| 				detail::handle_protected_exception(lua_state(), optional<const std::exception&>(nullopt), detail::protected_function_error, h);
 | |
| 				firstreturn = lua_gettop(lua_state());
 | |
| 				return protected_function_result(lua_state(), firstreturn, 0, 1, call_status::runtime);
 | |
| 			}
 | |
| #endif // LuaJIT
 | |
| #else
 | |
| 			// do not handle exceptions: they can be propogated into C++ and keep all type information / rich information
 | |
| #endif // Safe Exception Propagation
 | |
| #endif // Exceptions vs. No Exceptions
 | |
| 			return protected_function_result(lua_state(), firstreturn, returncount, returncount, code);
 | |
| 		}
 | |
| 
 | |
| 	public:
 | |
| 		using base_t::lua_state;
 | |
| 
 | |
| 		handler_t error_handler;
 | |
| 
 | |
| 		basic_protected_function() = default;
 | |
| 		template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_protected_function>>, meta::neg<std::is_base_of<proxy_base_tag, meta::unqualified_t<T>>>, meta::neg<std::is_same<base_t, stack_reference>>, meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
 | |
| 		basic_protected_function(T&& r) noexcept
 | |
| 		: base_t(std::forward<T>(r)), error_handler(get_default_handler(r.lua_state())) {
 | |
| #if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
 | |
| 			if (!is_function<meta::unqualified_t<T>>::value) {
 | |
| 				auto pp = stack::push_pop(*this);
 | |
| 				constructor_handler handler{};
 | |
| 				stack::check<basic_protected_function>(lua_state(), -1, handler);
 | |
| 			}
 | |
| #endif // Safety
 | |
| 		}
 | |
| 		basic_protected_function(const basic_protected_function&) = default;
 | |
| 		basic_protected_function& operator=(const basic_protected_function&) = default;
 | |
| 		basic_protected_function(basic_protected_function&&) = default;
 | |
| 		basic_protected_function& operator=(basic_protected_function&&) = default;
 | |
| 		basic_protected_function(const basic_function<base_t>& b)
 | |
| 		: basic_protected_function(b, get_default_handler(b.lua_state())) {
 | |
| 		}
 | |
| 		basic_protected_function(basic_function<base_t>&& b)
 | |
| 		: basic_protected_function(std::move(b), get_default_handler(b.lua_state())) {
 | |
| 		}
 | |
| 		basic_protected_function(const basic_function<base_t>& b, handler_t eh)
 | |
| 		: base_t(b), error_handler(std::move(eh)) {
 | |
| 		}
 | |
| 		basic_protected_function(basic_function<base_t>&& b, handler_t eh)
 | |
| 		: base_t(std::move(b)), error_handler(std::move(eh)) {
 | |
| 		}
 | |
| 		basic_protected_function(const stack_reference& r)
 | |
| 		: basic_protected_function(r.lua_state(), r.stack_index(), get_default_handler(r.lua_state())) {
 | |
| 		}
 | |
| 		basic_protected_function(stack_reference&& r)
 | |
| 		: basic_protected_function(r.lua_state(), r.stack_index(), get_default_handler(r.lua_state())) {
 | |
| 		}
 | |
| 		basic_protected_function(const stack_reference& r, handler_t eh)
 | |
| 		: basic_protected_function(r.lua_state(), r.stack_index(), std::move(eh)) {
 | |
| 		}
 | |
| 		basic_protected_function(stack_reference&& r, handler_t eh)
 | |
| 		: basic_protected_function(r.lua_state(), r.stack_index(), std::move(eh)) {
 | |
| 		}
 | |
| 
 | |
| 		template <typename Super>
 | |
| 		basic_protected_function(const proxy_base<Super>& p)
 | |
| 		: basic_protected_function(p, get_default_handler(p.lua_state())) {
 | |
| 		}
 | |
| 		template <typename Super>
 | |
| 		basic_protected_function(proxy_base<Super>&& p)
 | |
| 		: basic_protected_function(std::move(p), get_default_handler(p.lua_state())) {
 | |
| 		}
 | |
| 		template <typename Proxy, typename Handler, meta::enable<std::is_base_of<proxy_base_tag, meta::unqualified_t<Proxy>>, meta::neg<is_lua_index<meta::unqualified_t<Handler>>>> = meta::enabler>
 | |
| 		basic_protected_function(Proxy&& p, Handler&& eh)
 | |
| 		: basic_protected_function(detail::force_cast<base_t>(p), std::forward<Handler>(eh)) {
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
 | |
| 		basic_protected_function(lua_State* L, T&& r)
 | |
| 		: basic_protected_function(L, std::forward<T>(r), get_default_handler(L)) {
 | |
| 		}
 | |
| 		template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
 | |
| 		basic_protected_function(lua_State* L, T&& r, handler_t eh)
 | |
| 		: base_t(L, std::forward<T>(r)), error_handler(std::move(eh)) {
 | |
| #if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
 | |
| 			auto pp = stack::push_pop(*this);
 | |
| 			constructor_handler handler{};
 | |
| 			stack::check<basic_protected_function>(lua_state(), -1, handler);
 | |
| #endif // Safety
 | |
| 		}
 | |
| 		
 | |
| 		basic_protected_function(lua_nil_t n)
 | |
| 			: base_t(n), error_handler(n) {
 | |
| 		}
 | |
| 
 | |
| 		basic_protected_function(lua_State* L, int index = -1)
 | |
| 		: basic_protected_function(L, index, get_default_handler(L)) {
 | |
| 		}
 | |
| 		basic_protected_function(lua_State* L, int index, handler_t eh)
 | |
| 		: base_t(L, index), error_handler(std::move(eh)) {
 | |
| #if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
 | |
| 			constructor_handler handler{};
 | |
| 			stack::check<basic_protected_function>(L, index, handler);
 | |
| #endif // Safety
 | |
| 		}
 | |
| 		basic_protected_function(lua_State* L, absolute_index index)
 | |
| 		: basic_protected_function(L, index, get_default_handler(L)) {
 | |
| 		}
 | |
| 		basic_protected_function(lua_State* L, absolute_index index, handler_t eh)
 | |
| 		: base_t(L, index), error_handler(std::move(eh)) {
 | |
| #if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
 | |
| 			constructor_handler handler{};
 | |
| 			stack::check<basic_protected_function>(L, index, handler);
 | |
| #endif // Safety
 | |
| 		}
 | |
| 		basic_protected_function(lua_State* L, raw_index index)
 | |
| 		: basic_protected_function(L, index, get_default_handler(L)) {
 | |
| 		}
 | |
| 		basic_protected_function(lua_State* L, raw_index index, handler_t eh)
 | |
| 		: base_t(L, index), error_handler(std::move(eh)) {
 | |
| #if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
 | |
| 			constructor_handler handler{};
 | |
| 			stack::check<basic_protected_function>(L, index, handler);
 | |
| #endif // Safety
 | |
| 		}
 | |
| 		basic_protected_function(lua_State* L, ref_index index)
 | |
| 		: basic_protected_function(L, index, get_default_handler(L)) {
 | |
| 		}
 | |
| 		basic_protected_function(lua_State* L, ref_index index, handler_t eh)
 | |
| 		: base_t(L, index), error_handler(std::move(eh)) {
 | |
| #if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
 | |
| 			auto pp = stack::push_pop(*this);
 | |
| 			constructor_handler handler{};
 | |
| 			stack::check<basic_protected_function>(lua_state(), -1, handler);
 | |
| #endif // Safety
 | |
| 		}
 | |
| 
 | |
| 		template <typename Fx>
 | |
| 		int dump(lua_Writer writer, void* userdata, bool strip, Fx&& on_error) const {
 | |
| 			this->push();
 | |
| 			auto ppn = stack::push_popper_n<false>(this->lua_state(), 1);
 | |
| 			int r = lua_dump(this->lua_state(), writer, userdata, strip ? 1 : 0);
 | |
| 			if (r != 0) {
 | |
| 				return on_error(this->lua_state(), r, writer, userdata, strip);
 | |
| 			}
 | |
| 			return r;
 | |
| 		}
 | |
| 
 | |
| 		int dump(lua_Writer writer, void* userdata, bool strip = false) const {
 | |
| 			return dump(writer, userdata, strip, &dump_pass_on_error);
 | |
| 		}
 | |
| 
 | |
| 		template <typename Container = bytecode>
 | |
| 		Container dump() const {
 | |
| 			Container bc;
 | |
| 			(void)dump(static_cast<lua_Writer>(&basic_insert_dump_writer<Container>), static_cast<void*>(&bc), false, &dump_throw_on_error);
 | |
| 			return bc;
 | |
| 		}
 | |
| 
 | |
| 		template <typename Container = bytecode, typename Fx>
 | |
| 		Container dump(Fx&& on_error) const {
 | |
| 			Container bc;
 | |
| 			(void)dump(static_cast<lua_Writer>(&basic_insert_dump_writer<Container>), static_cast<void*>(&bc), false, std::forward<Fx>(on_error));
 | |
| 			return bc;
 | |
| 		}
 | |
| 
 | |
| 		template <typename... Args>
 | |
| 		protected_function_result operator()(Args&&... args) const {
 | |
| 			return call<>(std::forward<Args>(args)...);
 | |
| 		}
 | |
| 
 | |
| 		template <typename... Ret, typename... Args>
 | |
| 		decltype(auto) operator()(types<Ret...>, Args&&... args) const {
 | |
| 			return call<Ret...>(std::forward<Args>(args)...);
 | |
| 		}
 | |
| 
 | |
| 		template <typename... Ret, typename... Args>
 | |
| 		decltype(auto) call(Args&&... args) const {
 | |
| 			if constexpr (!aligned) {
 | |
| 				// we do not expect the function to already be on the stack: push it
 | |
| 				if (error_handler.valid()) {
 | |
| 					detail::protected_handler<true, handler_t> h(error_handler);
 | |
| 					base_t::push();
 | |
| 					int pushcount = stack::multi_push_reference(lua_state(), std::forward<Args>(args)...);
 | |
| 					return invoke(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), pushcount, h);
 | |
| 				}
 | |
| 				else {
 | |
| 					detail::protected_handler<false, handler_t> h(error_handler);
 | |
| 					base_t::push();
 | |
| 					int pushcount = stack::multi_push_reference(lua_state(), std::forward<Args>(args)...);
 | |
| 					return invoke(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), pushcount, h);
 | |
| 				}
 | |
| 			}
 | |
| 			else {
 | |
| 				// the function is already on the stack at the right location
 | |
| 				if (error_handler.valid()) {
 | |
| 					// the handler will be pushed onto the stack manually,
 | |
| 					// since it's not already on the stack this means we need to push our own
 | |
| 					// function on the stack too and swap things to be in-place
 | |
| 					if constexpr (!is_stack_handler::value) {
 | |
| 						// so, we need to remove the function at the top and then dump the handler out ourselves
 | |
| 						base_t::push();
 | |
| 					}
 | |
| 					detail::protected_handler<true, handler_t> h(error_handler);
 | |
| 					if constexpr (!is_stack_handler::value) {
 | |
| 						lua_replace(lua_state(), -3);
 | |
| 						h.stackindex = lua_absindex(lua_state(), -2);
 | |
| 					}
 | |
| 					int pushcount = stack::multi_push_reference(lua_state(), std::forward<Args>(args)...);
 | |
| 					return invoke(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), pushcount, h);
 | |
| 				}
 | |
| 				else {
 | |
| 					detail::protected_handler<false, handler_t> h(error_handler);
 | |
| 					int pushcount = stack::multi_push_reference(lua_state(), std::forward<Args>(args)...);
 | |
| 					return invoke(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), pushcount, h);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	};
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/protected_function.hpp
 | |
| 
 | |
| #include <functional>
 | |
| 
 | |
| namespace sol {
 | |
| 	template <typename... Ret, typename... Args>
 | |
| 	decltype(auto) stack_proxy::call(Args&&... args) {
 | |
| 		stack_function sf(this->lua_state(), this->stack_index());
 | |
| 		return sf.template call<Ret...>(std::forward<Args>(args)...);
 | |
| 	}
 | |
| 
 | |
| 	inline protected_function_result::protected_function_result(unsafe_function_result&& o) noexcept
 | |
| 	: L(o.lua_state()), index(o.stack_index()), returncount(o.return_count()), popcount(o.return_count()), err(o.status()) {
 | |
| 		// Must be manual, otherwise destructor will screw us
 | |
| 		// return count being 0 is enough to keep things clean
 | |
| 		// but we will be thorough
 | |
| 		o.abandon();
 | |
| 	}
 | |
| 
 | |
| 	inline protected_function_result& protected_function_result::operator=(unsafe_function_result&& o) noexcept {
 | |
| 		L = o.lua_state();
 | |
| 		index = o.stack_index();
 | |
| 		returncount = o.return_count();
 | |
| 		popcount = o.return_count();
 | |
| 		err = o.status();
 | |
| 		// Must be manual, otherwise destructor will screw us
 | |
| 		// return count being 0 is enough to keep things clean
 | |
| 		// but we will be thorough
 | |
| 		o.abandon();
 | |
| 		return *this;
 | |
| 	}
 | |
| 
 | |
| 	inline unsafe_function_result::unsafe_function_result(protected_function_result&& o) noexcept
 | |
| 	: L(o.lua_state()), index(o.stack_index()), returncount(o.return_count()) {
 | |
| 		// Must be manual, otherwise destructor will screw us
 | |
| 		// return count being 0 is enough to keep things clean
 | |
| 		// but we will be thorough
 | |
| 		o.abandon();
 | |
| 	}
 | |
| 	inline unsafe_function_result& unsafe_function_result::operator=(protected_function_result&& o) noexcept {
 | |
| 		L = o.lua_state();
 | |
| 		index = o.stack_index();
 | |
| 		returncount = o.return_count();
 | |
| 		// Must be manual, otherwise destructor will screw us
 | |
| 		// return count being 0 is enough to keep things clean
 | |
| 		// but we will be thorough
 | |
| 		o.abandon();
 | |
| 		return *this;
 | |
| 	}
 | |
| 
 | |
| 	namespace detail {
 | |
| 		template <typename... R>
 | |
| 		struct std_shim {
 | |
| 			unsafe_function lua_func_;
 | |
| 
 | |
| 			std_shim(unsafe_function lua_func) : lua_func_(std::move(lua_func)) {
 | |
| 			}
 | |
| 
 | |
| 			template <typename... Args>
 | |
| 			meta::return_type_t<R...> operator()(Args&&... args) {
 | |
| 				return lua_func_.call<R...>(std::forward<Args>(args)...);
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <>
 | |
| 		struct std_shim<void> {
 | |
| 			unsafe_function lua_func_;
 | |
| 
 | |
| 			std_shim(unsafe_function lua_func) : lua_func_(std::move(lua_func)) {
 | |
| 			}
 | |
| 
 | |
| 			template <typename... Args>
 | |
| 			void operator()(Args&&... args) {
 | |
| 				lua_func_.call<void>(std::forward<Args>(args)...);
 | |
| 			}
 | |
| 		};
 | |
| 	} // namespace detail
 | |
| 
 | |
| 	namespace stack {
 | |
| 		template <typename Signature>
 | |
| 		struct unqualified_getter<std::function<Signature>> {
 | |
| 			typedef meta::bind_traits<Signature> fx_t;
 | |
| 			typedef typename fx_t::args_list args_lists;
 | |
| 			typedef meta::tuple_types<typename fx_t::return_type> return_types;
 | |
| 
 | |
| 			template <typename... R>
 | |
| 			static std::function<Signature> get_std_func(types<R...>, lua_State* L, int index) {
 | |
| 				detail::std_shim<R...> fx(unsafe_function(L, index));
 | |
| 				return fx;
 | |
| 			}
 | |
| 
 | |
| 			static std::function<Signature> get(lua_State* L, int index, record& tracking) {
 | |
| 				tracking.use(1);
 | |
| 				type t = type_of(L, index);
 | |
| 				if (t == type::none || t == type::lua_nil) {
 | |
| 					return nullptr;
 | |
| 				}
 | |
| 				return get_std_func(return_types(), L, index);
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <typename Allocator>
 | |
| 		struct unqualified_getter<basic_bytecode<Allocator>> {
 | |
| 			static basic_bytecode<Allocator> get(lua_State* L, int index, record& tracking) {
 | |
| 				tracking.use(1);
 | |
| 				stack_function sf(L, index);
 | |
| 				return sf.dump(&dump_panic_on_error);
 | |
| 			}
 | |
| 		};
 | |
| 	} // namespace stack
 | |
| 
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/function.hpp
 | |
| 
 | |
| // beginning of sol/usertype.hpp
 | |
| 
 | |
| // beginning of sol/usertype_core.hpp
 | |
| 
 | |
| // beginning of sol/deprecate.hpp
 | |
| 
 | |
| #ifndef SOL_DEPRECATED
 | |
| #ifdef _MSC_VER
 | |
| #define SOL_DEPRECATED __declspec(deprecated)
 | |
| #elif __GNUC__
 | |
| #define SOL_DEPRECATED __attribute__((deprecated))
 | |
| #else
 | |
| #define SOL_DEPRECATED [[deprecated]]
 | |
| #endif // compilers
 | |
| #endif // SOL_DEPRECATED
 | |
| 
 | |
| namespace sol {
 | |
| namespace detail {
 | |
| 	template <typename T>
 | |
| 	struct SOL_DEPRECATED deprecate_type {
 | |
| 		using type = T;
 | |
| 	};
 | |
| }
 | |
| } // namespace sol::detail
 | |
| 
 | |
| // end of sol/deprecate.hpp
 | |
| 
 | |
| // beginning of sol/usertype_container_launch.hpp
 | |
| 
 | |
| // beginning of sol/usertype_container.hpp
 | |
| 
 | |
| namespace sol {
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct usertype_container;
 | |
| 
 | |
| 	namespace container_detail {
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct has_clear_test {
 | |
| 		private:
 | |
| 			template <typename C>
 | |
| 			static meta::sfinae_yes_t test(decltype(&C::clear));
 | |
| 			template <typename C>
 | |
| 			static meta::sfinae_no_t test(...);
 | |
| 
 | |
| 		public:
 | |
| 			static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct has_empty_test {
 | |
| 		private:
 | |
| 			template <typename C>
 | |
| 			static meta::sfinae_yes_t test(decltype(&C::empty));
 | |
| 			template <typename C>
 | |
| 			static meta::sfinae_no_t test(...);
 | |
| 
 | |
| 		public:
 | |
| 			static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct has_erase_after_test {
 | |
| 		private:
 | |
| 			template <typename C>
 | |
| 			static meta::sfinae_yes_t test(
 | |
| 			     decltype(std::declval<C>().erase_after(std::declval<std::add_rvalue_reference_t<typename C::const_iterator>>()))*);
 | |
| 			template <typename C>
 | |
| 			static meta::sfinae_no_t test(...);
 | |
| 
 | |
| 		public:
 | |
| 			static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T, typename = void>
 | |
| 		struct has_find_test {
 | |
| 		private:
 | |
| 			template <typename C>
 | |
| 			static meta::sfinae_yes_t test(decltype(std::declval<C>().find(std::declval<std::add_rvalue_reference_t<typename C::value_type>>()))*);
 | |
| 			template <typename C>
 | |
| 			static meta::sfinae_no_t test(...);
 | |
| 
 | |
| 		public:
 | |
| 			static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct has_find_test<T, std::enable_if_t<meta::is_lookup<T>::value>> {
 | |
| 		private:
 | |
| 			template <typename C>
 | |
| 			static meta::sfinae_yes_t test(decltype(std::declval<C>().find(std::declval<std::add_rvalue_reference_t<typename C::key_type>>()))*);
 | |
| 			template <typename C>
 | |
| 			static meta::sfinae_no_t test(...);
 | |
| 
 | |
| 		public:
 | |
| 			static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct has_erase_test {
 | |
| 		private:
 | |
| 			template <typename C>
 | |
| 			static meta::sfinae_yes_t test(decltype(std::declval<C>().erase(std::declval<typename C::iterator>()))*);
 | |
| 			template <typename C>
 | |
| 			static meta::sfinae_no_t test(...);
 | |
| 
 | |
| 		public:
 | |
| 			static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct has_erase_key_test {
 | |
| 		private:
 | |
| 			template <typename C>
 | |
| 			static meta::sfinae_yes_t test(decltype(std::declval<C>().erase(std::declval<typename C::key_type>()))*);
 | |
| 			template <typename C>
 | |
| 			static meta::sfinae_no_t test(...);
 | |
| 
 | |
| 		public:
 | |
| 			static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct has_traits_find_test {
 | |
| 		private:
 | |
| 			template <typename C>
 | |
| 			static meta::sfinae_yes_t test(decltype(&C::find));
 | |
| 			template <typename C>
 | |
| 			static meta::sfinae_no_t test(...);
 | |
| 
 | |
| 		public:
 | |
| 			static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct has_traits_index_of_test {
 | |
| 		private:
 | |
| 			template <typename C>
 | |
| 			static meta::sfinae_yes_t test(decltype(&C::index_of));
 | |
| 			template <typename C>
 | |
| 			static meta::sfinae_no_t test(...);
 | |
| 
 | |
| 		public:
 | |
| 			static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct has_traits_insert_test {
 | |
| 		private:
 | |
| 			template <typename C>
 | |
| 			static meta::sfinae_yes_t test(decltype(&C::insert));
 | |
| 			template <typename C>
 | |
| 			static meta::sfinae_no_t test(...);
 | |
| 
 | |
| 		public:
 | |
| 			static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct has_traits_erase_test {
 | |
| 		private:
 | |
| 			template <typename C>
 | |
| 			static meta::sfinae_yes_t test(decltype(&C::erase));
 | |
| 			template <typename C>
 | |
| 			static meta::sfinae_no_t test(...);
 | |
| 
 | |
| 		public:
 | |
| 			static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct has_traits_index_set_test {
 | |
| 		private:
 | |
| 			template <typename C>
 | |
| 			static meta::sfinae_yes_t test(decltype(&C::index_set));
 | |
| 			template <typename C>
 | |
| 			static meta::sfinae_no_t test(...);
 | |
| 
 | |
| 		public:
 | |
| 			static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct has_traits_index_get_test {
 | |
| 		private:
 | |
| 			template <typename C>
 | |
| 			static meta::sfinae_yes_t test(decltype(&C::index_get));
 | |
| 			template <typename C>
 | |
| 			static meta::sfinae_no_t test(...);
 | |
| 
 | |
| 		public:
 | |
| 			static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct has_traits_set_test {
 | |
| 		private:
 | |
| 			template <typename C>
 | |
| 			static meta::sfinae_yes_t test(decltype(&C::set));
 | |
| 			template <typename C>
 | |
| 			static meta::sfinae_no_t test(...);
 | |
| 
 | |
| 		public:
 | |
| 			static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct has_traits_get_test {
 | |
| 		private:
 | |
| 			template <typename C>
 | |
| 			static meta::sfinae_yes_t test(decltype(&C::get));
 | |
| 			template <typename C>
 | |
| 			static meta::sfinae_no_t test(...);
 | |
| 
 | |
| 		public:
 | |
| 			static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct has_traits_at_test {
 | |
| 		private:
 | |
| 			template <typename C>
 | |
| 			static meta::sfinae_yes_t test(decltype(&C::at));
 | |
| 			template <typename C>
 | |
| 			static meta::sfinae_no_t test(...);
 | |
| 
 | |
| 		public:
 | |
| 			static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct has_traits_pairs_test {
 | |
| 		private:
 | |
| 			template <typename C>
 | |
| 			static meta::sfinae_yes_t test(decltype(&C::pairs));
 | |
| 			template <typename C>
 | |
| 			static meta::sfinae_no_t test(...);
 | |
| 
 | |
| 		public:
 | |
| 			static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct has_traits_ipairs_test {
 | |
| 		private:
 | |
| 			template <typename C>
 | |
| 			static meta::sfinae_yes_t test(decltype(&C::ipairs));
 | |
| 			template <typename C>
 | |
| 			static meta::sfinae_no_t test(...);
 | |
| 
 | |
| 		public:
 | |
| 			static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct has_traits_next_test {
 | |
| 		private:
 | |
| 			template <typename C>
 | |
| 			static meta::sfinae_yes_t test(decltype(&C::next));
 | |
| 			template <typename C>
 | |
| 			static meta::sfinae_no_t test(...);
 | |
| 
 | |
| 		public:
 | |
| 			static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct has_traits_add_test {
 | |
| 		private:
 | |
| 			template <typename C>
 | |
| 			static meta::sfinae_yes_t test(decltype(&C::add));
 | |
| 			template <typename C>
 | |
| 			static meta::sfinae_no_t test(...);
 | |
| 
 | |
| 		public:
 | |
| 			static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct has_traits_size_test {
 | |
| 		private:
 | |
| 			template <typename C>
 | |
| 			static meta::sfinae_yes_t test(decltype(&C::size));
 | |
| 			template <typename C>
 | |
| 			static meta::sfinae_no_t test(...);
 | |
| 
 | |
| 		public:
 | |
| 			static constexpr bool value = std::is_same_v<decltype(test<T>(0)), meta::sfinae_yes_t>;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T>
 | |
| 		using has_clear = meta::boolean<has_clear_test<T>::value>;
 | |
| 
 | |
| 		template <typename T>
 | |
| 		using has_empty = meta::boolean<has_empty_test<T>::value>;
 | |
| 
 | |
| 		template <typename T>
 | |
| 		using has_find = meta::boolean<has_find_test<T>::value>;
 | |
| 
 | |
| 		template <typename T>
 | |
| 		using has_erase = meta::boolean<has_erase_test<T>::value>;
 | |
| 
 | |
| 		template <typename T>
 | |
| 		using has_erase_key = meta::boolean<has_erase_key_test<T>::value>;
 | |
| 
 | |
| 		template <typename T>
 | |
| 		using has_erase_after = meta::boolean<has_erase_after_test<T>::value>;
 | |
| 
 | |
| 		template <typename T>
 | |
| 		using has_traits_get = meta::boolean<has_traits_get_test<T>::value>;
 | |
| 
 | |
| 		template <typename T>
 | |
| 		using has_traits_at = meta::boolean<has_traits_at_test<T>::value>;
 | |
| 
 | |
| 		template <typename T>
 | |
| 		using has_traits_set = meta::boolean<has_traits_set_test<T>::value>;
 | |
| 
 | |
| 		template <typename T>
 | |
| 		using has_traits_index_get = meta::boolean<has_traits_index_get_test<T>::value>;
 | |
| 
 | |
| 		template <typename T>
 | |
| 		using has_traits_index_set = meta::boolean<has_traits_index_set_test<T>::value>;
 | |
| 
 | |
| 		template <typename T>
 | |
| 		using has_traits_pairs = meta::boolean<has_traits_pairs_test<T>::value>;
 | |
| 
 | |
| 		template <typename T>
 | |
| 		using has_traits_ipairs = meta::boolean<has_traits_ipairs_test<T>::value>;
 | |
| 
 | |
| 		template <typename T>
 | |
| 		using has_traits_next = meta::boolean<has_traits_next_test<T>::value>;
 | |
| 
 | |
| 		template <typename T>
 | |
| 		using has_traits_add = meta::boolean<has_traits_add_test<T>::value>;
 | |
| 
 | |
| 		template <typename T>
 | |
| 		using has_traits_size = meta::boolean<has_traits_size_test<T>::value>;
 | |
| 
 | |
| 		template <typename T>
 | |
| 		using has_traits_clear = has_clear<T>;
 | |
| 
 | |
| 		template <typename T>
 | |
| 		using has_traits_empty = has_empty<T>;
 | |
| 
 | |
| 		template <typename T>
 | |
| 		using has_traits_find = meta::boolean<has_traits_find_test<T>::value>;
 | |
| 
 | |
| 		template <typename T>
 | |
| 		using has_traits_index_of = meta::boolean<has_traits_index_of_test<T>::value>;
 | |
| 
 | |
| 		template <typename T>
 | |
| 		using has_traits_insert = meta::boolean<has_traits_insert_test<T>::value>;
 | |
| 
 | |
| 		template <typename T>
 | |
| 		using has_traits_erase = meta::boolean<has_traits_erase_test<T>::value>;
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct is_forced_container : is_container<T> {};
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct is_forced_container<as_container_t<T>> : std::true_type {};
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct container_decay {
 | |
| 			typedef T type;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct container_decay<as_container_t<T>> {
 | |
| 			typedef T type;
 | |
| 		};
 | |
| 
 | |
| 		template <typename T>
 | |
| 		using container_decay_t = typename container_decay<meta::unqualified_t<T>>::type;
 | |
| 
 | |
| 		template <typename T>
 | |
| 		decltype(auto) get_key(std::false_type, T&& t) {
 | |
| 			return std::forward<T>(t);
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		decltype(auto) get_key(std::true_type, T&& t) {
 | |
| 			return t.first;
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		decltype(auto) get_value(std::false_type, T&& t) {
 | |
| 			return std::forward<T>(t);
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		decltype(auto) get_value(std::true_type, T&& t) {
 | |
| 			return t.second;
 | |
| 		}
 | |
| 
 | |
| 		template <typename X, typename = void>
 | |
| 		struct usertype_container_default {
 | |
| 		private:
 | |
| 			typedef std::remove_pointer_t<meta::unwrap_unqualified_t<X>> T;
 | |
| 
 | |
| 		public:
 | |
| 			typedef lua_nil_t iterator;
 | |
| 			typedef lua_nil_t value_type;
 | |
| 
 | |
| 			static int at(lua_State* L) {
 | |
| 				return luaL_error(L, "sol: cannot call 'at(index)' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
 | |
| 			}
 | |
| 
 | |
| 			static int get(lua_State* L) {
 | |
| 				return luaL_error(L, "sol: cannot call 'get(key)' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
 | |
| 			}
 | |
| 
 | |
| 			static int index_get(lua_State* L) {
 | |
| 				return luaL_error(L, "sol: cannot call 'container[key]' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
 | |
| 			}
 | |
| 
 | |
| 			static int set(lua_State* L) {
 | |
| 				return luaL_error(L, "sol: cannot call 'set(key, value)' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
 | |
| 			}
 | |
| 
 | |
| 			static int index_set(lua_State* L) {
 | |
| 				return luaL_error(
 | |
| 				     L, "sol: cannot call 'container[key] = value' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
 | |
| 			}
 | |
| 
 | |
| 			static int add(lua_State* L) {
 | |
| 				return luaL_error(L, "sol: cannot call 'add' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
 | |
| 			}
 | |
| 
 | |
| 			static int insert(lua_State* L) {
 | |
| 				return luaL_error(L, "sol: cannot call 'insert' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
 | |
| 			}
 | |
| 
 | |
| 			static int find(lua_State* L) {
 | |
| 				return luaL_error(L, "sol: cannot call 'find' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
 | |
| 			}
 | |
| 
 | |
| 			static int index_of(lua_State* L) {
 | |
| 				return luaL_error(L, "sol: cannot call 'index_of' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
 | |
| 			}
 | |
| 
 | |
| 			static int size(lua_State* L) {
 | |
| 				return luaL_error(L, "sol: cannot call 'end' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
 | |
| 			}
 | |
| 
 | |
| 			static int clear(lua_State* L) {
 | |
| 				return luaL_error(L, "sol: cannot call 'clear' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
 | |
| 			}
 | |
| 
 | |
| 			static int empty(lua_State* L) {
 | |
| 				return luaL_error(L, "sol: cannot call 'empty' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
 | |
| 			}
 | |
| 
 | |
| 			static int erase(lua_State* L) {
 | |
| 				return luaL_error(L, "sol: cannot call 'erase' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
 | |
| 			}
 | |
| 
 | |
| 			static int next(lua_State* L) {
 | |
| 				return luaL_error(L, "sol: cannot call 'next' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
 | |
| 			}
 | |
| 
 | |
| 			static int pairs(lua_State* L) {
 | |
| 				return luaL_error(L, "sol: cannot call '__pairs/pairs' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
 | |
| 			}
 | |
| 
 | |
| 			static int ipairs(lua_State* L) {
 | |
| 				return luaL_error(L, "sol: cannot call '__ipairs' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
 | |
| 			}
 | |
| 
 | |
| 			static iterator begin(lua_State* L, T&) {
 | |
| 				luaL_error(L, "sol: cannot call 'being' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
 | |
| 				return lua_nil;
 | |
| 			}
 | |
| 
 | |
| 			static iterator end(lua_State* L, T&) {
 | |
| 				luaL_error(L, "sol: cannot call 'end' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
 | |
| 				return lua_nil;
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <typename X>
 | |
| 		struct usertype_container_default<X,
 | |
| 		     std::enable_if_t<meta::all<is_forced_container<meta::unqualified_t<X>>, meta::has_value_type<meta::unqualified_t<container_decay_t<X>>>,
 | |
| 		          meta::has_iterator<meta::unqualified_t<container_decay_t<X>>>>::value>> {
 | |
| 		private:
 | |
| 			using T = std::remove_pointer_t<meta::unwrap_unqualified_t<container_decay_t<X>>>;
 | |
| 
 | |
| 		private:
 | |
| 			using deferred_uc = usertype_container<X>;
 | |
| 			using is_associative = meta::is_associative<T>;
 | |
| 			using is_lookup = meta::is_lookup<T>;
 | |
| 			using is_ordered = meta::is_ordered<T>;
 | |
| 			using is_matched_lookup = meta::is_matched_lookup<T>;
 | |
| 			using iterator = typename T::iterator;
 | |
| 			using value_type = typename T::value_type;
 | |
| 			typedef meta::conditional_t<is_matched_lookup::value, std::pair<value_type, value_type>,
 | |
| 			     meta::conditional_t<is_associative::value || is_lookup::value, value_type, std::pair<std::ptrdiff_t, value_type>>>
 | |
| 			     KV;
 | |
| 			typedef typename KV::first_type K;
 | |
| 			typedef typename KV::second_type V;
 | |
| 			typedef meta::conditional_t<is_matched_lookup::value, std::ptrdiff_t, K> next_K;
 | |
| 			typedef decltype(*std::declval<iterator&>()) iterator_return;
 | |
| 			typedef meta::conditional_t<is_associative::value || is_matched_lookup::value, std::add_lvalue_reference_t<V>,
 | |
| 			     meta::conditional_t<is_lookup::value, V, iterator_return>>
 | |
| 			     captured_type;
 | |
| 			typedef typename meta::iterator_tag<iterator>::type iterator_category;
 | |
| 			typedef std::is_same<iterator_category, std::input_iterator_tag> is_input_iterator;
 | |
| 			typedef meta::conditional_t<is_input_iterator::value, V, decltype(detail::deref_move_only(std::declval<captured_type>()))> push_type;
 | |
| 			typedef std::is_copy_assignable<V> is_copyable;
 | |
| 			typedef meta::neg<meta::any<std::is_const<V>, std::is_const<std::remove_reference_t<iterator_return>>, meta::neg<is_copyable>>> is_writable;
 | |
| 			typedef meta::unqualified_t<decltype(get_key(is_associative(), std::declval<std::add_lvalue_reference_t<value_type>>()))> key_type;
 | |
| 			typedef meta::all<std::is_integral<K>, meta::neg<meta::any<is_associative, is_lookup>>> is_linear_integral;
 | |
| 
 | |
| 			struct iter {
 | |
| 				T& source;
 | |
| 				iterator it;
 | |
| 				std::size_t i;
 | |
| 
 | |
| 				iter(T& source, iterator it) : source(source), it(std::move(it)), i(0) {
 | |
| 				}
 | |
| 
 | |
| 				~iter() {
 | |
| 				}
 | |
| 			};
 | |
| 
 | |
| 			static auto& get_src(lua_State* L) {
 | |
| #if SOL_IS_ON(SOL_SAFE_USERTYPE_I_)
 | |
| 				auto p = stack::unqualified_check_get<T*>(L, 1);
 | |
| 				if (!p) {
 | |
| 					luaL_error(L,
 | |
| 					     "sol: 'self' is not of type '%s' (pass 'self' as first argument with ':' or call on proper type)",
 | |
| 					     detail::demangle<T>().c_str());
 | |
| 				}
 | |
| 				if (p.value() == nullptr) {
 | |
| 					luaL_error(
 | |
| 					     L, "sol: 'self' argument is nil (pass 'self' as first argument with ':' or call on a '%s' type)", detail::demangle<T>().c_str());
 | |
| 				}
 | |
| 				return *p.value();
 | |
| #else
 | |
| 				return stack::unqualified_get<T>(L, 1);
 | |
| #endif // Safe getting with error
 | |
| 			}
 | |
| 
 | |
| 			static detail::error_result at_category(std::input_iterator_tag, lua_State* L, T& self, std::ptrdiff_t pos) {
 | |
| 				pos += deferred_uc::index_adjustment(L, self);
 | |
| 				if (pos < 0) {
 | |
| 					return stack::push(L, lua_nil);
 | |
| 				}
 | |
| 				auto it = deferred_uc::begin(L, self);
 | |
| 				auto e = deferred_uc::end(L, self);
 | |
| 				if (it == e) {
 | |
| 					return stack::push(L, lua_nil);
 | |
| 				}
 | |
| 				while (pos > 0) {
 | |
| 					--pos;
 | |
| 					++it;
 | |
| 					if (it == e) {
 | |
| 						return stack::push(L, lua_nil);
 | |
| 					}
 | |
| 				}
 | |
| 				return get_associative(is_associative(), L, it);
 | |
| 			}
 | |
| 
 | |
| 			static detail::error_result at_category(std::random_access_iterator_tag, lua_State* L, T& self, std::ptrdiff_t pos) {
 | |
| 				std::ptrdiff_t len = static_cast<std::ptrdiff_t>(size_start(L, self));
 | |
| 				pos += deferred_uc::index_adjustment(L, self);
 | |
| 				if (pos < 0 || pos >= len) {
 | |
| 					return stack::push(L, lua_nil);
 | |
| 				}
 | |
| 				auto it = std::next(deferred_uc::begin(L, self), pos);
 | |
| 				return get_associative(is_associative(), L, it);
 | |
| 			}
 | |
| 
 | |
| 			static detail::error_result at_start(lua_State* L, T& self, std::ptrdiff_t pos) {
 | |
| 				return at_category(iterator_category(), L, self, pos);
 | |
| 			}
 | |
| 
 | |
| 			template <typename Iter>
 | |
| 			static detail::error_result get_associative(std::true_type, lua_State* L, Iter& it) {
 | |
| 				decltype(auto) v = *it;
 | |
| 				return stack::stack_detail::push_reference<push_type>(L, detail::deref_move_only(v.second));
 | |
| 			}
 | |
| 
 | |
| 			template <typename Iter>
 | |
| 			static detail::error_result get_associative(std::false_type, lua_State* L, Iter& it) {
 | |
| 				return stack::stack_detail::push_reference<push_type>(L, detail::deref_move_only(*it));
 | |
| 			}
 | |
| 
 | |
| 			static detail::error_result get_category(std::input_iterator_tag, lua_State* L, T& self, K& key) {
 | |
| 				key += deferred_uc::index_adjustment(L, self);
 | |
| 				if (key < 0) {
 | |
| 					return stack::push(L, lua_nil);
 | |
| 				}
 | |
| 				auto it = deferred_uc::begin(L, self);
 | |
| 				auto e = deferred_uc::end(L, self);
 | |
| 				if (it == e) {
 | |
| 					return stack::push(L, lua_nil);
 | |
| 				}
 | |
| 				while (key > 0) {
 | |
| 					--key;
 | |
| 					++it;
 | |
| 					if (it == e) {
 | |
| 						return stack::push(L, lua_nil);
 | |
| 					}
 | |
| 				}
 | |
| 				return get_associative(is_associative(), L, it);
 | |
| 			}
 | |
| 
 | |
| 			static detail::error_result get_category(std::random_access_iterator_tag, lua_State* L, T& self, K& key) {
 | |
| 				std::ptrdiff_t len = static_cast<std::ptrdiff_t>(size_start(L, self));
 | |
| 				key += deferred_uc::index_adjustment(L, self);
 | |
| 				if (key < 0 || key >= len) {
 | |
| 					return stack::push(L, lua_nil);
 | |
| 				}
 | |
| 				auto it = std::next(deferred_uc::begin(L, self), key);
 | |
| 				return get_associative(is_associative(), L, it);
 | |
| 			}
 | |
| 
 | |
| 			static detail::error_result get_it(std::true_type, lua_State* L, T& self, K& key) {
 | |
| 				return get_category(iterator_category(), L, self, key);
 | |
| 			}
 | |
| 
 | |
| 			static detail::error_result get_comparative(std::true_type, lua_State* L, T& self, K& key) {
 | |
| 				auto fx = [&](const value_type& r) -> bool { return key == get_key(is_associative(), r); };
 | |
| 				auto e = deferred_uc::end(L, self);
 | |
| 				auto it = std::find_if(deferred_uc::begin(L, self), e, std::ref(fx));
 | |
| 				if (it == e) {
 | |
| 					return stack::push(L, lua_nil);
 | |
| 				}
 | |
| 				return get_associative(is_associative(), L, it);
 | |
| 			}
 | |
| 
 | |
| 			static detail::error_result get_comparative(std::false_type, lua_State*, T&, K&) {
 | |
| 				return detail::error_result("cannot get this key on '%s': no suitable way to increment iterator and compare to key value '%s'",
 | |
| 				     detail::demangle<T>().data(),
 | |
| 				     detail::demangle<K>().data());
 | |
| 			}
 | |
| 
 | |
| 			static detail::error_result get_it(std::false_type, lua_State* L, T& self, K& key) {
 | |
| 				return get_comparative(meta::supports_op_equal<K, key_type>(), L, self, key);
 | |
| 			}
 | |
| 
 | |
| 			static detail::error_result set_associative(std::true_type, iterator& it, stack_object value) {
 | |
| 				decltype(auto) v = *it;
 | |
| 				v.second = value.as<V>();
 | |
| 				return {};
 | |
| 			}
 | |
| 
 | |
| 			static detail::error_result set_associative(std::false_type, iterator& it, stack_object value) {
 | |
| 				decltype(auto) v = *it;
 | |
| 				v = value.as<V>();
 | |
| 				return {};
 | |
| 			}
 | |
| 
 | |
| 			static detail::error_result set_writable(std::true_type, lua_State*, T&, iterator& it, stack_object value) {
 | |
| 				return set_associative(is_associative(), it, std::move(value));
 | |
| 			}
 | |
| 
 | |
| 			static detail::error_result set_writable(std::false_type, lua_State*, T&, iterator&, stack_object) {
 | |
| 				return detail::error_result(
 | |
| 				     "cannot perform a 'set': '%s's iterator reference is not writable (non-copy-assignable or const)", detail::demangle<T>().data());
 | |
| 			}
 | |
| 
 | |
| 			static detail::error_result set_category(std::input_iterator_tag, lua_State* L, T& self, stack_object okey, stack_object value) {
 | |
| 				decltype(auto) key = okey.as<K>();
 | |
| 				key += deferred_uc::index_adjustment(L, self);
 | |
| 				auto e = deferred_uc::end(L, self);
 | |
| 				auto it = deferred_uc::begin(L, self);
 | |
| 				auto backit = it;
 | |
| 				for (; key > 0 && it != e; --key, ++it) {
 | |
| 					backit = it;
 | |
| 				}
 | |
| 				if (it == e) {
 | |
| 					if (key == 0) {
 | |
| 						return add_copyable(is_copyable(), L, self, std::move(value), meta::has_insert_after<T>::value ? backit : it);
 | |
| 					}
 | |
| 					return detail::error_result("out of bounds (too big) for set on '%s'", detail::demangle<T>().c_str());
 | |
| 				}
 | |
| 				return set_writable(is_writable(), L, self, it, std::move(value));
 | |
| 			}
 | |
| 
 | |
| 			static detail::error_result set_category(std::random_access_iterator_tag, lua_State* L, T& self, stack_object okey, stack_object value) {
 | |
| 				decltype(auto) key = okey.as<K>();
 | |
| 				key += deferred_uc::index_adjustment(L, self);
 | |
| 				if (key < 0) {
 | |
| 					return detail::error_result("sol: out of bounds (too small) for set on '%s'", detail::demangle<T>().c_str());
 | |
| 				}
 | |
| 				std::ptrdiff_t len = static_cast<std::ptrdiff_t>(size_start(L, self));
 | |
| 				if (key == len) {
 | |
| 					return add_copyable(is_copyable(), L, self, std::move(value));
 | |
| 				}
 | |
| 				else if (key >= len) {
 | |
| 					return detail::error_result("sol: out of bounds (too big) for set on '%s'", detail::demangle<T>().c_str());
 | |
| 				}
 | |
| 				auto it = std::next(deferred_uc::begin(L, self), key);
 | |
| 				return set_writable(is_writable(), L, self, it, std::move(value));
 | |
| 			}
 | |
| 
 | |
| 			static detail::error_result set_comparative(std::true_type, lua_State* L, T& self, stack_object okey, stack_object value) {
 | |
| 				decltype(auto) key = okey.as<K>();
 | |
| 				if (!is_writable::value) {
 | |
| 					return detail::error_result(
 | |
| 					     "cannot perform a 'set': '%s's iterator reference is not writable (non-copy-assignable or const)", detail::demangle<T>().data());
 | |
| 				}
 | |
| 				auto fx = [&](const value_type& r) -> bool { return key == get_key(is_associative(), r); };
 | |
| 				auto e = deferred_uc::end(L, self);
 | |
| 				auto it = std::find_if(deferred_uc::begin(L, self), e, std::ref(fx));
 | |
| 				if (it == e) {
 | |
| 					return {};
 | |
| 				}
 | |
| 				return set_writable(is_writable(), L, self, it, std::move(value));
 | |
| 			}
 | |
| 
 | |
| 			static detail::error_result set_comparative(std::false_type, lua_State*, T&, stack_object, stack_object) {
 | |
| 				return detail::error_result("cannot set this value on '%s': no suitable way to increment iterator or compare to '%s' key",
 | |
| 				     detail::demangle<T>().data(),
 | |
| 				     detail::demangle<K>().data());
 | |
| 			}
 | |
| 
 | |
| 			template <typename Iter>
 | |
| 			static detail::error_result set_associative_insert(std::true_type, lua_State*, T& self, Iter& it, K& key, stack_object value) {
 | |
| 				if constexpr (meta::has_insert<T>::value) {
 | |
| 					self.insert(it, value_type(key, value.as<V>()));
 | |
| 					return {};
 | |
| 				}
 | |
| 				else {
 | |
| 					(void)self;
 | |
| 					(void)it;
 | |
| 					(void)key;
 | |
| 					return detail::error_result(
 | |
| 					     "cannot call 'set' on '%s': there is no 'insert' function on this associative type", detail::demangle<T>().c_str());
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			template <typename Iter>
 | |
| 			static detail::error_result set_associative_insert(std::false_type, lua_State*, T& self, Iter& it, K& key, stack_object) {
 | |
| 				if constexpr (meta::has_insert<T>::value) {
 | |
| 					self.insert(it, key);
 | |
| 					return {};
 | |
| 				}
 | |
| 				else {
 | |
| 					(void)self;
 | |
| 					(void)it;
 | |
| 					(void)key;
 | |
| 					return detail::error_result(
 | |
| 					     "cannot call 'set' on '%s': there is no 'insert' function on this non-associative type", detail::demangle<T>().c_str());
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			static detail::error_result set_associative_find(std::true_type, lua_State* L, T& self, stack_object okey, stack_object value) {
 | |
| 				decltype(auto) key = okey.as<K>();
 | |
| 				auto it = self.find(key);
 | |
| 				if (it == deferred_uc::end(L, self)) {
 | |
| 					return set_associative_insert(is_associative(), L, self, it, key, std::move(value));
 | |
| 				}
 | |
| 				return set_writable(is_writable(), L, self, it, std::move(value));
 | |
| 			}
 | |
| 
 | |
| 			static detail::error_result set_associative_find(std::false_type, lua_State* L, T& self, stack_object key, stack_object value) {
 | |
| 				return set_comparative(meta::supports_op_equal<K, key_type>(), L, self, std::move(key), std::move(value));
 | |
| 			}
 | |
| 
 | |
| 			static detail::error_result set_it(std::true_type, lua_State* L, T& self, stack_object key, stack_object value) {
 | |
| 				return set_category(iterator_category(), L, self, std::move(key), std::move(value));
 | |
| 			}
 | |
| 
 | |
| 			static detail::error_result set_it(std::false_type, lua_State* L, T& self, stack_object key, stack_object value) {
 | |
| 				return set_associative_find(meta::all<has_find<T>, meta::any<is_associative, is_lookup>>(), L, self, std::move(key), std::move(value));
 | |
| 			}
 | |
| 
 | |
| 			template <bool idx_of = false>
 | |
| 			static detail::error_result find_has_associative_lookup(std::true_type, lua_State* L, T& self) {
 | |
| 				if constexpr (!is_ordered::value && idx_of) {
 | |
| 					(void)L;
 | |
| 					(void)self;
 | |
| 					return detail::error_result("cannot perform an 'index_of': '%s's is not an ordered container", detail::demangle<T>().data());
 | |
| 				}
 | |
| 				else {
 | |
| 					decltype(auto) key = stack::unqualified_get<K>(L, 2);
 | |
| 					auto it = self.find(key);
 | |
| 					if (it == deferred_uc::end(L, self)) {
 | |
| 						return stack::push(L, lua_nil);
 | |
| 					}
 | |
| 					if constexpr (idx_of) {
 | |
| 						auto dist = std::distance(deferred_uc::begin(L, self), it);
 | |
| 						dist -= deferred_uc::index_adjustment(L, self);
 | |
| 						return stack::push(L, dist);
 | |
| 					}
 | |
| 					else {
 | |
| 						return get_associative(is_associative(), L, it);
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			template <bool idx_of = false>
 | |
| 			static detail::error_result find_has_associative_lookup(std::false_type, lua_State* L, T& self) {
 | |
| 				if constexpr (!is_ordered::value && idx_of) {
 | |
| 					(void)L;
 | |
| 					(void)self;
 | |
| 					return detail::error_result("cannot perform an 'index_of': '%s's is not an ordered container", detail::demangle<T>().data());
 | |
| 				}
 | |
| 				else {
 | |
| 					decltype(auto) value = stack::unqualified_get<V>(L, 2);
 | |
| 					auto it = self.find(value);
 | |
| 					if (it == deferred_uc::end(L, self)) {
 | |
| 						return stack::push(L, lua_nil);
 | |
| 					}
 | |
| 					if constexpr (idx_of) {
 | |
| 						auto dist = std::distance(deferred_uc::begin(L, self), it);
 | |
| 						dist -= deferred_uc::index_adjustment(L, self);
 | |
| 						return stack::push(L, dist);
 | |
| 					}
 | |
| 					else {
 | |
| 						return get_associative(is_associative(), L, it);
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			template <bool idx_of = false>
 | |
| 			static detail::error_result find_has(std::true_type, lua_State* L, T& self) {
 | |
| 				return find_has_associative_lookup<idx_of>(meta::any<is_lookup, is_associative>(), L, self);
 | |
| 			}
 | |
| 
 | |
| 			template <typename Iter>
 | |
| 			static detail::error_result find_associative_lookup(std::true_type, lua_State* L, T&, Iter& it, std::size_t) {
 | |
| 				return get_associative(is_associative(), L, it);
 | |
| 			}
 | |
| 
 | |
| 			template <typename Iter>
 | |
| 			static detail::error_result find_associative_lookup(std::false_type, lua_State* L, T& self, Iter&, std::size_t idx) {
 | |
| 				idx -= deferred_uc::index_adjustment(L, self);
 | |
| 				return stack::push(L, idx);
 | |
| 			}
 | |
| 
 | |
| 			template <bool = false>
 | |
| 			static detail::error_result find_comparative(std::false_type, lua_State*, T&) {
 | |
| 				return detail::error_result("cannot call 'find' on '%s': there is no 'find' function and the value_type is not equality comparable",
 | |
| 				     detail::demangle<T>().c_str());
 | |
| 			}
 | |
| 
 | |
| 			template <bool idx_of = false>
 | |
| 			static detail::error_result find_comparative(std::true_type, lua_State* L, T& self) {
 | |
| 				decltype(auto) value = stack::unqualified_get<V>(L, 2);
 | |
| 				auto it = deferred_uc::begin(L, self);
 | |
| 				auto e = deferred_uc::end(L, self);
 | |
| 				std::size_t idx = 0;
 | |
| 				for (;; ++it, ++idx) {
 | |
| 					if (it == e) {
 | |
| 						return stack::push(L, lua_nil);
 | |
| 					}
 | |
| 					if (value == get_value(is_associative(), *it)) {
 | |
| 						break;
 | |
| 					}
 | |
| 				}
 | |
| 				return find_associative_lookup(meta::all<meta::boolean<!idx_of>, meta::any<is_lookup, is_associative>>(), L, self, it, idx);
 | |
| 			}
 | |
| 
 | |
| 			template <bool idx_of = false>
 | |
| 			static detail::error_result find_has(std::false_type, lua_State* L, T& self) {
 | |
| 				return find_comparative<idx_of>(meta::supports_op_equal<V>(), L, self);
 | |
| 			}
 | |
| 
 | |
| 			template <typename Iter>
 | |
| 			static detail::error_result add_insert_after(std::false_type, lua_State* L, T& self, stack_object value, Iter&) {
 | |
| 				return add_insert_after(std::false_type(), L, self, value);
 | |
| 			}
 | |
| 
 | |
| 			static detail::error_result add_insert_after(std::false_type, lua_State*, T&, stack_object) {
 | |
| 				return detail::error_result("cannot call 'add' on type '%s': no suitable insert/push_back C++ functions", detail::demangle<T>().data());
 | |
| 			}
 | |
| 
 | |
| 			template <typename Iter>
 | |
| 			static detail::error_result add_insert_after(std::true_type, lua_State*, T& self, stack_object value, Iter& pos) {
 | |
| 				self.insert_after(pos, value.as<V>());
 | |
| 				return {};
 | |
| 			}
 | |
| 
 | |
| 			static detail::error_result add_insert_after(std::true_type, lua_State* L, T& self, stack_object value) {
 | |
| 				auto backit = self.before_begin();
 | |
| 				{
 | |
| 					auto e = deferred_uc::end(L, self);
 | |
| 					for (auto it = deferred_uc::begin(L, self); it != e; ++backit, ++it) {
 | |
| 					}
 | |
| 				}
 | |
| 				return add_insert_after(std::true_type(), L, self, value, backit);
 | |
| 			}
 | |
| 
 | |
| 			template <typename Iter>
 | |
| 			static detail::error_result add_insert(std::true_type, lua_State*, T& self, stack_object value, Iter& pos) {
 | |
| 				self.insert(pos, value.as<V>());
 | |
| 				return {};
 | |
| 			}
 | |
| 
 | |
| 			static detail::error_result add_insert(std::true_type, lua_State* L, T& self, stack_object value) {
 | |
| 				auto pos = deferred_uc::end(L, self);
 | |
| 				return add_insert(std::true_type(), L, self, value, pos);
 | |
| 			}
 | |
| 
 | |
| 			template <typename Iter>
 | |
| 			static detail::error_result add_insert(std::false_type, lua_State* L, T& self, stack_object value, Iter& pos) {
 | |
| 				return add_insert_after(meta::has_insert_after<T>(), L, self, std::move(value), pos);
 | |
| 			}
 | |
| 
 | |
| 			static detail::error_result add_insert(std::false_type, lua_State* L, T& self, stack_object value) {
 | |
| 				return add_insert_after(meta::has_insert_after<T>(), L, self, std::move(value));
 | |
| 			}
 | |
| 
 | |
| 			template <typename Iter>
 | |
| 			static detail::error_result add_push_back(std::true_type, lua_State*, T& self, stack_object value, Iter&) {
 | |
| 				self.push_back(value.as<V>());
 | |
| 				return {};
 | |
| 			}
 | |
| 
 | |
| 			static detail::error_result add_push_back(std::true_type, lua_State*, T& self, stack_object value) {
 | |
| 				self.push_back(value.as<V>());
 | |
| 				return {};
 | |
| 			}
 | |
| 
 | |
| 			template <typename Iter>
 | |
| 			static detail::error_result add_push_back(std::false_type, lua_State* L, T& self, stack_object value, Iter& pos) {
 | |
| 				return add_insert(meta::has_insert<T>(), L, self, value, pos);
 | |
| 			}
 | |
| 
 | |
| 			static detail::error_result add_push_back(std::false_type, lua_State* L, T& self, stack_object value) {
 | |
| 				return add_insert(meta::has_insert<T>(), L, self, value);
 | |
| 			}
 | |
| 
 | |
| 			template <typename Iter>
 | |
| 			static detail::error_result add_associative(std::true_type, lua_State* L, T& self, stack_object key, Iter& pos) {
 | |
| 				if constexpr (meta::has_insert<T>::value) {
 | |
| 					self.insert(pos, value_type(key.as<K>(), stack::unqualified_get<V>(L, 3)));
 | |
| 					return {};
 | |
| 				}
 | |
| 				else {
 | |
| 					(void)L;
 | |
| 					(void)self;
 | |
| 					(void)key;
 | |
| 					(void)pos;
 | |
| 					return detail::error_result(
 | |
| 					     "cannot call 'insert' on '%s': there is no 'insert' function on this associative type", detail::demangle<T>().c_str());
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			static detail::error_result add_associative(std::true_type, lua_State* L, T& self, stack_object key) {
 | |
| 				auto pos = deferred_uc::end(L, self);
 | |
| 				return add_associative(std::true_type(), L, self, std::move(key), pos);
 | |
| 			}
 | |
| 
 | |
| 			template <typename Iter>
 | |
| 			static detail::error_result add_associative(std::false_type, lua_State* L, T& self, stack_object value, Iter& pos) {
 | |
| 				return add_push_back(meta::has_push_back<T>(), L, self, value, pos);
 | |
| 			}
 | |
| 
 | |
| 			static detail::error_result add_associative(std::false_type, lua_State* L, T& self, stack_object value) {
 | |
| 				return add_push_back(meta::has_push_back<T>(), L, self, value);
 | |
| 			}
 | |
| 
 | |
| 			template <typename Iter>
 | |
| 			static detail::error_result add_copyable(std::true_type, lua_State* L, T& self, stack_object value, Iter& pos) {
 | |
| 				return add_associative(is_associative(), L, self, std::move(value), pos);
 | |
| 			}
 | |
| 
 | |
| 			static detail::error_result add_copyable(std::true_type, lua_State* L, T& self, stack_object value) {
 | |
| 				return add_associative(is_associative(), L, self, value);
 | |
| 			}
 | |
| 
 | |
| 			template <typename Iter>
 | |
| 			static detail::error_result add_copyable(std::false_type, lua_State* L, T& self, stack_object value, Iter&) {
 | |
| 				return add_copyable(std::false_type(), L, self, std::move(value));
 | |
| 			}
 | |
| 
 | |
| 			static detail::error_result add_copyable(std::false_type, lua_State*, T&, stack_object) {
 | |
| 				return detail::error_result("cannot call 'add' on '%s': value_type is non-copyable", detail::demangle<T>().data());
 | |
| 			}
 | |
| 
 | |
| 			static detail::error_result insert_lookup(std::true_type, lua_State* L, T& self, stack_object, stack_object value) {
 | |
| 				// TODO: should we warn or error about someone calling insert on an ordered / lookup container with no associativity?
 | |
| 				return add_copyable(std::true_type(), L, self, std::move(value));
 | |
| 			}
 | |
| 
 | |
| 			static detail::error_result insert_lookup(std::false_type, lua_State* L, T& self, stack_object where, stack_object value) {
 | |
| 				auto it = deferred_uc::begin(L, self);
 | |
| 				auto key = where.as<K>();
 | |
| 				key += deferred_uc::index_adjustment(L, self);
 | |
| 				std::advance(it, key);
 | |
| 				self.insert(it, value.as<V>());
 | |
| 				return {};
 | |
| 			}
 | |
| 
 | |
| 			static detail::error_result insert_after_has(std::true_type, lua_State* L, T& self, stack_object where, stack_object value) {
 | |
| 				auto key = where.as<K>();
 | |
| 				auto backit = self.before_begin();
 | |
| 				{
 | |
| 					key += deferred_uc::index_adjustment(L, self);
 | |
| 					auto e = deferred_uc::end(L, self);
 | |
| 					for (auto it = deferred_uc::begin(L, self); key > 0; ++backit, ++it, --key) {
 | |
| 						if (backit == e) {
 | |
| 							return detail::error_result("sol: out of bounds (too big) for set on '%s'", detail::demangle<T>().c_str());
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 				self.insert_after(backit, value.as<V>());
 | |
| 				return {};
 | |
| 			}
 | |
| 
 | |
| 			static detail::error_result insert_after_has(std::false_type, lua_State*, T&, stack_object, stack_object) {
 | |
| 				return detail::error_result(
 | |
| 				     "cannot call 'insert' on '%s': no suitable or similar functionality detected on this container", detail::demangle<T>().data());
 | |
| 			}
 | |
| 
 | |
| 			static detail::error_result insert_has(std::true_type, lua_State* L, T& self, stack_object key, stack_object value) {
 | |
| 				return insert_lookup(meta::any<is_associative, is_lookup>(), L, self, std::move(key), std::move(value));
 | |
| 			}
 | |
| 
 | |
| 			static detail::error_result insert_has(std::false_type, lua_State* L, T& self, stack_object where, stack_object value) {
 | |
| 				return insert_after_has(meta::has_insert_after<T>(), L, self, where, value);
 | |
| 			}
 | |
| 
 | |
| 			static detail::error_result insert_copyable(std::true_type, lua_State* L, T& self, stack_object key, stack_object value) {
 | |
| 				return insert_has(meta::has_insert<T>(), L, self, std::move(key), std::move(value));
 | |
| 			}
 | |
| 
 | |
| 			static detail::error_result insert_copyable(std::false_type, lua_State*, T&, stack_object, stack_object) {
 | |
| 				return detail::error_result("cannot call 'insert' on '%s': value_type is non-copyable", detail::demangle<T>().data());
 | |
| 			}
 | |
| 
 | |
| 			static detail::error_result erase_integral(std::true_type, lua_State* L, T& self, K& key) {
 | |
| 				auto it = deferred_uc::begin(L, self);
 | |
| 				key += deferred_uc::index_adjustment(L, self);
 | |
| 				std::advance(it, key);
 | |
| 				self.erase(it);
 | |
| 
 | |
| 				return {};
 | |
| 			}
 | |
| 
 | |
| 			static detail::error_result erase_integral(std::false_type, lua_State* L, T& self, const K& key) {
 | |
| 				auto fx = [&](const value_type& r) -> bool { return key == r; };
 | |
| 				auto e = deferred_uc::end(L, self);
 | |
| 				auto it = std::find_if(deferred_uc::begin(L, self), e, std::ref(fx));
 | |
| 				if (it == e) {
 | |
| 					return {};
 | |
| 				}
 | |
| 				self.erase(it);
 | |
| 
 | |
| 				return {};
 | |
| 			}
 | |
| 
 | |
| 			static detail::error_result erase_associative_lookup(std::true_type, lua_State*, T& self, const K& key) {
 | |
| 				self.erase(key);
 | |
| 				return {};
 | |
| 			}
 | |
| 
 | |
| 			static detail::error_result erase_associative_lookup(std::false_type, lua_State* L, T& self, K& key) {
 | |
| 				return erase_integral(std::is_integral<K>(), L, self, key);
 | |
| 			}
 | |
| 
 | |
| 			static detail::error_result erase_after_has(std::true_type, lua_State* L, T& self, K& key) {
 | |
| 				auto backit = self.before_begin();
 | |
| 				{
 | |
| 					key += deferred_uc::index_adjustment(L, self);
 | |
| 					auto e = deferred_uc::end(L, self);
 | |
| 					for (auto it = deferred_uc::begin(L, self); key > 0; ++backit, ++it, --key) {
 | |
| 						if (backit == e) {
 | |
| 							return detail::error_result("sol: out of bounds for erase on '%s'", detail::demangle<T>().c_str());
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 				self.erase_after(backit);
 | |
| 				return {};
 | |
| 			}
 | |
| 
 | |
| 			static detail::error_result erase_after_has(std::false_type, lua_State*, T&, const K&) {
 | |
| 				return detail::error_result("sol: cannot call erase on '%s'", detail::demangle<T>().c_str());
 | |
| 			}
 | |
| 
 | |
| 			static detail::error_result erase_key_has(std::true_type, lua_State* L, T& self, K& key) {
 | |
| 				return erase_associative_lookup(meta::any<is_associative, is_lookup>(), L, self, key);
 | |
| 			}
 | |
| 
 | |
| 			static detail::error_result erase_key_has(std::false_type, lua_State* L, T& self, K& key) {
 | |
| 				return erase_after_has(has_erase_after<T>(), L, self, key);
 | |
| 			}
 | |
| 
 | |
| 			static detail::error_result erase_has(std::true_type, lua_State* L, T& self, K& key) {
 | |
| 				return erase_associative_lookup(meta::any<is_associative, is_lookup>(), L, self, key);
 | |
| 			}
 | |
| 
 | |
| 			static detail::error_result erase_has(std::false_type, lua_State* L, T& self, K& key) {
 | |
| 				return erase_key_has(has_erase_key<T>(), L, self, key);
 | |
| 			}
 | |
| 
 | |
| 			static auto size_has(std::false_type, lua_State* L, T& self) {
 | |
| 				return std::distance(deferred_uc::begin(L, self), deferred_uc::end(L, self));
 | |
| 			}
 | |
| 
 | |
| 			static auto size_has(std::true_type, lua_State*, T& self) {
 | |
| 				return self.size();
 | |
| 			}
 | |
| 
 | |
| 			static void clear_has(std::true_type, lua_State*, T& self) {
 | |
| 				self.clear();
 | |
| 			}
 | |
| 
 | |
| 			static void clear_has(std::false_type, lua_State* L, T&) {
 | |
| 				luaL_error(L, "sol: cannot call clear on '%s'", detail::demangle<T>().c_str());
 | |
| 			}
 | |
| 
 | |
| 			static bool empty_has(std::true_type, lua_State*, T& self) {
 | |
| 				return self.empty();
 | |
| 			}
 | |
| 
 | |
| 			static bool empty_has(std::false_type, lua_State* L, T& self) {
 | |
| 				return deferred_uc::begin(L, self) == deferred_uc::end(L, self);
 | |
| 			}
 | |
| 
 | |
| 			static detail::error_result get_associative_find(std::true_type, lua_State* L, T& self, K& key) {
 | |
| 				auto it = self.find(key);
 | |
| 				if (it == deferred_uc::end(L, self)) {
 | |
| 					stack::push(L, lua_nil);
 | |
| 					return {};
 | |
| 				}
 | |
| 				return get_associative(std::true_type(), L, it);
 | |
| 			}
 | |
| 
 | |
| 			static detail::error_result get_associative_find(std::false_type, lua_State* L, T& self, K& key) {
 | |
| 				return get_it(is_linear_integral(), L, self, key);
 | |
| 			}
 | |
| 
 | |
| 			static detail::error_result get_start(lua_State* L, T& self, K& key) {
 | |
| 				return get_associative_find(std::integral_constant < bool, is_associative::value&& has_find<T>::value > (), L, self, key);
 | |
| 			}
 | |
| 
 | |
| 			static detail::error_result set_start(lua_State* L, T& self, stack_object key, stack_object value) {
 | |
| 				return set_it(is_linear_integral(), L, self, std::move(key), std::move(value));
 | |
| 			}
 | |
| 
 | |
| 			static std::size_t size_start(lua_State* L, T& self) {
 | |
| 				return size_has(meta::has_size<T>(), L, self);
 | |
| 			}
 | |
| 
 | |
| 			static void clear_start(lua_State* L, T& self) {
 | |
| 				clear_has(has_clear<T>(), L, self);
 | |
| 			}
 | |
| 
 | |
| 			static bool empty_start(lua_State* L, T& self) {
 | |
| 				return empty_has(has_empty<T>(), L, self);
 | |
| 			}
 | |
| 
 | |
| 			static detail::error_result erase_start(lua_State* L, T& self, K& key) {
 | |
| 				return erase_has(has_erase<T>(), L, self, key);
 | |
| 			}
 | |
| 
 | |
| 			template <bool ip>
 | |
| 			static int next_associative(std::true_type, lua_State* L) {
 | |
| 				iter& i = stack::unqualified_get<user<iter>>(L, 1);
 | |
| 				auto& source = i.source;
 | |
| 				auto& it = i.it;
 | |
| 				if (it == deferred_uc::end(L, source)) {
 | |
| 					return stack::push(L, lua_nil);
 | |
| 				}
 | |
| 				int p;
 | |
| 				if constexpr (ip) {
 | |
| 					++i.i;
 | |
| 					p = stack::push_reference(L, i.i);
 | |
| 				}
 | |
| 				else {
 | |
| 					p = stack::push_reference(L, it->first);
 | |
| 				}
 | |
| 				p += stack::stack_detail::push_reference<push_type>(L, detail::deref_move_only(it->second));
 | |
| 				std::advance(it, 1);
 | |
| 				return p;
 | |
| 			}
 | |
| 
 | |
| 			template <bool>
 | |
| 			static int next_associative(std::false_type, lua_State* L) {
 | |
| 				iter& i = stack::unqualified_get<user<iter>>(L, 1);
 | |
| 				auto& source = i.source;
 | |
| 				auto& it = i.it;
 | |
| 				next_K k = stack::unqualified_get<next_K>(L, 2);
 | |
| 				if (it == deferred_uc::end(L, source)) {
 | |
| 					return stack::push(L, lua_nil);
 | |
| 				}
 | |
| 				int p;
 | |
| 				if constexpr (std::is_integral_v<next_K>) {
 | |
| 					p = stack::push_reference(L, k + 1);
 | |
| 				}
 | |
| 				else {
 | |
| 					p = stack::stack_detail::push_reference(L, k + 1);
 | |
| 				}
 | |
| 				p += stack::stack_detail::push_reference<push_type>(L, detail::deref_move_only(*it));
 | |
| 				std::advance(it, 1);
 | |
| 				return p;
 | |
| 			}
 | |
| 
 | |
| 			template <bool ip>
 | |
| 			static int next_iter(lua_State* L) {
 | |
| 				typedef meta::any<is_associative, meta::all<is_lookup, meta::neg<is_matched_lookup>>> is_assoc;
 | |
| 				return next_associative<ip>(is_assoc(), L);
 | |
| 			}
 | |
| 
 | |
| 			template <bool ip>
 | |
| 			static int pairs_associative(std::true_type, lua_State* L) {
 | |
| 				auto& src = get_src(L);
 | |
| 				stack::push(L, next_iter<ip>);
 | |
| 				stack::push<user<iter>>(L, src, deferred_uc::begin(L, src));
 | |
| 				stack::push(L, lua_nil);
 | |
| 				return 3;
 | |
| 			}
 | |
| 
 | |
| 			template <bool ip>
 | |
| 			static int pairs_associative(std::false_type, lua_State* L) {
 | |
| 				auto& src = get_src(L);
 | |
| 				stack::push(L, next_iter<ip>);
 | |
| 				stack::push<user<iter>>(L, src, deferred_uc::begin(L, src));
 | |
| 				stack::push(L, 0);
 | |
| 				return 3;
 | |
| 			}
 | |
| 
 | |
| 		public:
 | |
| 			static int at(lua_State* L) {
 | |
| 				auto& self = get_src(L);
 | |
| 				detail::error_result er;
 | |
| 				{
 | |
| 					std::ptrdiff_t pos = stack::unqualified_get<std::ptrdiff_t>(L, 2);
 | |
| 					er = at_start(L, self, pos);
 | |
| 				}
 | |
| 				return handle_errors(L, er);
 | |
| 			}
 | |
| 
 | |
| 			static int get(lua_State* L) {
 | |
| 				auto& self = get_src(L);
 | |
| 				detail::error_result er;
 | |
| 				{
 | |
| 					decltype(auto) key = stack::unqualified_get<K>(L);
 | |
| 					er = get_start(L, self, key);
 | |
| 				}
 | |
| 				return handle_errors(L, er);
 | |
| 			}
 | |
| 
 | |
| 			static int index_get(lua_State* L) {
 | |
| 				return get(L);
 | |
| 			}
 | |
| 
 | |
| 			static int set(lua_State* L) {
 | |
| 				stack_object value = stack_object(L, raw_index(3));
 | |
| 				if constexpr (is_linear_integral::value) {
 | |
| 					// for non-associative containers,
 | |
| 					// erasure only happens if it is the
 | |
| 					// last index in the container
 | |
| 					auto key = stack::get<K>(L, 2);
 | |
| 					auto self_size = deferred_uc::size(L);
 | |
| 					if (key == static_cast<K>(self_size)) {
 | |
| 						if (type_of(L, 3) == type::lua_nil) {
 | |
| 							return erase(L);
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 				else {
 | |
| 					if (type_of(L, 3) == type::lua_nil) {
 | |
| 						return erase(L);
 | |
| 					}
 | |
| 				}
 | |
| 				auto& self = get_src(L);
 | |
| 				detail::error_result er = set_start(L, self, stack_object(L, raw_index(2)), std::move(value));
 | |
| 				return handle_errors(L, er);
 | |
| 			}
 | |
| 
 | |
| 			static int index_set(lua_State* L) {
 | |
| 				return set(L);
 | |
| 			}
 | |
| 
 | |
| 			static int add(lua_State* L) {
 | |
| 				auto& self = get_src(L);
 | |
| 				detail::error_result er = add_copyable(is_copyable(), L, self, stack_object(L, raw_index(2)));
 | |
| 				return handle_errors(L, er);
 | |
| 			}
 | |
| 
 | |
| 			static int insert(lua_State* L) {
 | |
| 				auto& self = get_src(L);
 | |
| 				detail::error_result er = insert_copyable(is_copyable(), L, self, stack_object(L, raw_index(2)), stack_object(L, raw_index(3)));
 | |
| 				return handle_errors(L, er);
 | |
| 			}
 | |
| 
 | |
| 			static int find(lua_State* L) {
 | |
| 				auto& self = get_src(L);
 | |
| 				detail::error_result er = find_has(has_find<T>(), L, self);
 | |
| 				return handle_errors(L, er);
 | |
| 			}
 | |
| 
 | |
| 			static int index_of(lua_State* L) {
 | |
| 				auto& self = get_src(L);
 | |
| 				detail::error_result er = find_has<true>(has_find<T>(), L, self);
 | |
| 				return handle_errors(L, er);
 | |
| 			}
 | |
| 
 | |
| 			static iterator begin(lua_State*, T& self) {
 | |
| 				if constexpr (meta::has_begin_end_v<T>) {
 | |
| 					return self.begin();
 | |
| 				}
 | |
| 				else {
 | |
| 					using std::begin;
 | |
| 					return begin(self);
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			static iterator end(lua_State*, T& self) {
 | |
| 				if constexpr (meta::has_begin_end_v<T>) {
 | |
| 					return self.end();
 | |
| 				}
 | |
| 				else {
 | |
| 					using std::end;
 | |
| 					return end(self);
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			static int size(lua_State* L) {
 | |
| 				auto& self = get_src(L);
 | |
| 				std::size_t r = size_start(L, self);
 | |
| 				return stack::push(L, r);
 | |
| 			}
 | |
| 
 | |
| 			static int clear(lua_State* L) {
 | |
| 				auto& self = get_src(L);
 | |
| 				clear_start(L, self);
 | |
| 				return 0;
 | |
| 			}
 | |
| 
 | |
| 			static int erase(lua_State* L) {
 | |
| 				auto& self = get_src(L);
 | |
| 				detail::error_result er;
 | |
| 				{
 | |
| 					decltype(auto) key = stack::unqualified_get<K>(L, 2);
 | |
| 					er = erase_start(L, self, key);
 | |
| 				}
 | |
| 				return handle_errors(L, er);
 | |
| 			}
 | |
| 
 | |
| 			static int empty(lua_State* L) {
 | |
| 				auto& self = get_src(L);
 | |
| 				return stack::push(L, empty_start(L, self));
 | |
| 			}
 | |
| 
 | |
| 			static std::ptrdiff_t index_adjustment(lua_State*, T&) {
 | |
| 				return static_cast<std::ptrdiff_t>((SOL_CONTAINER_START_INDEX_I_) == 0 ? 0 : -(SOL_CONTAINER_START_INDEX_I_));
 | |
| 			}
 | |
| 
 | |
| 			static int pairs(lua_State* L) {
 | |
| 				typedef meta::any<is_associative, meta::all<is_lookup, meta::neg<is_matched_lookup>>> is_assoc;
 | |
| 				return pairs_associative<false>(is_assoc(), L);
 | |
| 			}
 | |
| 
 | |
| 			static int ipairs(lua_State* L) {
 | |
| 				typedef meta::any<is_associative, meta::all<is_lookup, meta::neg<is_matched_lookup>>> is_assoc;
 | |
| 				return pairs_associative<true>(is_assoc(), L);
 | |
| 			}
 | |
| 
 | |
| 			static int next(lua_State* L) {
 | |
| 				return stack::push(L, next_iter<false>);
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <typename X>
 | |
| 		struct usertype_container_default<X, std::enable_if_t<std::is_array<std::remove_pointer_t<meta::unwrap_unqualified_t<X>>>::value>> {
 | |
| 		private:
 | |
| 			typedef std::remove_pointer_t<meta::unwrap_unqualified_t<X>> T;
 | |
| 			typedef usertype_container<X> deferred_uc;
 | |
| 
 | |
| 		public:
 | |
| 			typedef std::remove_extent_t<T> value_type;
 | |
| 			typedef value_type* iterator;
 | |
| 
 | |
| 		private:
 | |
| 			struct iter {
 | |
| 				T& source;
 | |
| 				iterator it;
 | |
| 
 | |
| 				iter(T& source, iterator it) : source(source), it(std::move(it)) {
 | |
| 				}
 | |
| 			};
 | |
| 
 | |
| 			static auto& get_src(lua_State* L) {
 | |
| 				auto p = stack::unqualified_check_get<T*>(L, 1);
 | |
| #if SOL_IS_ON(SOL_SAFE_USERTYPE_I_)
 | |
| 				if (!p) {
 | |
| 					luaL_error(L,
 | |
| 					     "sol: 'self' is not of type '%s' (pass 'self' as first argument with ':' or call on proper type)",
 | |
| 					     detail::demangle<T>().c_str());
 | |
| 				}
 | |
| 				if (p.value() == nullptr) {
 | |
| 					luaL_error(
 | |
| 					     L, "sol: 'self' argument is nil (pass 'self' as first argument with ':' or call on a '%s' type)", detail::demangle<T>().c_str());
 | |
| 				}
 | |
| #endif // Safe getting with error
 | |
| 				return *p.value();
 | |
| 			}
 | |
| 
 | |
| 			static int find(std::true_type, lua_State* L) {
 | |
| 				T& self = get_src(L);
 | |
| 				decltype(auto) value = stack::unqualified_get<value_type>(L, 2);
 | |
| 				std::size_t N = std::extent<T>::value;
 | |
| 				for (std::size_t idx = 0; idx < N; ++idx) {
 | |
| 					using v_t = std::add_const_t<decltype(self[idx])>;
 | |
| 					v_t v = self[idx];
 | |
| 					if (v == value) {
 | |
| 						idx -= deferred_uc::index_adjustment(L, self);
 | |
| 						return stack::push(L, idx);
 | |
| 					}
 | |
| 				}
 | |
| 				return stack::push(L, lua_nil);
 | |
| 			}
 | |
| 
 | |
| 			static int find(std::false_type, lua_State* L) {
 | |
| 				return luaL_error(L, "sol: cannot call 'find' on '%s': no supported comparison operator for the value type", detail::demangle<T>().c_str());
 | |
| 			}
 | |
| 
 | |
| 			static int next_iter(lua_State* L) {
 | |
| 				iter& i = stack::unqualified_get<user<iter>>(L, 1);
 | |
| 				auto& source = i.source;
 | |
| 				auto& it = i.it;
 | |
| 				std::size_t k = stack::unqualified_get<std::size_t>(L, 2);
 | |
| 				if (it == deferred_uc::end(L, source)) {
 | |
| 					return 0;
 | |
| 				}
 | |
| 				int p;
 | |
| 				p = stack::push(L, k + 1);
 | |
| 				p += stack::push_reference(L, detail::deref_move_only(*it));
 | |
| 				std::advance(it, 1);
 | |
| 				return p;
 | |
| 			}
 | |
| 
 | |
| 		public:
 | |
| 			static int clear(lua_State* L) {
 | |
| 				return luaL_error(L, "sol: cannot call 'clear' on type '%s': cannot remove all items from a fixed array", detail::demangle<T>().c_str());
 | |
| 			}
 | |
| 
 | |
| 			static int erase(lua_State* L) {
 | |
| 				return luaL_error(L, "sol: cannot call 'erase' on type '%s': cannot remove an item from fixed arrays", detail::demangle<T>().c_str());
 | |
| 			}
 | |
| 
 | |
| 			static int add(lua_State* L) {
 | |
| 				return luaL_error(L, "sol: cannot call 'add' on type '%s': cannot add to fixed arrays", detail::demangle<T>().c_str());
 | |
| 			}
 | |
| 
 | |
| 			static int insert(lua_State* L) {
 | |
| 				return luaL_error(L, "sol: cannot call 'insert' on type '%s': cannot insert new entries into fixed arrays", detail::demangle<T>().c_str());
 | |
| 			}
 | |
| 
 | |
| 			static int at(lua_State* L) {
 | |
| 				return get(L);
 | |
| 			}
 | |
| 
 | |
| 			static int get(lua_State* L) {
 | |
| 				T& self = get_src(L);
 | |
| 				std::ptrdiff_t idx = stack::unqualified_get<std::ptrdiff_t>(L, 2);
 | |
| 				idx += deferred_uc::index_adjustment(L, self);
 | |
| 				if (idx >= static_cast<std::ptrdiff_t>(std::extent<T>::value) || idx < 0) {
 | |
| 					return stack::push(L, lua_nil);
 | |
| 				}
 | |
| 				return stack::push_reference(L, detail::deref_move_only(self[idx]));
 | |
| 			}
 | |
| 
 | |
| 			static int index_get(lua_State* L) {
 | |
| 				return get(L);
 | |
| 			}
 | |
| 
 | |
| 			static int set(lua_State* L) {
 | |
| 				T& self = get_src(L);
 | |
| 				std::ptrdiff_t idx = stack::unqualified_get<std::ptrdiff_t>(L, 2);
 | |
| 				idx += deferred_uc::index_adjustment(L, self);
 | |
| 				if (idx >= static_cast<std::ptrdiff_t>(std::extent<T>::value)) {
 | |
| 					return luaL_error(L, "sol: index out of bounds (too big) for set on '%s'", detail::demangle<T>().c_str());
 | |
| 				}
 | |
| 				if (idx < 0) {
 | |
| 					return luaL_error(L, "sol: index out of bounds (too small) for set on '%s'", detail::demangle<T>().c_str());
 | |
| 				}
 | |
| 				self[idx] = stack::unqualified_get<value_type>(L, 3);
 | |
| 				return 0;
 | |
| 			}
 | |
| 
 | |
| 			static int index_set(lua_State* L) {
 | |
| 				return set(L);
 | |
| 			}
 | |
| 
 | |
| 			static int index_of(lua_State* L) {
 | |
| 				return find(L);
 | |
| 			}
 | |
| 
 | |
| 			static int find(lua_State* L) {
 | |
| 				return find(meta::supports_op_equal<value_type, value_type>(), L);
 | |
| 			}
 | |
| 
 | |
| 			static int size(lua_State* L) {
 | |
| 				return stack::push(L, std::extent<T>::value);
 | |
| 			}
 | |
| 
 | |
| 			static int empty(lua_State* L) {
 | |
| 				return stack::push(L, std::extent<T>::value > 0);
 | |
| 			}
 | |
| 
 | |
| 			static int pairs(lua_State* L) {
 | |
| 				auto& src = get_src(L);
 | |
| 				stack::push(L, next_iter);
 | |
| 				stack::push<user<iter>>(L, src, deferred_uc::begin(L, src));
 | |
| 				stack::push(L, 0);
 | |
| 				return 3;
 | |
| 			}
 | |
| 
 | |
| 			static int ipairs(lua_State* L) {
 | |
| 				return pairs(L);
 | |
| 			}
 | |
| 
 | |
| 			static int next(lua_State* L) {
 | |
| 				return stack::push(L, next_iter);
 | |
| 			}
 | |
| 
 | |
| 			static std::ptrdiff_t index_adjustment(lua_State*, T&) {
 | |
| 				return (SOL_CONTAINER_START_INDEX_I_) == 0 ? 0 : -(SOL_CONTAINER_START_INDEX_I_);
 | |
| 			}
 | |
| 
 | |
| 			static iterator begin(lua_State*, T& self) {
 | |
| 				return std::addressof(self[0]);
 | |
| 			}
 | |
| 
 | |
| 			static iterator end(lua_State*, T& self) {
 | |
| 				return std::addressof(self[0]) + std::extent<T>::value;
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <typename X>
 | |
| 		struct usertype_container_default<usertype_container<X>> : usertype_container_default<X> {};
 | |
| 	} // namespace container_detail
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct usertype_container : container_detail::usertype_container_default<T> {};
 | |
| 
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/usertype_container.hpp
 | |
| 
 | |
| #include <unordered_map>
 | |
| 
 | |
| namespace sol {
 | |
| 
 | |
| 	namespace container_detail {
 | |
| 		template <typename X>
 | |
| 		struct u_c_launch {
 | |
| 			using T = std::remove_pointer_t<meta::unqualified_t<X>>;
 | |
| 			using uc = usertype_container<T>;
 | |
| 			using default_uc = usertype_container_default<T>;
 | |
| 
 | |
| 			static inline int real_index_get_traits(std::true_type, lua_State* L) {
 | |
| 				return uc::index_get(L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int real_index_get_traits(std::false_type, lua_State* L) {
 | |
| 				return default_uc::index_get(L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int real_index_call(lua_State* L) {
 | |
| 				static const std::unordered_map<string_view, lua_CFunction> calls {
 | |
| 					{ "at", &real_at_call },
 | |
| 					{ "get", &real_get_call },
 | |
| 					{ "set", &real_set_call },
 | |
| 					{ "size", &real_length_call },
 | |
| 					{ "add", &real_add_call },
 | |
| 					{ "empty", &real_empty_call },
 | |
| 					{ "insert", &real_insert_call },
 | |
| 					{ "clear", &real_clear_call },
 | |
| 					{ "find", &real_find_call },
 | |
| 					{ "index_of", &real_index_of_call },
 | |
| 					{ "erase", &real_erase_call },
 | |
| 					{ "pairs", &pairs_call },
 | |
| 					{ "next", &next_call },
 | |
| 				};
 | |
| 				auto maybenameview = stack::unqualified_check_get<string_view>(L, 2);
 | |
| 				if (maybenameview) {
 | |
| 					const string_view& name = *maybenameview;
 | |
| 					auto it = calls.find(name);
 | |
| 					if (it != calls.cend()) {
 | |
| 						return stack::push(L, it->second);
 | |
| 					}
 | |
| 				}
 | |
| 				return real_index_get_traits(container_detail::has_traits_index_get<uc>(), L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int real_at_traits(std::true_type, lua_State* L) {
 | |
| 				return uc::at(L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int real_at_traits(std::false_type, lua_State* L) {
 | |
| 				return default_uc::at(L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int real_at_call(lua_State* L) {
 | |
| 				return real_at_traits(container_detail::has_traits_at<uc>(), L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int real_get_traits(std::true_type, lua_State* L) {
 | |
| 				return uc::get(L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int real_get_traits(std::false_type, lua_State* L) {
 | |
| 				return default_uc::get(L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int real_get_call(lua_State* L) {
 | |
| 				return real_get_traits(container_detail::has_traits_get<uc>(), L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int real_set_traits(std::true_type, lua_State* L) {
 | |
| 				return uc::set(L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int real_set_traits(std::false_type, lua_State* L) {
 | |
| 				return default_uc::set(L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int real_set_call(lua_State* L) {
 | |
| 				return real_set_traits(container_detail::has_traits_set<uc>(), L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int real_index_set_traits(std::true_type, lua_State* L) {
 | |
| 				return uc::index_set(L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int real_index_set_traits(std::false_type, lua_State* L) {
 | |
| 				return default_uc::index_set(L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int real_new_index_call(lua_State* L) {
 | |
| 				return real_index_set_traits(container_detail::has_traits_index_set<uc>(), L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int real_pairs_traits(std::true_type, lua_State* L) {
 | |
| 				return uc::pairs(L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int real_pairs_traits(std::false_type, lua_State* L) {
 | |
| 				return default_uc::pairs(L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int real_pairs_call(lua_State* L) {
 | |
| 				return real_pairs_traits(container_detail::has_traits_pairs<uc>(), L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int real_ipairs_traits(std::true_type, lua_State* L) {
 | |
| 				return uc::ipairs(L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int real_ipairs_traits(std::false_type, lua_State* L) {
 | |
| 				return default_uc::ipairs(L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int real_ipairs_call(lua_State* L) {
 | |
| 				return real_ipairs_traits(container_detail::has_traits_ipairs<uc>(), L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int real_next_traits(std::true_type, lua_State* L) {
 | |
| 				return uc::next(L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int real_next_traits(std::false_type, lua_State* L) {
 | |
| 				return default_uc::next(L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int real_next_call(lua_State* L) {
 | |
| 				return real_next_traits(container_detail::has_traits_next<uc>(), L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int real_size_traits(std::true_type, lua_State* L) {
 | |
| 				return uc::size(L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int real_size_traits(std::false_type, lua_State* L) {
 | |
| 				return default_uc::size(L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int real_length_call(lua_State* L) {
 | |
| 				return real_size_traits(container_detail::has_traits_size<uc>(), L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int real_add_traits(std::true_type, lua_State* L) {
 | |
| 				return uc::add(L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int real_add_traits(std::false_type, lua_State* L) {
 | |
| 				return default_uc::add(L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int real_add_call(lua_State* L) {
 | |
| 				return real_add_traits(container_detail::has_traits_add<uc>(), L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int real_insert_traits(std::true_type, lua_State* L) {
 | |
| 				return uc::insert(L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int real_insert_traits(std::false_type, lua_State* L) {
 | |
| 				return default_uc::insert(L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int real_insert_call(lua_State* L) {
 | |
| 				return real_insert_traits(container_detail::has_traits_insert<uc>(), L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int real_clear_traits(std::true_type, lua_State* L) {
 | |
| 				return uc::clear(L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int real_clear_traits(std::false_type, lua_State* L) {
 | |
| 				return default_uc::clear(L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int real_clear_call(lua_State* L) {
 | |
| 				return real_clear_traits(container_detail::has_traits_clear<uc>(), L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int real_empty_traits(std::true_type, lua_State* L) {
 | |
| 				return uc::empty(L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int real_empty_traits(std::false_type, lua_State* L) {
 | |
| 				return default_uc::empty(L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int real_empty_call(lua_State* L) {
 | |
| 				return real_empty_traits(container_detail::has_traits_empty<uc>(), L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int real_erase_traits(std::true_type, lua_State* L) {
 | |
| 				return uc::erase(L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int real_erase_traits(std::false_type, lua_State* L) {
 | |
| 				return default_uc::erase(L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int real_erase_call(lua_State* L) {
 | |
| 				return real_erase_traits(container_detail::has_traits_erase<uc>(), L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int real_find_traits(std::true_type, lua_State* L) {
 | |
| 				return uc::find(L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int real_find_traits(std::false_type, lua_State* L) {
 | |
| 				return default_uc::find(L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int real_find_call(lua_State* L) {
 | |
| 				return real_find_traits(container_detail::has_traits_find<uc>(), L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int real_index_of_call(lua_State* L) {
 | |
| 				if constexpr (container_detail::has_traits_index_of<uc>()) {
 | |
| 					return uc::index_of(L);
 | |
| 				}
 | |
| 				else {
 | |
| 					return default_uc::index_of(L);
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			static inline int add_call(lua_State* L) {
 | |
| 				return detail::typed_static_trampoline<decltype(&real_add_call), (&real_add_call)>(L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int erase_call(lua_State* L) {
 | |
| 				return detail::typed_static_trampoline<decltype(&real_erase_call), (&real_erase_call)>(L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int insert_call(lua_State* L) {
 | |
| 				return detail::typed_static_trampoline<decltype(&real_insert_call), (&real_insert_call)>(L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int clear_call(lua_State* L) {
 | |
| 				return detail::typed_static_trampoline<decltype(&real_clear_call), (&real_clear_call)>(L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int empty_call(lua_State* L) {
 | |
| 				return detail::typed_static_trampoline<decltype(&real_empty_call), (&real_empty_call)>(L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int find_call(lua_State* L) {
 | |
| 				return detail::typed_static_trampoline<decltype(&real_find_call), (&real_find_call)>(L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int index_of_call(lua_State* L) {
 | |
| 				return detail::typed_static_trampoline<decltype(&real_index_of_call), (&real_index_of_call)>(L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int length_call(lua_State* L) {
 | |
| 				return detail::typed_static_trampoline<decltype(&real_length_call), (&real_length_call)>(L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int pairs_call(lua_State* L) {
 | |
| 				return detail::typed_static_trampoline<decltype(&real_pairs_call), (&real_pairs_call)>(L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int ipairs_call(lua_State* L) {
 | |
| 				return detail::typed_static_trampoline<decltype(&real_ipairs_call), (&real_ipairs_call)>(L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int next_call(lua_State* L) {
 | |
| 				return detail::typed_static_trampoline<decltype(&real_next_call), (&real_next_call)>(L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int at_call(lua_State* L) {
 | |
| 				return detail::typed_static_trampoline<decltype(&real_at_call), (&real_at_call)>(L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int get_call(lua_State* L) {
 | |
| 				return detail::typed_static_trampoline<decltype(&real_get_call), (&real_get_call)>(L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int set_call(lua_State* L) {
 | |
| 				return detail::typed_static_trampoline<decltype(&real_set_call), (&real_set_call)>(L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int index_call(lua_State* L) {
 | |
| 				return detail::typed_static_trampoline<decltype(&real_index_call), (&real_index_call)>(L);
 | |
| 			}
 | |
| 
 | |
| 			static inline int new_index_call(lua_State* L) {
 | |
| 				return detail::typed_static_trampoline<decltype(&real_new_index_call), (&real_new_index_call)>(L);
 | |
| 			}
 | |
| 		};
 | |
| 	} // namespace container_detail
 | |
| 
 | |
| 	namespace stack {
 | |
| 		namespace stack_detail {
 | |
| 			template <typename T, bool is_shim = false>
 | |
| 			struct metatable_setup {
 | |
| 				lua_State* L;
 | |
| 
 | |
| 				metatable_setup(lua_State* L) : L(L) {
 | |
| 				}
 | |
| 
 | |
| 				void operator()() {
 | |
| 					using meta_usertype_container
 | |
| 					     = container_detail::u_c_launch<meta::conditional_t<is_shim, as_container_t<std::remove_pointer_t<T>>, std::remove_pointer_t<T>>>;
 | |
| 					static const char* metakey
 | |
| 					     = is_shim ? &usertype_traits<as_container_t<std::remove_pointer_t<T>>>::metatable()[0] : &usertype_traits<T>::metatable()[0];
 | |
| 					static const std::array<luaL_Reg, 20> reg = { {
 | |
| 						// clang-format off
 | |
| 						{ "__pairs", &meta_usertype_container::pairs_call },
 | |
| 						{ "__ipairs", &meta_usertype_container::ipairs_call },
 | |
| 						{ "__len", &meta_usertype_container::length_call },
 | |
| 						{ "__index", &meta_usertype_container::index_call },
 | |
| 						{ "__newindex", &meta_usertype_container::new_index_call },
 | |
| 						{ "pairs", &meta_usertype_container::pairs_call },
 | |
| 						{ "next", &meta_usertype_container::next_call },
 | |
| 						{ "at", &meta_usertype_container::at_call },
 | |
| 						{ "get", &meta_usertype_container::get_call },
 | |
| 						{ "set", &meta_usertype_container::set_call },
 | |
| 						{ "size", &meta_usertype_container::length_call },
 | |
| 						{ "empty", &meta_usertype_container::empty_call },
 | |
| 						{ "clear", &meta_usertype_container::clear_call },
 | |
| 						{ "insert", &meta_usertype_container::insert_call },
 | |
| 						{ "add", &meta_usertype_container::add_call },
 | |
| 						{ "find", &meta_usertype_container::find_call },
 | |
| 						{ "index_of", &meta_usertype_container::index_of_call },
 | |
| 						{ "erase", &meta_usertype_container::erase_call },
 | |
| 						std::is_pointer<T>::value ? luaL_Reg{ nullptr, nullptr } : luaL_Reg{ "__gc", &detail::usertype_alloc_destruct<T> },
 | |
| 						{ nullptr, nullptr }
 | |
| 						// clang-format on 
 | |
| 					} };
 | |
| 
 | |
| 					if (luaL_newmetatable(L, metakey) == 1) {
 | |
| 						luaL_setfuncs(L, reg.data(), 0);
 | |
| 					}
 | |
| 					lua_setmetatable(L, -2);
 | |
| 				}
 | |
| 			};
 | |
| 		} // namespace stack_detail
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct unqualified_pusher<as_container_t<T>> {
 | |
| 			using C = meta::unqualified_t<T>;
 | |
| 
 | |
| 			static int push_lvalue(std::true_type, lua_State* L, const C& cont) {
 | |
| 				stack_detail::metatable_setup<C*, true> fx(L);
 | |
| 				return stack::push<detail::as_pointer_tag<const C>>(L, detail::with_function_tag(), fx, detail::ptr(cont));
 | |
| 			}
 | |
| 
 | |
| 			static int push_lvalue(std::false_type, lua_State* L, const C& cont) {
 | |
| 				stack_detail::metatable_setup<C, true> fx(L);
 | |
| 				return stack::push<detail::as_value_tag<C>>(L, detail::with_function_tag(), fx, cont);
 | |
| 			}
 | |
| 
 | |
| 			static int push_rvalue(std::true_type, lua_State* L, C&& cont) {
 | |
| 				stack_detail::metatable_setup<C, true> fx(L);
 | |
| 				return stack::push<detail::as_value_tag<C>>(L, detail::with_function_tag(), fx, std::move(cont));
 | |
| 			}
 | |
| 
 | |
| 			static int push_rvalue(std::false_type, lua_State* L, const C& cont) {
 | |
| 				return push_lvalue(std::is_lvalue_reference<T>(), L, cont);
 | |
| 			}
 | |
| 
 | |
| 			static int push(lua_State* L, const as_container_t<T>& as_cont) {
 | |
| 				return push_lvalue(std::is_lvalue_reference<T>(), L, as_cont.value());
 | |
| 			}
 | |
| 
 | |
| 			static int push(lua_State* L, as_container_t<T>&& as_cont) {
 | |
| 				return push_rvalue(meta::all<std::is_rvalue_reference<T>, meta::neg<std::is_lvalue_reference<T>>>(), L, std::forward<T>(as_cont.value()));
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct unqualified_pusher<as_container_t<T*>> {
 | |
| 			using C = std::add_pointer_t<meta::unqualified_t<std::remove_pointer_t<T>>>;
 | |
| 
 | |
| 			static int push(lua_State* L, T* cont) {
 | |
| 				stack_detail::metatable_setup<C> fx(L);
 | |
| 				return stack::push<detail::as_pointer_tag<T>>(L, detail::with_function_tag(), fx, cont);
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct unqualified_pusher<T, std::enable_if_t<is_container_v<T>>> {
 | |
| 			using C = T;
 | |
| 
 | |
| 			template <typename... Args>
 | |
| 			static int push(lua_State* L, Args&&... args) {
 | |
| 				stack_detail::metatable_setup<C> fx(L);
 | |
| 				return stack::push<detail::as_value_tag<T>>(L, detail::with_function_tag(), fx, std::forward<Args>(args)...);
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <typename T>
 | |
| 		struct unqualified_pusher<T*, std::enable_if_t<is_container_v<T>>> {
 | |
| 			using C = std::add_pointer_t<meta::unqualified_t<std::remove_pointer_t<T>>>;
 | |
| 
 | |
| 			static int push(lua_State* L, T* cont) {
 | |
| 				stack_detail::metatable_setup<C> fx(L);
 | |
| 				return stack::push<detail::as_pointer_tag<T>>(L, detail::with_function_tag(), fx, cont);
 | |
| 			}
 | |
| 		};
 | |
| 	} // namespace stack
 | |
| 
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/usertype_container_launch.hpp
 | |
| 
 | |
| #include <sstream>
 | |
| #include <type_traits>
 | |
| 
 | |
| namespace sol {
 | |
| 	namespace u_detail {
 | |
| 		constexpr const lua_Integer toplevel_magic = static_cast<lua_Integer>(0xCCC2CCC1);
 | |
| 
 | |
| 		constexpr const int environment_index = 1;
 | |
| 		constexpr const int usertype_storage_index = 2;
 | |
| 		constexpr const int usertype_storage_base_index = 3;
 | |
| 		constexpr const int exact_function_index = 4;
 | |
| 		constexpr const int magic_index = 5;
 | |
| 
 | |
| 		constexpr const int simple_usertype_storage_index = 2;
 | |
| 		constexpr const int index_function_index = 3;
 | |
| 		constexpr const int new_index_function_index = 4;
 | |
| 
 | |
| 		constexpr const int base_walking_failed_index = -32467;
 | |
| 		constexpr const int lookup_failed_index = -42469;
 | |
| 
 | |
| 		enum class submetatable_type {
 | |
| 			// must be sequential
 | |
| 			value,
 | |
| 			reference,
 | |
| 			unique,
 | |
| 			const_reference,
 | |
| 			const_value,
 | |
| 			// must be LAST!
 | |
| 			named
 | |
| 		};
 | |
| 
 | |
| 		inline auto make_string_view(string_view s) {
 | |
| 			return s;
 | |
| 		}
 | |
| 
 | |
| 		inline auto make_string_view(call_construction) {
 | |
| 			return string_view(to_string(meta_function::call_function));
 | |
| 		}
 | |
| 
 | |
| 		inline auto make_string_view(meta_function mf) {
 | |
| 			return string_view(to_string(mf));
 | |
| 		}
 | |
| 
 | |
| 		inline auto make_string_view(base_classes_tag) {
 | |
| 			return string_view(detail::base_class_cast_key());
 | |
| 		}
 | |
| 
 | |
| 		template <typename Arg>
 | |
| 		inline std::string make_string(Arg&& arg) {
 | |
| 			string_view s = make_string_view(arg);
 | |
| 			return std::string(s.data(), s.size());
 | |
| 		}
 | |
| 
 | |
| 		inline int is_indexer(string_view s) {
 | |
| 			if (s == to_string(meta_function::index)) {
 | |
| 				return 1;
 | |
| 			}
 | |
| 			else if (s == to_string(meta_function::new_index)) {
 | |
| 				return 2;
 | |
| 			}
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		inline int is_indexer(meta_function mf) {
 | |
| 			if (mf == meta_function::index) {
 | |
| 				return 1;
 | |
| 			}
 | |
| 			else if (mf == meta_function::new_index) {
 | |
| 				return 2;
 | |
| 			}
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		inline int is_indexer(call_construction) {
 | |
| 			return 0;
 | |
| 		}
 | |
| 	} // namespace u_detail
 | |
| 
 | |
| 	namespace detail {
 | |
| 
 | |
| 		template <typename T, typename IFx, typename Fx>
 | |
| 		inline void insert_default_registrations(IFx&& ifx, Fx&& fx) {
 | |
| 			(void)ifx;
 | |
| 			(void)fx;
 | |
| 			if constexpr (is_automagical<T>::value) {
 | |
| 				if (fx(meta_function::less_than)) {
 | |
| 					if constexpr (meta::supports_op_less<T>::value) {
 | |
| 						lua_CFunction f = &comparsion_operator_wrap<T, std::less<>>;
 | |
| 						ifx(meta_function::less_than, f);
 | |
| 					}
 | |
| 				}
 | |
| 				if (fx(meta_function::less_than_or_equal_to)) {
 | |
| 					if constexpr (meta::supports_op_less_equal<T>::value) {
 | |
| 						lua_CFunction f = &comparsion_operator_wrap<T, std::less_equal<>>;
 | |
| 						ifx(meta_function::less_than_or_equal_to, f);
 | |
| 					}
 | |
| 				}
 | |
| 				if (fx(meta_function::equal_to)) {
 | |
| 					if constexpr (meta::supports_op_equal<T>::value) {
 | |
| 						lua_CFunction f = &comparsion_operator_wrap<T, std::equal_to<>>;
 | |
| 						ifx(meta_function::equal_to, f);
 | |
| 					}
 | |
| 					else {
 | |
| 						lua_CFunction f = &comparsion_operator_wrap<T, no_comp>;
 | |
| 						ifx(meta_function::equal_to, f);
 | |
| 					}
 | |
| 				}
 | |
| 				if (fx(meta_function::pairs)) {
 | |
| 					ifx(meta_function::pairs, &container_detail::u_c_launch<as_container_t<T>>::pairs_call);
 | |
| 				}
 | |
| 				if (fx(meta_function::length)) {
 | |
| 					if constexpr (meta::has_size<const T>::value || meta::has_size<T>::value) {
 | |
| 						auto f = &default_size<T>;
 | |
| 						ifx(meta_function::length, f);
 | |
| 					}
 | |
| 				}
 | |
| 				if (fx(meta_function::to_string)) {
 | |
| 					if constexpr (is_to_stringable<T>::value) {
 | |
| 						auto f = &detail::static_trampoline<&default_to_string<T>>;
 | |
| 						ifx(meta_function::to_string, f);
 | |
| 					}
 | |
| 				}
 | |
| 				if (fx(meta_function::call_function)) {
 | |
| 					if constexpr (meta::has_deducible_signature<T>::value) {
 | |
| 						auto f = &c_call<decltype(&T::operator()), &T::operator()>;
 | |
| 						ifx(meta_function::call_function, f);
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	} // namespace detail
 | |
| 
 | |
| 	namespace stack { namespace stack_detail {
 | |
| 		template <typename X>
 | |
| 		void set_undefined_methods_on(stack_reference t) {
 | |
| 			using T = std::remove_pointer_t<X>;
 | |
| 
 | |
| 			lua_State* L = t.lua_state();
 | |
| 
 | |
| 			t.push();
 | |
| 
 | |
| 			detail::lua_reg_table l{};
 | |
| 			int index = 0;
 | |
| 			detail::indexed_insert insert_fx(l, index);
 | |
| 			detail::insert_default_registrations<T>(insert_fx, detail::property_always_true);
 | |
| 			if constexpr (!std::is_pointer_v<X>) {
 | |
| 				l[index] = luaL_Reg{ to_string(meta_function::garbage_collect).c_str(), detail::make_destructor<T>() };
 | |
| 			}
 | |
| 			luaL_setfuncs(L, l, 0);
 | |
| 
 | |
| 			// __type table
 | |
| 			lua_createtable(L, 0, 2);
 | |
| 			const std::string& name = detail::demangle<T>();
 | |
| 			lua_pushlstring(L, name.c_str(), name.size());
 | |
| 			lua_setfield(L, -2, "name");
 | |
| 			lua_CFunction is_func = &detail::is_check<T>;
 | |
| 			lua_pushcclosure(L, is_func, 0);
 | |
| 			lua_setfield(L, -2, "is");
 | |
| 			lua_setfield(L, t.stack_index(), to_string(meta_function::type).c_str());
 | |
| 
 | |
| 			t.pop();
 | |
| 		}
 | |
| 	}} // namespace stack::stack_detail
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/usertype_core.hpp
 | |
| 
 | |
| // beginning of sol/usertype_storage.hpp
 | |
| 
 | |
| #include <bitset>
 | |
| #include <unordered_map>
 | |
| 
 | |
| namespace sol { namespace u_detail {
 | |
| 
 | |
| 	struct usertype_storage_base;
 | |
| 	template <typename T>
 | |
| 	struct usertype_storage;
 | |
| 
 | |
| 	optional<usertype_storage_base&> maybe_get_usertype_storage_base(lua_State* L, int index);
 | |
| 	usertype_storage_base& get_usertype_storage_base(lua_State* L, const char* gcmetakey);
 | |
| 	template <typename T>
 | |
| 	optional<usertype_storage<T>&> maybe_get_usertype_storage(lua_State* L);
 | |
| 	template <typename T>
 | |
| 	usertype_storage<T>& get_usertype_storage(lua_State* L);
 | |
| 
 | |
| 	using index_call_function = int(lua_State*, void*);
 | |
| 	using change_indexing_mem_func
 | |
| 		= void (usertype_storage_base::*)(lua_State*, submetatable_type, void*, stack_reference&, lua_CFunction, lua_CFunction, lua_CFunction, lua_CFunction);
 | |
| 
 | |
| 	struct index_call_storage {
 | |
| 		index_call_function* index;
 | |
| 		index_call_function* new_index;
 | |
| 		void* binding_data;
 | |
| 	};
 | |
| 
 | |
| 	struct new_index_call_storage : index_call_storage {
 | |
| 		void* new_binding_data;
 | |
| 	};
 | |
| 
 | |
| 	struct binding_base {
 | |
| 		virtual void* data() = 0;
 | |
| 		virtual ~binding_base() {
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename K, typename Fq, typename T = void>
 | |
| 	struct binding : binding_base {
 | |
| 		using uF = meta::unqualified_t<Fq>;
 | |
| 		using F = meta::conditional_t<meta::is_c_str_of_v<uF, char>
 | |
| #ifdef __cpp_char8_t
 | |
| 			     || meta::is_c_str_of_v<uF, char8_t>
 | |
| #endif
 | |
| 			     || meta::is_c_str_of_v<uF, char16_t> || meta::is_c_str_of_v<uF, char32_t> || meta::is_c_str_of_v<uF, wchar_t>,
 | |
| 			std::add_pointer_t<std::add_const_t<std::remove_all_extents_t<Fq>>>, std::decay_t<Fq>>;
 | |
| 		F data_;
 | |
| 
 | |
| 		template <typename... Args>
 | |
| 		binding(Args&&... args) : data_(std::forward<Args>(args)...) {
 | |
| 		}
 | |
| 
 | |
| 		virtual void* data() override {
 | |
| 			return static_cast<void*>(std::addressof(data_));
 | |
| 		}
 | |
| 
 | |
| 		template <bool is_index = true, bool is_variable = false>
 | |
| 		static inline int call_with_(lua_State* L, void* target) {
 | |
| 			constexpr int boost = !detail::is_non_factory_constructor<F>::value && std::is_same<K, call_construction>::value ? 1 : 0;
 | |
| 			auto& f = *static_cast<F*>(target);
 | |
| 			return call_detail::call_wrapped<T, is_index, is_variable, boost>(L, f);
 | |
| 		}
 | |
| 
 | |
| 		template <bool is_index = true, bool is_variable = false>
 | |
| 		static inline int call_(lua_State* L) {
 | |
| 			void* f = stack::get<void*>(L, upvalue_index(usertype_storage_index));
 | |
| 			return call_with_<is_index, is_variable>(L, f);
 | |
| 		}
 | |
| 
 | |
| 		template <bool is_index = true, bool is_variable = false>
 | |
| 		static inline int call(lua_State* L) {
 | |
| 			int r = detail::typed_static_trampoline<decltype(&call_<is_index, is_variable>), (&call_<is_index, is_variable>)>(L);
 | |
| 			if constexpr (meta::is_specialization_of_v<uF, yielding_t>) {
 | |
| 				return lua_yield(L, r);
 | |
| 			}
 | |
| 			else {
 | |
| 				return r;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		template <bool is_index = true, bool is_variable = false>
 | |
| 		static inline int index_call_with_(lua_State* L, void* target) {
 | |
| 			if constexpr (!is_variable) {
 | |
| 				if constexpr (is_lua_c_function_v<std::decay_t<F>>) {
 | |
| 					auto& f = *static_cast<std::decay_t<F>*>(target);
 | |
| 					return stack::push(L, f);
 | |
| 				}
 | |
| 				else {
 | |
| 					// set up upvalues
 | |
| 					// for a chained call
 | |
| 					int upvalues = 0;
 | |
| 					upvalues += stack::push(L, nullptr);
 | |
| 					upvalues += stack::push(L, target);
 | |
| 					auto cfunc = &call<is_index, is_variable>;
 | |
| 					return stack::push(L, c_closure(cfunc, upvalues));
 | |
| 				}
 | |
| 			}
 | |
| 			else {
 | |
| 				constexpr int boost = !detail::is_non_factory_constructor<F>::value && std::is_same<K, call_construction>::value ? 1 : 0;
 | |
| 				auto& f = *static_cast<F*>(target);
 | |
| 				return call_detail::call_wrapped<T, is_index, is_variable, boost>(L, f);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		template <bool is_index = true, bool is_variable = false>
 | |
| 		static inline int index_call_(lua_State* L) {
 | |
| 			void* f = stack::get<void*>(L, upvalue_index(usertype_storage_index));
 | |
| 			return index_call_with_<is_index, is_variable>(L, f);
 | |
| 		}
 | |
| 
 | |
| 		template <bool is_index = true, bool is_variable = false>
 | |
| 		static inline int index_call(lua_State* L) {
 | |
| 			int r = detail::typed_static_trampoline<decltype(&index_call_<is_index, is_variable>), (&index_call_<is_index, is_variable>)>(L);
 | |
| 			if constexpr (meta::is_specialization_of_v<uF, yielding_t>) {
 | |
| 				return lua_yield(L, r);
 | |
| 			}
 | |
| 			else {
 | |
| 				return r;
 | |
| 			}
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	inline int index_fail(lua_State* L) {
 | |
| 		if (lua_getmetatable(L, 1) == 1) {
 | |
| 			int metatarget = lua_gettop(L);
 | |
| 			stack::get_field<false, true>(L, stack_reference(L, raw_index(2)), metatarget);
 | |
| 			return 1;
 | |
| 		}
 | |
| 		// With runtime extensibility, we can't
 | |
| 		// hard-error things. They have to
 | |
| 		// return nil, like regular table types
 | |
| 		return stack::push(L, lua_nil);
 | |
| 	}
 | |
| 
 | |
| 	inline int index_target_fail(lua_State* L, void*) {
 | |
| 		return index_fail(L);
 | |
| 	}
 | |
| 
 | |
| 	inline int new_index_fail(lua_State* L) {
 | |
| 		return luaL_error(L, "sol: cannot set (new_index) into this object: no defined new_index operation on usertype");
 | |
| 	}
 | |
| 
 | |
| 	inline int new_index_target_fail(lua_State* L, void*) {
 | |
| 		return new_index_fail(L);
 | |
| 	}
 | |
| 
 | |
| 	struct string_for_each_metatable_func {
 | |
| 		bool is_destruction = false;
 | |
| 		bool is_index = false;
 | |
| 		bool is_new_index = false;
 | |
| 		bool is_static_index = false;
 | |
| 		bool is_static_new_index = false;
 | |
| 		bool poison_indexing = false;
 | |
| 		bool is_unqualified_lua_CFunction = false;
 | |
| 		bool is_unqualified_lua_reference = false;
 | |
| 		std::string* p_key = nullptr;
 | |
| 		reference* p_binding_ref = nullptr;
 | |
| 		lua_CFunction call_func = nullptr;
 | |
| 		index_call_storage* p_ics = nullptr;
 | |
| 		usertype_storage_base* p_usb = nullptr;
 | |
| 		void* p_derived_usb = nullptr;
 | |
| 		lua_CFunction idx_call = nullptr, new_idx_call = nullptr, meta_idx_call = nullptr, meta_new_idx_call = nullptr;
 | |
| 		change_indexing_mem_func change_indexing;
 | |
| 
 | |
| 		void operator()(lua_State* L, submetatable_type smt, reference& fast_index_table) {
 | |
| 			std::string& key = *p_key;
 | |
| 			usertype_storage_base& usb = *p_usb;
 | |
| 			index_call_storage& ics = *p_ics;
 | |
| 
 | |
| 			if (smt == submetatable_type::named) {
 | |
| 				// do not override __call or
 | |
| 				// other specific meta functions on named metatable:
 | |
| 				// we need that for call construction
 | |
| 				// and other amenities
 | |
| 				return;
 | |
| 			}
 | |
| 			int fast_index_table_push = fast_index_table.push();
 | |
| 			stack_reference t(L, -fast_index_table_push);
 | |
| 			if (poison_indexing) {
 | |
| 				(usb.*change_indexing)(L, smt, p_derived_usb, t, idx_call, new_idx_call, meta_idx_call, meta_new_idx_call);
 | |
| 			}
 | |
| 			if (is_destruction
 | |
| 				&& (smt == submetatable_type::reference || smt == submetatable_type::const_reference || smt == submetatable_type::named
 | |
| 				     || smt == submetatable_type::unique)) {
 | |
| 				// gc does not apply to us here
 | |
| 				// for reference types (raw T*, std::ref)
 | |
| 				// for the named metatable itself,
 | |
| 				// or for unique_usertypes, which do their own custom destruction
 | |
| 				t.pop();
 | |
| 				return;
 | |
| 			}
 | |
| 			if (is_index || is_new_index || is_static_index || is_static_new_index) {
 | |
| 				// do not serialize the new_index and index functions here directly
 | |
| 				// we control those...
 | |
| 				t.pop();
 | |
| 				return;
 | |
| 			}
 | |
| 			if (is_unqualified_lua_CFunction) {
 | |
| 				stack::set_field<false, true>(L, key, call_func, t.stack_index());
 | |
| 			}
 | |
| 			else if (is_unqualified_lua_reference) {
 | |
| 				reference& binding_ref = *p_binding_ref;
 | |
| 				stack::set_field<false, true>(L, key, binding_ref, t.stack_index());
 | |
| 			}
 | |
| 			else {
 | |
| 				stack::set_field<false, true>(L, key, make_closure(call_func, nullptr, ics.binding_data), t.stack_index());
 | |
| 			}
 | |
| 			t.pop();
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	struct lua_reference_func {
 | |
| 		reference key;
 | |
| 		reference value;
 | |
| 
 | |
| 		void operator()(lua_State* L, submetatable_type smt, reference& fast_index_table) {
 | |
| 			if (smt == submetatable_type::named) {
 | |
| 				return;
 | |
| 			}
 | |
| 			int fast_index_table_push = fast_index_table.push();
 | |
| 			stack_reference t(L, -fast_index_table_push);
 | |
| 			stack::set_field<false, true>(L, key, value, t.stack_index());
 | |
| 			t.pop();
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	struct update_bases_func {
 | |
| 		detail::inheritance_check_function base_class_check_func;
 | |
| 		detail::inheritance_cast_function base_class_cast_func;
 | |
| 		lua_CFunction idx_call, new_idx_call, meta_idx_call, meta_new_idx_call;
 | |
| 		usertype_storage_base* p_usb;
 | |
| 		void* p_derived_usb;
 | |
| 		change_indexing_mem_func change_indexing;
 | |
| 
 | |
| 		void operator()(lua_State* L, submetatable_type smt, reference& fast_index_table) {
 | |
| 			int fast_index_table_push = fast_index_table.push();
 | |
| 			stack_reference t(L, -fast_index_table_push);
 | |
| 			stack::set_field(L, detail::base_class_check_key(), reinterpret_cast<void*>(base_class_check_func), t.stack_index());
 | |
| 			stack::set_field(L, detail::base_class_cast_key(), reinterpret_cast<void*>(base_class_cast_func), t.stack_index());
 | |
| 			// change indexing, forcefully
 | |
| 			(p_usb->*change_indexing)(L, smt, p_derived_usb, t, idx_call, new_idx_call, meta_idx_call, meta_new_idx_call);
 | |
| 			t.pop();
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	struct binding_data_equals {
 | |
| 		void* binding_data;
 | |
| 
 | |
| 		binding_data_equals(void* b) : binding_data(b) {
 | |
| 		}
 | |
| 
 | |
| 		bool operator()(const std::unique_ptr<binding_base>& ptr) const {
 | |
| 			return binding_data == ptr->data();
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	struct usertype_storage_base {
 | |
| 	public:
 | |
| 		std::vector<std::unique_ptr<binding_base>> storage;
 | |
| 		std::vector<std::unique_ptr<char[]>> string_keys_storage;
 | |
| 		std::unordered_map<string_view, index_call_storage> string_keys;
 | |
| 		std::unordered_map<reference, reference, reference_hash, reference_equals> auxiliary_keys;
 | |
| 		reference value_index_table;
 | |
| 		reference reference_index_table;
 | |
| 		reference unique_index_table;
 | |
| 		reference const_reference_index_table;
 | |
| 		reference const_value_index_table;
 | |
| 		reference named_index_table;
 | |
| 		reference type_table;
 | |
| 		reference gc_names_table;
 | |
| 		reference named_metatable;
 | |
| 		new_index_call_storage base_index;
 | |
| 		new_index_call_storage static_base_index;
 | |
| 		bool is_using_index;
 | |
| 		bool is_using_new_index;
 | |
| 		std::bitset<64> properties;
 | |
| 
 | |
| 		usertype_storage_base(lua_State* L)
 | |
| 		: storage()
 | |
| 		, string_keys()
 | |
| 		, auxiliary_keys()
 | |
| 		, value_index_table()
 | |
| 		, reference_index_table()
 | |
| 		, unique_index_table()
 | |
| 		, const_reference_index_table()
 | |
| 		, type_table(make_reference(L, create))
 | |
| 		, gc_names_table(make_reference(L, create))
 | |
| 		, named_metatable(make_reference(L, create))
 | |
| 		, base_index()
 | |
| 		, static_base_index()
 | |
| 		, is_using_index(false)
 | |
| 		, is_using_new_index(false)
 | |
| 		, properties() {
 | |
| 			base_index.binding_data = nullptr;
 | |
| 			base_index.index = index_target_fail;
 | |
| 			base_index.new_index = new_index_target_fail;
 | |
| 			base_index.new_binding_data = nullptr;
 | |
| 			static_base_index.binding_data = nullptr;
 | |
| 			static_base_index.index = index_target_fail;
 | |
| 			static_base_index.new_binding_data = this;
 | |
| 			static_base_index.new_index = new_index_target_set;
 | |
| 		}
 | |
| 
 | |
| 		template <typename Fx>
 | |
| 		void for_each_table(lua_State* L, Fx&& fx) {
 | |
| 			for (int i = 0; i < 6; ++i) {
 | |
| 				submetatable_type smt = static_cast<submetatable_type>(i);
 | |
| 				reference* p_fast_index_table = nullptr;
 | |
| 				switch (smt) {
 | |
| 				case submetatable_type::const_value:
 | |
| 					p_fast_index_table = &this->const_value_index_table;
 | |
| 					break;
 | |
| 				case submetatable_type::reference:
 | |
| 					p_fast_index_table = &this->reference_index_table;
 | |
| 					break;
 | |
| 				case submetatable_type::unique:
 | |
| 					p_fast_index_table = &this->unique_index_table;
 | |
| 					break;
 | |
| 				case submetatable_type::const_reference:
 | |
| 					p_fast_index_table = &this->const_reference_index_table;
 | |
| 					break;
 | |
| 				case submetatable_type::named:
 | |
| 					p_fast_index_table = &this->named_index_table;
 | |
| 					break;
 | |
| 				case submetatable_type::value:
 | |
| 				default:
 | |
| 					p_fast_index_table = &this->value_index_table;
 | |
| 					break;
 | |
| 				}
 | |
| 				fx(L, smt, *p_fast_index_table);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		void add_entry(string_view sv, index_call_storage ics) {
 | |
| 			string_keys_storage.emplace_back(new char[sv.size()]);
 | |
| 			std::unique_ptr<char[]>& sv_storage = string_keys_storage.back();
 | |
| 			std::memcpy(sv_storage.get(), sv.data(), sv.size());
 | |
| 			string_view stored_sv(sv_storage.get(), sv.size());
 | |
| 			string_keys.insert_or_assign(std::move(stored_sv), std::move(ics));
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, typename... Bases>
 | |
| 		void update_bases(lua_State* L, bases<Bases...>) {
 | |
| 			static_assert(sizeof(void*) <= sizeof(detail::inheritance_check_function),
 | |
| 				"The size of this data pointer is too small to fit the inheritance checking function: Please file "
 | |
| 				"a bug report.");
 | |
| 			static_assert(sizeof(void*) <= sizeof(detail::inheritance_cast_function),
 | |
| 				"The size of this data pointer is too small to fit the inheritance checking function: Please file "
 | |
| 				"a bug report.");
 | |
| 			static_assert(!meta::any_same<T, Bases...>::value, "base classes cannot list the original class as part of the bases");
 | |
| 			if constexpr (sizeof...(Bases) < 1) {
 | |
| 				return;
 | |
| 			}
 | |
| 
 | |
| 			(void)detail::swallow { 0, ((weak_derive<Bases>::value = true), 0)... };
 | |
| 
 | |
| 			void* derived_this = static_cast<void*>(static_cast<usertype_storage<T>*>(this));
 | |
| 
 | |
| 			update_bases_func for_each_fx;
 | |
| 			for_each_fx.base_class_check_func = &detail::inheritance<T>::template type_check_with<Bases...>;
 | |
| 			for_each_fx.base_class_cast_func = &detail::inheritance<T>::template type_cast_with<Bases...>;
 | |
| 			for_each_fx.idx_call = &usertype_storage<T>::template index_call_with_bases<false, Bases...>;
 | |
| 			for_each_fx.new_idx_call = &usertype_storage<T>::template index_call_with_bases<true, Bases...>;
 | |
| 			for_each_fx.meta_idx_call = &usertype_storage<T>::template meta_index_call_with_bases<false, Bases...>;
 | |
| 			for_each_fx.meta_new_idx_call = &usertype_storage<T>::template meta_index_call_with_bases<true, Bases...>;
 | |
| 			for_each_fx.p_usb = this;
 | |
| 			for_each_fx.p_derived_usb = derived_this;
 | |
| 			for_each_fx.change_indexing = &usertype_storage_base::change_indexing;
 | |
| 			for_each_fx.p_derived_usb = derived_this;
 | |
| 			this->for_each_table(L, for_each_fx);
 | |
| 		}
 | |
| 
 | |
| 		void clear() {
 | |
| 			if (value_index_table.valid()) {
 | |
| 				stack::clear(value_index_table);
 | |
| 			}
 | |
| 			if (reference_index_table.valid()) {
 | |
| 				stack::clear(reference_index_table);
 | |
| 			}
 | |
| 			if (unique_index_table.valid()) {
 | |
| 				stack::clear(unique_index_table);
 | |
| 			}
 | |
| 			if (const_reference_index_table.valid()) {
 | |
| 				stack::clear(const_reference_index_table);
 | |
| 			}
 | |
| 			if (const_value_index_table.valid()) {
 | |
| 				stack::clear(const_value_index_table);
 | |
| 			}
 | |
| 			if (named_index_table.valid()) {
 | |
| 				stack::clear(named_index_table);
 | |
| 			}
 | |
| 			if (type_table.valid()) {
 | |
| 				stack::clear(type_table);
 | |
| 			}
 | |
| 			if (gc_names_table.valid()) {
 | |
| 				stack::clear(gc_names_table);
 | |
| 			}
 | |
| 			if (named_metatable.valid()) {
 | |
| 				lua_State* L = named_metatable.lua_state();
 | |
| 				auto pp = stack::push_pop(named_metatable);
 | |
| 				int named_metatable_index = pp.index_of(named_metatable);
 | |
| 				if (lua_getmetatable(L, named_metatable_index) == 1) {
 | |
| 					stack::clear(L, absolute_index(L, -1));
 | |
| 				}
 | |
| 				stack::clear(named_metatable);
 | |
| 			}
 | |
| 
 | |
| 			value_index_table = lua_nil;
 | |
| 			reference_index_table = lua_nil;
 | |
| 			unique_index_table = lua_nil;
 | |
| 			const_reference_index_table = lua_nil;
 | |
| 			const_value_index_table = lua_nil;
 | |
| 			named_index_table = lua_nil;
 | |
| 			type_table = lua_nil;
 | |
| 			gc_names_table = lua_nil;
 | |
| 			named_metatable = lua_nil;
 | |
| 
 | |
| 			storage.clear();
 | |
| 			string_keys.clear();
 | |
| 			auxiliary_keys.clear();
 | |
| 		}
 | |
| 
 | |
| 		template <bool is_new_index, typename Base>
 | |
| 		static void base_walk_index(lua_State* L, usertype_storage_base& self, bool& keep_going, int& base_result) {
 | |
| 			using bases = typename base<Base>::type;
 | |
| 			if (!keep_going) {
 | |
| 				return;
 | |
| 			}
 | |
| 			(void)L;
 | |
| 			(void)self;
 | |
| #if SOL_IS_ON(SOL_USE_UNSAFE_BASE_LOOKUP_I_)
 | |
| 			usertype_storage_base& base_storage = get_usertype_storage<Base>(L);
 | |
| 			base_result = self_index_call<is_new_index, true>(bases(), L, base_storage);
 | |
| #else
 | |
| 			optional<usertype_storage<Base>&> maybe_base_storage = maybe_get_usertype_storage<Base>(L);
 | |
| 			if (static_cast<bool>(maybe_base_storage)) {
 | |
| 				base_result = self_index_call<is_new_index, true>(bases(), L, *maybe_base_storage);
 | |
| 				keep_going = base_result == base_walking_failed_index;
 | |
| 			}
 | |
| #endif // Fast versus slow, safe base lookup
 | |
| 		}
 | |
| 
 | |
| 		template <bool is_new_index = false, bool base_walking = false, bool from_named_metatable = false, typename... Bases>
 | |
| 		static inline int self_index_call(types<Bases...>, lua_State* L, usertype_storage_base& self) {
 | |
| 			type k_type = stack::get<type>(L, 2);
 | |
| 			if (k_type == type::string) {
 | |
| 				index_call_storage* target = nullptr;
 | |
| 				{
 | |
| 					string_view k = stack::get<string_view>(L, 2);
 | |
| 					auto it = self.string_keys.find(k);
 | |
| 					if (it != self.string_keys.cend()) {
 | |
| 						target = &it->second;
 | |
| 					}
 | |
| 				}
 | |
| 				if (target != nullptr) {
 | |
| 					// let the target decide what to do
 | |
| 					if constexpr (is_new_index) {
 | |
| 						return (target->new_index)(L, target->binding_data);
 | |
| 					}
 | |
| 					else {
 | |
| 						return (target->index)(L, target->binding_data);
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 			else if (k_type != type::lua_nil && k_type != type::none) {
 | |
| 				reference* target = nullptr;
 | |
| 				{
 | |
| 					stack_reference k = stack::get<stack_reference>(L, 2);
 | |
| 					auto it = self.auxiliary_keys.find(k);
 | |
| 					if (it != self.auxiliary_keys.cend()) {
 | |
| 						target = &it->second;
 | |
| 					}
 | |
| 				}
 | |
| 				if (target != nullptr) {
 | |
| 					if constexpr (is_new_index) {
 | |
| 						// set value and return
 | |
| 						*target = reference(L, 3);
 | |
| 						return 0;
 | |
| 					}
 | |
| 					else {
 | |
| 						// push target to return
 | |
| 						// what we found
 | |
| 						return stack::push(L, *target);
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			// retrieve bases and walk through them.
 | |
| 			bool keep_going = true;
 | |
| 			int base_result;
 | |
| 			(void)keep_going;
 | |
| 			(void)base_result;
 | |
| 			(void)detail::swallow { 1, (base_walk_index<is_new_index, Bases>(L, self, keep_going, base_result), 1)... };
 | |
| 			if constexpr (sizeof...(Bases) > 0) {
 | |
| 				if (!keep_going) {
 | |
| 					return base_result;
 | |
| 				}
 | |
| 			}
 | |
| 			if constexpr (base_walking) {
 | |
| 				// if we're JUST base-walking then don't index-fail, just
 | |
| 				// return the false bits
 | |
| 				return base_walking_failed_index;
 | |
| 			}
 | |
| 			else if constexpr (from_named_metatable) {
 | |
| 				if constexpr (is_new_index) {
 | |
| 					return self.static_base_index.new_index(L, self.static_base_index.new_binding_data);
 | |
| 				}
 | |
| 				else {
 | |
| 					return self.static_base_index.index(L, self.static_base_index.binding_data);
 | |
| 				}
 | |
| 			}
 | |
| 			else {
 | |
| 				if constexpr (is_new_index) {
 | |
| 					return self.base_index.new_index(L, self.base_index.new_binding_data);
 | |
| 				}
 | |
| 				else {
 | |
| 					return self.base_index.index(L, self.base_index.binding_data);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		void change_indexing(lua_State* L, submetatable_type submetatable, void* derived_this, stack_reference& t, lua_CFunction index,
 | |
| 			lua_CFunction new_index, lua_CFunction meta_index, lua_CFunction meta_new_index) {
 | |
| 			usertype_storage_base& this_base = *this;
 | |
| 			void* base_this = static_cast<void*>(&this_base);
 | |
| 
 | |
| 			this->is_using_index |= true;
 | |
| 			this->is_using_new_index |= true;
 | |
| 			if (submetatable == submetatable_type::named) {
 | |
| 				stack::set_field(L, metatable_key, named_index_table, t.stack_index());
 | |
| 				stack_reference stack_metametatable(L, -named_metatable.push());
 | |
| 				stack::set_field<false, true>(L,
 | |
| 					meta_function::index,
 | |
| 					make_closure(meta_index, nullptr, derived_this, base_this, nullptr, toplevel_magic),
 | |
| 					stack_metametatable.stack_index());
 | |
| 				stack::set_field<false, true>(L,
 | |
| 					meta_function::new_index,
 | |
| 					make_closure(meta_new_index, nullptr, derived_this, base_this, nullptr, toplevel_magic),
 | |
| 					stack_metametatable.stack_index());
 | |
| 				stack_metametatable.pop();
 | |
| 			}
 | |
| 			else {
 | |
| 				stack::set_field<false, true>(
 | |
| 					L, meta_function::index, make_closure(index, nullptr, derived_this, base_this, nullptr, toplevel_magic), t.stack_index());
 | |
| 				stack::set_field<false, true>(
 | |
| 					L, meta_function::new_index, make_closure(new_index, nullptr, derived_this, base_this, nullptr, toplevel_magic), t.stack_index());
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		template <typename T = void, typename Key, typename Value>
 | |
| 		void set(lua_State* L, Key&& key, Value&& value);
 | |
| 
 | |
| 		static int new_index_target_set(lua_State* L, void* target) {
 | |
| 			usertype_storage_base& self = *static_cast<usertype_storage_base*>(target);
 | |
| 			self.set(L, reference(L, raw_index(2)), reference(L, raw_index(3)));
 | |
| 			return 0;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	struct usertype_storage : usertype_storage_base {
 | |
| 
 | |
| 		using usertype_storage_base::usertype_storage_base;
 | |
| 
 | |
| 		template <bool is_new_index, bool from_named_metatable>
 | |
| 		static inline int index_call_(lua_State* L) {
 | |
| 			using bases = typename base<T>::type;
 | |
| 			usertype_storage_base& self = stack::get<light<usertype_storage_base>>(L, upvalue_index(usertype_storage_index));
 | |
| 			return self_index_call<is_new_index, false, from_named_metatable>(bases(), L, self);
 | |
| 		}
 | |
| 
 | |
| 		template <bool is_new_index, bool from_named_metatable, typename... Bases>
 | |
| 		static inline int index_call_with_bases_(lua_State* L) {
 | |
| 			using bases = types<Bases...>;
 | |
| 			usertype_storage_base& self = stack::get<light<usertype_storage_base>>(L, upvalue_index(usertype_storage_index));
 | |
| 			return self_index_call<is_new_index, false, from_named_metatable>(bases(), L, self);
 | |
| 		}
 | |
| 
 | |
| 		template <bool is_new_index>
 | |
| 		static inline int index_call(lua_State* L) {
 | |
| 			return detail::static_trampoline<&index_call_<is_new_index, false>>(L);
 | |
| 		}
 | |
| 
 | |
| 		template <bool is_new_index, typename... Bases>
 | |
| 		static inline int index_call_with_bases(lua_State* L) {
 | |
| 			return detail::static_trampoline<&index_call_with_bases_<is_new_index, false, Bases...>>(L);
 | |
| 		}
 | |
| 
 | |
| 		template <bool is_new_index>
 | |
| 		static inline int meta_index_call(lua_State* L) {
 | |
| 			return detail::static_trampoline<&index_call_<is_new_index, true>>(L);
 | |
| 		}
 | |
| 
 | |
| 		template <bool is_new_index, typename... Bases>
 | |
| 		static inline int meta_index_call_with_bases(lua_State* L) {
 | |
| 			return detail::static_trampoline<&index_call_with_bases_<is_new_index, true, Bases...>>(L);
 | |
| 		}
 | |
| 
 | |
| 		template <typename Key, typename Value>
 | |
| 		inline void set(lua_State* L, Key&& key, Value&& value);
 | |
| 	};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	inline int destruct_usertype_storage(lua_State* L) {
 | |
| 		return detail::user_alloc_destruct<usertype_storage<T>>(L);
 | |
| 	}
 | |
| 
 | |
| 	template <typename T, typename Key, typename Value>
 | |
| 	void usertype_storage_base::set(lua_State* L, Key&& key, Value&& value) {
 | |
| 		using ValueU = meta::unwrap_unqualified_t<Value>;
 | |
| 		using KeyU = meta::unwrap_unqualified_t<Key>;
 | |
| 		using Binding = binding<KeyU, ValueU, T>;
 | |
| 		using is_var_bind = is_variable_binding<ValueU>;
 | |
| 		if constexpr (std::is_same_v<KeyU, call_construction>) {
 | |
| 			(void)key;
 | |
| 			std::unique_ptr<Binding> p_binding = std::make_unique<Binding>(std::forward<Value>(value));
 | |
| 			Binding& b = *p_binding;
 | |
| 			this->storage.push_back(std::move(p_binding));
 | |
| 
 | |
| 			this->named_index_table.push();
 | |
| 			absolute_index metametatable_index(L, -1);
 | |
| 			stack::push(L, nullptr);
 | |
| 			stack::push(L, b.data());
 | |
| 			lua_CFunction target_func = &b.template call<false, false>;
 | |
| 			lua_pushcclosure(L, target_func, 2);
 | |
| 			lua_setfield(L, metametatable_index, to_string(meta_function::call).c_str());
 | |
| 			this->named_index_table.pop();
 | |
| 		}
 | |
| 		else if constexpr (std::is_same_v<KeyU, base_classes_tag>) {
 | |
| 			(void)key;
 | |
| 			this->update_bases<T>(L, std::forward<Value>(value));
 | |
| 		}
 | |
| 		else if constexpr ((meta::is_string_like_or_constructible<KeyU>::value || std::is_same_v<KeyU, meta_function>)) {
 | |
| 			std::string s = u_detail::make_string(std::forward<Key>(key));
 | |
| 			auto storage_it = this->storage.end();
 | |
| 			auto string_it = this->string_keys.find(s);
 | |
| 			if (string_it != this->string_keys.cend()) {
 | |
| 				const auto& binding_data = string_it->second.binding_data;
 | |
| 				storage_it = std::find_if(this->storage.begin(), this->storage.end(), binding_data_equals(binding_data));
 | |
| 				this->string_keys.erase(string_it);
 | |
| 			}
 | |
| 
 | |
| 			std::unique_ptr<Binding> p_binding = std::make_unique<Binding>(std::forward<Value>(value));
 | |
| 			Binding& b = *p_binding;
 | |
| 			if (storage_it != this->storage.cend()) {
 | |
| 				*storage_it = std::move(p_binding);
 | |
| 			}
 | |
| 			else {
 | |
| 				this->storage.push_back(std::move(p_binding));
 | |
| 			}
 | |
| 
 | |
| 			bool is_index = (s == to_string(meta_function::index));
 | |
| 			bool is_new_index = (s == to_string(meta_function::new_index));
 | |
| 			bool is_static_index = (s == to_string(meta_function::static_index));
 | |
| 			bool is_static_new_index = (s == to_string(meta_function::static_new_index));
 | |
| 			bool is_destruction = s == to_string(meta_function::garbage_collect);
 | |
| 			bool poison_indexing = (!is_using_index || !is_using_new_index) && (is_var_bind::value || is_index || is_new_index);
 | |
| 			void* derived_this = static_cast<void*>(static_cast<usertype_storage<T>*>(this));
 | |
| 			index_call_storage ics;
 | |
| 			ics.binding_data = b.data();
 | |
| 			ics.index = is_index || is_static_index ? &Binding::template call_with_<true, is_var_bind::value>
 | |
| 				                                   : &Binding::template index_call_with_<true, is_var_bind::value>;
 | |
| 			ics.new_index = is_new_index || is_static_new_index ? &Binding::template call_with_<false, is_var_bind::value>
 | |
| 				                                               : &Binding::template index_call_with_<false, is_var_bind::value>;
 | |
| 
 | |
| 			string_for_each_metatable_func for_each_fx;
 | |
| 			for_each_fx.is_destruction = is_destruction;
 | |
| 			for_each_fx.is_index = is_index;
 | |
| 			for_each_fx.is_new_index = is_new_index;
 | |
| 			for_each_fx.is_static_index = is_static_index;
 | |
| 			for_each_fx.is_static_new_index = is_static_new_index;
 | |
| 			for_each_fx.poison_indexing = poison_indexing;
 | |
| 			for_each_fx.p_key = &s;
 | |
| 			for_each_fx.p_ics = &ics;
 | |
| 			if constexpr (is_lua_c_function_v<ValueU>) {
 | |
| 				for_each_fx.is_unqualified_lua_CFunction = true;
 | |
| 				for_each_fx.call_func = *static_cast<lua_CFunction*>(ics.binding_data);
 | |
| 			}
 | |
| 			else if constexpr (is_lua_reference_or_proxy_v<ValueU>) {
 | |
| 				for_each_fx.is_unqualified_lua_reference = true;
 | |
| 				for_each_fx.p_binding_ref = static_cast<reference*>(ics.binding_data);
 | |
| 			}
 | |
| 			else {
 | |
| 				for_each_fx.call_func = &b.template call<false, is_var_bind::value>;
 | |
| 			}
 | |
| 			for_each_fx.p_usb = this;
 | |
| 			for_each_fx.p_derived_usb = derived_this;
 | |
| 			for_each_fx.idx_call = &usertype_storage<T>::template index_call<false>;
 | |
| 			for_each_fx.new_idx_call = &usertype_storage<T>::template index_call<true>;
 | |
| 			for_each_fx.meta_idx_call = &usertype_storage<T>::template meta_index_call<false>;
 | |
| 			for_each_fx.meta_new_idx_call = &usertype_storage<T>::template meta_index_call<true>;
 | |
| 			for_each_fx.change_indexing = &usertype_storage_base::change_indexing;
 | |
| 			// set base index and base new_index
 | |
| 			// functions here
 | |
| 			if (is_index) {
 | |
| 				this->base_index.index = ics.index;
 | |
| 				this->base_index.binding_data = ics.binding_data;
 | |
| 			}
 | |
| 			if (is_new_index) {
 | |
| 				this->base_index.new_index = ics.new_index;
 | |
| 				this->base_index.new_binding_data = ics.binding_data;
 | |
| 			}
 | |
| 			if (is_static_index) {
 | |
| 				this->static_base_index.index = ics.index;
 | |
| 				this->static_base_index.binding_data = ics.binding_data;
 | |
| 			}
 | |
| 			if (is_static_new_index) {
 | |
| 				this->static_base_index.new_index = ics.new_index;
 | |
| 				this->static_base_index.new_binding_data = ics.binding_data;
 | |
| 			}
 | |
| 			this->for_each_table(L, for_each_fx);
 | |
| 			this->add_entry(s, std::move(ics));
 | |
| 		}
 | |
| 		else {
 | |
| 			// the reference-based implementation might compare poorly and hash
 | |
| 			// poorly in some cases...
 | |
| 			if constexpr (is_lua_reference_v<KeyU> && is_lua_reference_v<ValueU>) {
 | |
| 				if (key.get_type() == type::string) {
 | |
| 					stack::push(L, key);
 | |
| 					std::string string_key = stack::pop<std::string>(L);
 | |
| 					this->set<T>(L, string_key, std::forward<Value>(value));
 | |
| 				}
 | |
| 				else {
 | |
| 					lua_reference_func ref_additions_fx { key, value };
 | |
| 
 | |
| 					this->for_each_table(L, ref_additions_fx);
 | |
| 					this->auxiliary_keys.insert_or_assign(std::forward<Key>(key), std::forward<Value>(value));
 | |
| 				}
 | |
| 			}
 | |
| 			else {
 | |
| 				reference ref_key = make_reference(L, std::forward<Key>(key));
 | |
| 				reference ref_value = make_reference(L, std::forward<Value>(value));
 | |
| 				lua_reference_func ref_additions_fx { key, value };
 | |
| 
 | |
| 				this->for_each_table(L, ref_additions_fx);
 | |
| 				this->auxiliary_keys.insert_or_assign(std::move(ref_key), std::move(ref_value));
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	template <typename T>
 | |
| 	template <typename Key, typename Value>
 | |
| 	void usertype_storage<T>::set(lua_State* L, Key&& key, Value&& value) {
 | |
| 		static_cast<usertype_storage_base&>(*this).set<T>(L, std::forward<Key>(key), std::forward<Value>(value));
 | |
| 	}
 | |
| 
 | |
| 	template <typename T>
 | |
| 	inline usertype_storage<T>& create_usertype_storage(lua_State* L) {
 | |
| 		const char* gcmetakey = &usertype_traits<T>::gc_table()[0];
 | |
| 
 | |
| 		// Make sure userdata's memory is properly in lua first,
 | |
| 		// otherwise all the light userdata we make later will become invalid
 | |
| 		int usertype_storage_push_count = stack::push<user<usertype_storage<T>>>(L, no_metatable, L);
 | |
| 		stack_reference usertype_storage_ref(L, -usertype_storage_push_count);
 | |
| 
 | |
| 		// create and push onto the stack a table to use as metatable for this GC
 | |
| 		// we create a metatable to attach to the regular gc_table
 | |
| 		// so that the destructor is called for the usertype storage
 | |
| 		int usertype_storage_metatabe_count = stack::push(L, new_table(0, 1));
 | |
| 		stack_reference usertype_storage_metatable(L, -usertype_storage_metatabe_count);
 | |
| 		// set the destruction routine on the metatable
 | |
| 		stack::set_field(L, meta_function::garbage_collect, &destruct_usertype_storage<T>, usertype_storage_metatable.stack_index());
 | |
| 		// set the metatable on the usertype storage userdata
 | |
| 		stack::set_field(L, metatable_key, usertype_storage_metatable, usertype_storage_ref.stack_index());
 | |
| 		usertype_storage_metatable.pop();
 | |
| 
 | |
| 		// set the usertype storage and its metatable
 | |
| 		// into the global table...
 | |
| 		stack::set_field<true>(L, gcmetakey, usertype_storage_ref);
 | |
| 		usertype_storage_ref.pop();
 | |
| 
 | |
| 		// then retrieve the lua-stored version so we have a well-pinned
 | |
| 		// reference that does not die
 | |
| 		stack::get_field<true>(L, gcmetakey);
 | |
| 		usertype_storage<T>& target_umt = stack::pop<user<usertype_storage<T>>>(L);
 | |
| 		return target_umt;
 | |
| 	}
 | |
| 
 | |
| 	inline optional<usertype_storage_base&> maybe_get_usertype_storage_base(lua_State* L, int index) {
 | |
| 		stack::record tracking;
 | |
| 		if (!stack::check<user<usertype_storage_base>>(L, index)) {
 | |
| 			return nullopt;
 | |
| 		}
 | |
| 		usertype_storage_base& target_umt = stack::stack_detail::unchecked_unqualified_get<user<usertype_storage_base>>(L, -1, tracking);
 | |
| 		return target_umt;
 | |
| 	}
 | |
| 
 | |
| 	inline optional<usertype_storage_base&> maybe_get_usertype_storage_base(lua_State* L, const char* gcmetakey) {
 | |
| 		stack::get_field<true>(L, gcmetakey);
 | |
| 		auto maybe_storage = maybe_get_usertype_storage_base(L, lua_gettop(L));
 | |
| 		lua_pop(L, 1);
 | |
| 		return maybe_storage;
 | |
| 	}
 | |
| 
 | |
| 	inline usertype_storage_base& get_usertype_storage_base(lua_State* L, const char* gcmetakey) {
 | |
| 		stack::get_field<true>(L, gcmetakey);
 | |
| 		stack::record tracking;
 | |
| 		usertype_storage_base& target_umt = stack::stack_detail::unchecked_unqualified_get<user<usertype_storage_base>>(L, -1, tracking);
 | |
| 		lua_pop(L, 1);
 | |
| 		return target_umt;
 | |
| 	}
 | |
| 
 | |
| 	template <typename T>
 | |
| 	inline optional<usertype_storage<T>&> maybe_get_usertype_storage(lua_State* L) {
 | |
| 		const char* gcmetakey = &usertype_traits<T>::gc_table()[0];
 | |
| 		stack::get_field<true>(L, gcmetakey);
 | |
| 		int target = lua_gettop(L);
 | |
| 		if (!stack::check<user<usertype_storage<T>>>(L, target)) {
 | |
| 			return nullopt;
 | |
| 		}
 | |
| 		usertype_storage<T>& target_umt = stack::pop<user<usertype_storage<T>>>(L);
 | |
| 		return target_umt;
 | |
| 	}
 | |
| 
 | |
| 	template <typename T>
 | |
| 	inline usertype_storage<T>& get_usertype_storage(lua_State* L) {
 | |
| 		const char* gcmetakey = &usertype_traits<T>::gc_table()[0];
 | |
| 		stack::get_field<true>(L, gcmetakey);
 | |
| 		usertype_storage<T>& target_umt = stack::pop<user<usertype_storage<T>>>(L);
 | |
| 		return target_umt;
 | |
| 	}
 | |
| 
 | |
| 	template <typename T>
 | |
| 	inline void delete_usertype_storage(lua_State* L) {
 | |
| 		using u_traits = usertype_traits<T>;
 | |
| #if 0
 | |
| 		using u_const_traits = usertype_traits<const T>;
 | |
| 		using u_unique_traits = usertype_traits<detail::unique_usertype<T>>;
 | |
| 		using u_ref_traits = usertype_traits<T*>;
 | |
| 		using u_const_ref_traits = usertype_traits<T const*>;
 | |
| #endif
 | |
| 		using uts = usertype_storage<T>;
 | |
| 
 | |
| 		const char* gcmetakey = &u_traits::gc_table()[0];
 | |
| 		stack::get_field<true>(L, gcmetakey);
 | |
| 		if (!stack::check<user<uts>>(L)) {
 | |
| 			lua_pop(L, 1);
 | |
| 			return;
 | |
| 		}
 | |
| 		usertype_storage<T>& target_umt = stack::pop<user<usertype_storage<T>>>(L);
 | |
| 		target_umt.clear();
 | |
| 
 | |
| 		// get the registry
 | |
| #if 0
 | |
| 		stack_reference registry(L, raw_index(LUA_REGISTRYINDEX));
 | |
| 		registry.push();
 | |
| 		// eliminate all named entries for this usertype
 | |
| 		// in the registry (luaL_newmetatable does
 | |
| 		// [name] = new table
 | |
| 		// in registry upon creation
 | |
| 		stack::set_field(L, &u_traits::metatable()[0], lua_nil, registry.stack_index());
 | |
| 		stack::set_field(L, &u_const_traits::metatable()[0], lua_nil, registry.stack_index());
 | |
| 		stack::set_field(L, &u_const_ref_traits::metatable()[0], lua_nil, registry.stack_index());
 | |
| 		stack::set_field(L, &u_ref_traits::metatable()[0], lua_nil, registry.stack_index());
 | |
| 		stack::set_field(L, &u_unique_traits::metatable()[0], lua_nil, registry.stack_index());
 | |
| 		registry.pop();
 | |
| #endif // Registry Cleanout
 | |
| 
 | |
| 		stack::set_field<true>(L, gcmetakey, lua_nil);
 | |
| 	}
 | |
| 
 | |
| 	template <typename T>
 | |
| 	inline int register_usertype(lua_State* L, automagic_enrollments enrollments = {}) {
 | |
| 		using u_traits = usertype_traits<T>;
 | |
| 		using u_const_traits = usertype_traits<const T>;
 | |
| 		using u_unique_traits = usertype_traits<detail::unique_usertype<T>>;
 | |
| 		using u_ref_traits = usertype_traits<T*>;
 | |
| 		using u_const_ref_traits = usertype_traits<T const*>;
 | |
| 		using uts = usertype_storage<T>;
 | |
| 
 | |
| 		// always have __new_index point to usertype_storage method
 | |
| 		// have __index always point to regular fast-lookup
 | |
| 		// meta_method table
 | |
| 		// if __new_index is invoked, runtime-swap
 | |
| 		// to slow __index if necessary
 | |
| 		// (no speed penalty because function calls
 | |
| 		// are all read-only -- only depend on __index
 | |
| 		// to retrieve function and then call happens VIA Lua)
 | |
| 
 | |
| 		// __type entry:
 | |
| 		// table contains key -> value lookup,
 | |
| 		// where key is entry in metatable
 | |
| 		// and value is type information as a string as
 | |
| 		// best as we can give it
 | |
| 
 | |
| 		// name entry:
 | |
| 		// string that contains raw class name,
 | |
| 		// as defined from C++
 | |
| 
 | |
| 		// is entry:
 | |
| 		// checks if argument supplied is of type T
 | |
| 
 | |
| 		// __storage entry:
 | |
| 		// a light userdata pointing to the storage
 | |
| 		// mostly to enable this new abstraction
 | |
| 		// to not require the type name `T`
 | |
| 		// to get at the C++ usertype storage within
 | |
| 
 | |
| 		// we then let typical definitions potentially override these intrinsics
 | |
| 		// it's the user's fault if they override things or screw them up:
 | |
| 		// these names have been reserved and documented since sol3
 | |
| 
 | |
| 		// STEP 0: tell the old usertype (if it exists)
 | |
| 		// to fuck off
 | |
| 		delete_usertype_storage<T>(L);
 | |
| 
 | |
| 		// STEP 1: Create backing store for usertype storage
 | |
| 		// Pretty much the most important step.
 | |
| 		// STEP 2: Create Lua tables used for fast method indexing.
 | |
| 		// This is done inside of the storage table's constructor
 | |
| 		usertype_storage<T>& storage = create_usertype_storage<T>(L);
 | |
| 		usertype_storage_base& base_storage = storage;
 | |
| 		void* light_storage = static_cast<void*>(&storage);
 | |
| 		void* light_base_storage = static_cast<void*>(&base_storage);
 | |
| 
 | |
| 		// STEP 3: set up GC escape hatch table entirely
 | |
| 		storage.gc_names_table.push();
 | |
| 		stack_reference gnt(L, -1);
 | |
| 		stack::set_field(L, submetatable_type::named, &u_traits::gc_table()[0], gnt.stack_index());
 | |
| 		stack::set_field(L, submetatable_type::const_value, &u_const_traits::metatable()[0], gnt.stack_index());
 | |
| 		stack::set_field(L, submetatable_type::const_reference, &u_const_ref_traits::metatable()[0], gnt.stack_index());
 | |
| 		stack::set_field(L, submetatable_type::reference, &u_ref_traits::metatable()[0], gnt.stack_index());
 | |
| 		stack::set_field(L, submetatable_type::unique, &u_unique_traits::metatable()[0], gnt.stack_index());
 | |
| 		stack::set_field(L, submetatable_type::value, &u_traits::metatable()[0], gnt.stack_index());
 | |
| 		gnt.pop();
 | |
| 
 | |
| 		// STEP 4: add some useful information to the type table
 | |
| 		stack_reference stacked_type_table(L, -storage.type_table.push());
 | |
| 		stack::set_field(L, "name", detail::demangle<T>(), stacked_type_table.stack_index());
 | |
| 		stack::set_field(L, "is", &detail::is_check<T>, stacked_type_table.stack_index());
 | |
| 		stacked_type_table.pop();
 | |
| 
 | |
| 		// STEP 5: create and hook up metatable,
 | |
| 		// add intrinsics
 | |
| 		// this one is the actual meta-handling table,
 | |
| 		// the next one will be the one for
 | |
| 		int for_each_backing_metatable_calls = 0;
 | |
| 		auto for_each_backing_metatable = [&](lua_State* L, submetatable_type smt, reference& fast_index_table) {
 | |
| 			// Pointer types, AKA "references" from C++
 | |
| 			const char* metakey = nullptr;
 | |
| 			switch (smt) {
 | |
| 			case submetatable_type::const_value:
 | |
| 				metakey = &u_const_traits::metatable()[0];
 | |
| 				break;
 | |
| 			case submetatable_type::reference:
 | |
| 				metakey = &u_ref_traits::metatable()[0];
 | |
| 				break;
 | |
| 			case submetatable_type::unique:
 | |
| 				metakey = &u_unique_traits::metatable()[0];
 | |
| 				break;
 | |
| 			case submetatable_type::const_reference:
 | |
| 				metakey = &u_const_ref_traits::metatable()[0];
 | |
| 				break;
 | |
| 			case submetatable_type::named:
 | |
| 				metakey = &u_traits::user_metatable()[0];
 | |
| 				break;
 | |
| 			case submetatable_type::value:
 | |
| 			default:
 | |
| 				metakey = &u_traits::metatable()[0];
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			luaL_newmetatable(L, metakey);
 | |
| 			if (smt == submetatable_type::named) {
 | |
| 				// the named table itself
 | |
| 				// gets the associated name value
 | |
| 				storage.named_metatable = reference(L, -1);
 | |
| 				lua_pop(L, 1);
 | |
| 				// but the thing we perform the methods on
 | |
| 				// is still the metatable of the named
 | |
| 				// table
 | |
| 				lua_createtable(L, 0, 6);
 | |
| 			}
 | |
| 			stack_reference t(L, -1);
 | |
| 			fast_index_table = reference(t);
 | |
| 			stack::set_field<false, true>(L, meta_function::type, storage.type_table, t.stack_index());
 | |
| 			if constexpr (std::is_destructible_v<T>) {
 | |
| 				// destructible: serialize default
 | |
| 				// destructor here
 | |
| 				switch (smt) {
 | |
| 				case submetatable_type::const_reference:
 | |
| 				case submetatable_type::reference:
 | |
| 				case submetatable_type::named:
 | |
| 					break;
 | |
| 				case submetatable_type::unique:
 | |
| 					stack::set_field<false, true>(L, meta_function::garbage_collect, &detail::unique_destruct<T>, t.stack_index());
 | |
| 					break;
 | |
| 				case submetatable_type::value:
 | |
| 				case submetatable_type::const_value:
 | |
| 				default:
 | |
| 					stack::set_field<false, true>(L, meta_function::garbage_collect, detail::make_destructor<T>(), t.stack_index());
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 			else {
 | |
| 				// not destructible: serialize a
 | |
| 				// "hey you messed up"
 | |
| 				// destructor
 | |
| 				switch (smt) {
 | |
| 				case submetatable_type::const_reference:
 | |
| 				case submetatable_type::reference:
 | |
| 				case submetatable_type::named:
 | |
| 					break;
 | |
| 				case submetatable_type::unique:
 | |
| 					stack::set_field<false, true>(L, meta_function::garbage_collect, &detail::cannot_destruct<T>, t.stack_index());
 | |
| 					break;
 | |
| 				case submetatable_type::value:
 | |
| 				case submetatable_type::const_value:
 | |
| 				default:
 | |
| 					stack::set_field<false, true>(L, meta_function::garbage_collect, &detail::cannot_destruct<T>, t.stack_index());
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			static_assert(sizeof(void*) <= sizeof(detail::inheritance_check_function),
 | |
| 				"The size of this data pointer is too small to fit the inheritance checking function: file a bug "
 | |
| 				"report.");
 | |
| 			static_assert(sizeof(void*) <= sizeof(detail::inheritance_cast_function),
 | |
| 				"The size of this data pointer is too small to fit the inheritance checking function: file a bug "
 | |
| 				"report.");
 | |
| 			stack::set_field<false, true>(L, detail::base_class_check_key(), reinterpret_cast<void*>(&detail::inheritance<T>::type_check), t.stack_index());
 | |
| 			stack::set_field<false, true>(L, detail::base_class_cast_key(), reinterpret_cast<void*>(&detail::inheritance<T>::type_cast), t.stack_index());
 | |
| 
 | |
| 			auto prop_fx = detail::properties_enrollment_allowed(for_each_backing_metatable_calls, storage.properties, enrollments);
 | |
| 			auto insert_fx = [&L, &t, &storage](meta_function mf, lua_CFunction reg) {
 | |
| 				stack::set_field<false, true>(L, mf, reg, t.stack_index());
 | |
| 				storage.properties[static_cast<int>(mf)] = true;
 | |
| 			};
 | |
| 			detail::insert_default_registrations<T>(insert_fx, prop_fx);
 | |
| 
 | |
| 			// There are no variables, so serialize the fast function stuff
 | |
| 			// be sure to reset the index stuff to the non-fast version
 | |
| 			// if the user ever adds something later!
 | |
| 			if (smt == submetatable_type::named) {
 | |
| 				// add escape hatch storage pointer and gc names
 | |
| 				stack::set_field<false, true>(L, meta_function::storage, light_base_storage, t.stack_index());
 | |
| 				stack::set_field<false, true>(L, meta_function::gc_names, storage.gc_names_table, t.stack_index());
 | |
| 
 | |
| 				// fancy new_indexing when using the named table
 | |
| 				{
 | |
| 					absolute_index named_metatable_index(L, -storage.named_metatable.push());
 | |
| 					stack::set_field<false, true>(L, metatable_key, t, named_metatable_index);
 | |
| 					storage.named_metatable.pop();
 | |
| 				}
 | |
| 				stack_reference stack_metametatable(L, -storage.named_index_table.push());
 | |
| 				stack::set_field<false, true>(L,
 | |
| 					meta_function::index,
 | |
| 					make_closure(uts::template meta_index_call<false>, nullptr, light_storage, light_base_storage, nullptr, toplevel_magic),
 | |
| 					stack_metametatable.stack_index());
 | |
| 				stack::set_field<false, true>(L,
 | |
| 					meta_function::new_index,
 | |
| 					make_closure(uts::template meta_index_call<true>, nullptr, light_storage, light_base_storage, nullptr, toplevel_magic),
 | |
| 					stack_metametatable.stack_index());
 | |
| 				stack_metametatable.pop();
 | |
| 			}
 | |
| 			else {
 | |
| 				// otherwise just plain for index,
 | |
| 				// and elaborated for new_index
 | |
| 				stack::set_field<false, true>(L, meta_function::index, t, t.stack_index());
 | |
| 				stack::set_field<false, true>(L,
 | |
| 					meta_function::new_index,
 | |
| 					make_closure(uts::template index_call<true>, nullptr, light_storage, light_base_storage, nullptr, toplevel_magic),
 | |
| 					t.stack_index());
 | |
| 				storage.is_using_new_index = true;
 | |
| 			}
 | |
| 
 | |
| 			++for_each_backing_metatable_calls;
 | |
| 			fast_index_table = reference(L, t);
 | |
| 			t.pop();
 | |
| 		};
 | |
| 
 | |
| 		storage.for_each_table(L, for_each_backing_metatable);
 | |
| 
 | |
| 		// can only use set AFTER we initialize all the metatables
 | |
| 		if constexpr (std::is_default_constructible_v<T>) {
 | |
| 			if (enrollments.default_constructor) {
 | |
| 				storage.set(L, meta_function::construct, constructors<T()>());
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// return the named metatable we want names linked into
 | |
| 		storage.named_metatable.push();
 | |
| 		return 1;
 | |
| 	}
 | |
| }} // namespace sol::u_detail
 | |
| 
 | |
| // end of sol/usertype_storage.hpp
 | |
| 
 | |
| // beginning of sol/usertype_proxy.hpp
 | |
| 
 | |
| namespace sol {
 | |
| 	template <typename Table, typename Key>
 | |
| 	struct usertype_proxy : public proxy_base<usertype_proxy<Table, Key>> {
 | |
| 	private:
 | |
| 		using key_type = detail::proxy_key_t<Key>;
 | |
| 
 | |
| 		template <typename T, std::size_t... I>
 | |
| 		decltype(auto) tuple_get(std::index_sequence<I...>) const & {
 | |
| 			return tbl.template traverse_get<T>(std::get<I>(key)...);
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, std::size_t... I>
 | |
| 		decltype(auto) tuple_get(std::index_sequence<I...>) && {
 | |
| 			return tbl.template traverse_get<T>(std::get<I>(std::move(key))...);
 | |
| 		}
 | |
| 
 | |
| 		template <std::size_t... I, typename T>
 | |
| 		void tuple_set(std::index_sequence<I...>, T&& value) & {
 | |
| 			if constexpr (sizeof...(I) > 1) {
 | |
| 				tbl.traverse_set(std::get<I>(key)..., std::forward<T>(value));
 | |
| 			}
 | |
| 			else {
 | |
| 				tbl.set(std::get<I>(key)..., std::forward<T>(value));
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		template <std::size_t... I, typename T>
 | |
| 		void tuple_set(std::index_sequence<I...>, T&& value) && {
 | |
| 			if constexpr (sizeof...(I) > 1) {
 | |
| 				tbl.traverse_set(std::get<I>(std::move(key))..., std::forward<T>(value));
 | |
| 			}
 | |
| 			else {
 | |
| 				tbl.set(std::get<I>(std::move(key))..., std::forward<T>(value));
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 	public:
 | |
| 		Table tbl;
 | |
| 		key_type key;
 | |
| 
 | |
| 		template <typename T>
 | |
| 		usertype_proxy(Table table, T&& k)
 | |
| 		: tbl(table), key(std::forward<T>(k)) {
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		usertype_proxy& set(T&& item) & {
 | |
| 			using idx_seq = std::make_index_sequence<std::tuple_size_v<meta::unqualified_t<key_type>>>;
 | |
| 			tuple_set(idx_seq(), std::forward<T>(item));
 | |
| 			return *this;
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		usertype_proxy&& set(T&& item) && {
 | |
| 			using idx_seq = std::make_index_sequence<std::tuple_size_v<meta::unqualified_t<key_type>>>;
 | |
| 			std::move(*this).tuple_set(idx_seq(), std::forward<T>(item));
 | |
| 			return std::move(*this);
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		usertype_proxy& operator=(T&& other) & {
 | |
| 			return set(std::forward<T>(other));
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		usertype_proxy&& operator=(T&& other) && {
 | |
| 			return std::move(*this).set(std::forward<T>(other));
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		usertype_proxy& operator=(std::initializer_list<T> other) & {
 | |
| 			return set(std::move(other));
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		usertype_proxy&& operator=(std::initializer_list<T> other) && {
 | |
| 			return std::move(*this).set(std::move(other));
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		decltype(auto) get() const& {
 | |
| 			using idx_seq = std::make_index_sequence<std::tuple_size_v<meta::unqualified_t<key_type>>>;
 | |
| 			return tuple_get<T>(idx_seq());
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		decltype(auto) get() && {
 | |
| 			using idx_seq = std::make_index_sequence<std::tuple_size_v<meta::unqualified_t<key_type>>>;
 | |
| 			return std::move(*this).template tuple_get<T>(idx_seq());
 | |
| 		}
 | |
| 
 | |
| 		template <typename K>
 | |
| 		decltype(auto) operator[](K&& k) const& {
 | |
| 			auto keys = meta::tuplefy(key, std::forward<K>(k));
 | |
| 			return usertype_proxy<Table, decltype(keys)>(tbl, std::move(keys));
 | |
| 		}
 | |
| 
 | |
| 		template <typename K>
 | |
| 		decltype(auto) operator[](K&& k) & {
 | |
| 			auto keys = meta::tuplefy(key, std::forward<K>(k));
 | |
| 			return usertype_proxy<Table, decltype(keys)>(tbl, std::move(keys));
 | |
| 		}
 | |
| 
 | |
| 		template <typename K>
 | |
| 		decltype(auto) operator[](K&& k) && {
 | |
| 			auto keys = meta::tuplefy(std::move(key), std::forward<K>(k));
 | |
| 			return usertype_proxy<Table, decltype(keys)>(tbl, std::move(keys));
 | |
| 		}
 | |
| 
 | |
| 		template <typename... Ret, typename... Args>
 | |
| 		decltype(auto) call(Args&&... args) {
 | |
| #if !defined(__clang__) && defined(_MSC_FULL_VER) && _MSC_FULL_VER >= 191200000
 | |
| 			// MSVC is ass sometimes
 | |
| 			return get<function>().call<Ret...>(std::forward<Args>(args)...);
 | |
| #else
 | |
| 			return get<function>().template call<Ret...>(std::forward<Args>(args)...);
 | |
| #endif
 | |
| 		}
 | |
| 
 | |
| 		template <typename... Args>
 | |
| 		decltype(auto) operator()(Args&&... args) {
 | |
| 			return call<>(std::forward<Args>(args)...);
 | |
| 		}
 | |
| 
 | |
| 		bool valid() const {
 | |
| 			auto pp = stack::push_pop(tbl);
 | |
| 			auto p = stack::probe_get_field<std::is_same<meta::unqualified_t<Table>, global_table>::value>(lua_state(), key, lua_gettop(lua_state()));
 | |
| 			lua_pop(lua_state(), p.levels);
 | |
| 			return p;
 | |
| 		}
 | |
| 
 | |
| 		int push() const noexcept {
 | |
| 			return push(this->lua_state());
 | |
| 		}
 | |
| 
 | |
| 		int push(lua_State* L) const noexcept {
 | |
| 			return get<reference>().push(L);
 | |
| 		}
 | |
| 
 | |
| 		type get_type() const {
 | |
| 			type t = type::none;
 | |
| 			auto pp = stack::push_pop(tbl);
 | |
| 			auto p = stack::probe_get_field<std::is_same<meta::unqualified_t<Table>, global_table>::value>(lua_state(), key, lua_gettop(lua_state()));
 | |
| 			if (p) {
 | |
| 				t = type_of(lua_state(), -1);
 | |
| 			}
 | |
| 			lua_pop(lua_state(), p.levels);
 | |
| 			return t;
 | |
| 		}
 | |
| 
 | |
| 		lua_State* lua_state() const {
 | |
| 			return tbl.lua_state();
 | |
| 		}
 | |
| 	};
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/usertype_proxy.hpp
 | |
| 
 | |
| // beginning of sol/metatable.hpp
 | |
| 
 | |
| // beginning of sol/table_core.hpp
 | |
| 
 | |
| // beginning of sol/table_proxy.hpp
 | |
| 
 | |
| namespace sol {
 | |
| 
 | |
| 	template <typename Table, typename Key>
 | |
| 	struct table_proxy : public proxy_base<table_proxy<Table, Key>> {
 | |
| 	private:
 | |
| 		using key_type = detail::proxy_key_t<Key>;
 | |
| 
 | |
| 		template <typename T, std::size_t... I>
 | |
| 		decltype(auto) tuple_get(std::index_sequence<I...>) const& {
 | |
| 			return tbl.template traverse_get<T>(std::get<I>(key)...);
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, std::size_t... I>
 | |
| 		decltype(auto) tuple_get(std::index_sequence<I...>) && {
 | |
| 			return tbl.template traverse_get<T>(std::get<I>(std::move(key))...);
 | |
| 		}
 | |
| 
 | |
| 		template <std::size_t... I, typename T>
 | |
| 		void tuple_set(std::index_sequence<I...>, T&& value) & {
 | |
| 			tbl.traverse_set(std::get<I>(key)..., std::forward<T>(value));
 | |
| 		}
 | |
| 
 | |
| 		template <std::size_t... I, typename T>
 | |
| 		void tuple_set(std::index_sequence<I...>, T&& value) && {
 | |
| 			tbl.traverse_set(std::get<I>(std::move(key))..., std::forward<T>(value));
 | |
| 		}
 | |
| 
 | |
| 		auto setup_table(std::true_type) {
 | |
| 			auto p = stack::probe_get_field<std::is_same_v<meta::unqualified_t<Table>, global_table>>(lua_state(), key, tbl.stack_index());
 | |
| 			lua_pop(lua_state(), p.levels);
 | |
| 			return p;
 | |
| 		}
 | |
| 
 | |
| 		bool is_valid(std::false_type) {
 | |
| 			auto pp = stack::push_pop(tbl);
 | |
| 			auto p = stack::probe_get_field<std::is_same_v<meta::unqualified_t<Table>, global_table>>(lua_state(), key, lua_gettop(lua_state()));
 | |
| 			lua_pop(lua_state(), p.levels);
 | |
| 			return p;
 | |
| 		}
 | |
| 
 | |
| 	public:
 | |
| 		Table tbl;
 | |
| 		key_type key;
 | |
| 
 | |
| 		template <typename T>
 | |
| 		table_proxy(Table table, T&& k) : tbl(table), key(std::forward<T>(k)) {
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		table_proxy& set(T&& item) & {
 | |
| 			tuple_set(std::make_index_sequence<std::tuple_size_v<meta::unqualified_t<key_type>>>(), std::forward<T>(item));
 | |
| 			return *this;
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		table_proxy&& set(T&& item) && {
 | |
| 			tuple_set(std::make_index_sequence<std::tuple_size_v<meta::unqualified_t<key_type>>>(), std::forward<T>(item));
 | |
| 			return std::move(*this);
 | |
| 		}
 | |
| 
 | |
| 		template <typename... Args>
 | |
| 		table_proxy& set_function(Args&&... args) & {
 | |
| 			tbl.set_function(key, std::forward<Args>(args)...);
 | |
| 			return *this;
 | |
| 		}
 | |
| 
 | |
| 		template <typename... Args>
 | |
| 		table_proxy&& set_function(Args&&... args) && {
 | |
| 			tbl.set_function(std::move(key), std::forward<Args>(args)...);
 | |
| 			return std::move(*this);
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		table_proxy& operator=(T&& other) & {
 | |
| 			using Tu = meta::unwrap_unqualified_t<T>;
 | |
| 			if constexpr (!is_lua_reference_or_proxy_v<Tu> && meta::is_callable_v<Tu>) {
 | |
| 				return set_function(std::forward<T>(other));
 | |
| 			}
 | |
| 			else {
 | |
| 				return set(std::forward<T>(other));
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		table_proxy&& operator=(T&& other) && {
 | |
| 			using Tu = meta::unwrap_unqualified_t<T>;
 | |
| 			if constexpr (!is_lua_reference_or_proxy_v<Tu> && meta::is_callable_v<Tu>) {
 | |
| 				return std::move(*this).set_function(std::forward<T>(other));
 | |
| 			}
 | |
| 			else {
 | |
| 				return std::move(*this).set(std::forward<T>(other));
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		table_proxy& operator=(std::initializer_list<T> other) & {
 | |
| 			return set(std::move(other));
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		table_proxy&& operator=(std::initializer_list<T> other) && {
 | |
| 			return std::move(*this).set(std::move(other));
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		decltype(auto) get() const& {
 | |
| 			using idx_seq = std::make_index_sequence<std::tuple_size_v<meta::unqualified_t<key_type>>>;
 | |
| 			return tuple_get<T>(idx_seq());
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		decltype(auto) get() && {
 | |
| 			using idx_seq = std::make_index_sequence<std::tuple_size_v<meta::unqualified_t<key_type>>>;
 | |
| 			return std::move(*this).template tuple_get<T>(idx_seq());
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		decltype(auto) get_or(T&& otherwise) const {
 | |
| 			typedef decltype(get<T>()) U;
 | |
| 			optional<U> option = get<optional<U>>();
 | |
| 			if (option) {
 | |
| 				return static_cast<U>(option.value());
 | |
| 			}
 | |
| 			return static_cast<U>(std::forward<T>(otherwise));
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, typename D>
 | |
| 		decltype(auto) get_or(D&& otherwise) const {
 | |
| 			optional<T> option = get<optional<T>>();
 | |
| 			if (option) {
 | |
| 				return static_cast<T>(option.value());
 | |
| 			}
 | |
| 			return static_cast<T>(std::forward<D>(otherwise));
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		decltype(auto) get_or_create() {
 | |
| 			return get_or_create<T>(new_table());
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, typename Otherwise>
 | |
| 		decltype(auto) get_or_create(Otherwise&& other) {
 | |
| 			if (!this->valid()) {
 | |
| 				this->set(std::forward<Otherwise>(other));
 | |
| 			}
 | |
| 			return get<T>();
 | |
| 		}
 | |
| 
 | |
| 		template <typename K>
 | |
| 		decltype(auto) operator[](K&& k) const& {
 | |
| 			auto keys = meta::tuplefy(key, std::forward<K>(k));
 | |
| 			return table_proxy<Table, decltype(keys)>(tbl, std::move(keys));
 | |
| 		}
 | |
| 
 | |
| 		template <typename K>
 | |
| 		decltype(auto) operator[](K&& k) & {
 | |
| 			auto keys = meta::tuplefy(key, std::forward<K>(k));
 | |
| 			return table_proxy<Table, decltype(keys)>(tbl, std::move(keys));
 | |
| 		}
 | |
| 
 | |
| 		template <typename K>
 | |
| 		decltype(auto) operator[](K&& k) && {
 | |
| 			auto keys = meta::tuplefy(std::move(key), std::forward<K>(k));
 | |
| 			return table_proxy<Table, decltype(keys)>(tbl, std::move(keys));
 | |
| 		}
 | |
| 
 | |
| 		template <typename... Ret, typename... Args>
 | |
| 		decltype(auto) call(Args&&... args) {
 | |
| 			lua_State* L = this->lua_state();
 | |
| 			push(L);
 | |
| 			int idx = lua_gettop(L);
 | |
| 			stack_aligned_function func(L, idx);
 | |
| 			return func.call<Ret...>(std::forward<Args>(args)...);
 | |
| 		}
 | |
| 
 | |
| 		template <typename... Args>
 | |
| 		decltype(auto) operator()(Args&&... args) {
 | |
| 			return call<>(std::forward<Args>(args)...);
 | |
| 		}
 | |
| 
 | |
| 		bool valid() const {
 | |
| 			auto pp = stack::push_pop(tbl);
 | |
| 			auto p = stack::probe_get_field<std::is_same<meta::unqualified_t<Table>, global_table>::value>(lua_state(), key, lua_gettop(lua_state()));
 | |
| 			lua_pop(lua_state(), p.levels);
 | |
| 			return p;
 | |
| 		}
 | |
| 
 | |
| 		int push() const noexcept {
 | |
| 			return push(this->lua_state());
 | |
| 		}
 | |
| 
 | |
| 		int push(lua_State* L) const noexcept {
 | |
| 			if constexpr (std::is_same_v<meta::unqualified_t<Table>, global_table> || is_stack_table_v<meta::unqualified_t<Table>>) {
 | |
| 				auto pp = stack::push_pop<true>(tbl);
 | |
| 				int tableindex = pp.index_of(tbl);
 | |
| 				int top_index = lua_gettop(L);
 | |
| 				stack::get_field<true>(lua_state(), key, tableindex);
 | |
| 				lua_replace(L, top_index + 1);
 | |
| 				lua_settop(L, top_index + 1);
 | |
| 			}
 | |
| 			else {
 | |
| 				auto pp = stack::push_pop<false>(tbl);
 | |
| 				int tableindex = pp.index_of(tbl);
 | |
| 				int aftertableindex = lua_gettop(L);
 | |
| 				stack::get_field<false>(lua_state(), key, tableindex);
 | |
| 				lua_replace(L, tableindex);
 | |
| 				lua_settop(L, aftertableindex + 1);
 | |
| 			}
 | |
| 			return 1;
 | |
| 		}
 | |
| 
 | |
| 		type get_type() const {
 | |
| 			type t = type::none;
 | |
| 			auto pp = stack::push_pop(tbl);
 | |
| 			auto p = stack::probe_get_field<std::is_same<meta::unqualified_t<Table>, global_table>::value>(lua_state(), key, lua_gettop(lua_state()));
 | |
| 			if (p) {
 | |
| 				t = type_of(lua_state(), -1);
 | |
| 			}
 | |
| 			lua_pop(lua_state(), p.levels);
 | |
| 			return t;
 | |
| 		}
 | |
| 
 | |
| 		lua_State* lua_state() const {
 | |
| 			return tbl.lua_state();
 | |
| 		}
 | |
| 
 | |
| 		table_proxy& force() {
 | |
| 			if (!this->valid()) {
 | |
| 				this->set(new_table());
 | |
| 			}
 | |
| 			return *this;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename Table, typename Key, typename T>
 | |
| 	inline bool operator==(T&& left, const table_proxy<Table, Key>& right) {
 | |
| 		using G = decltype(stack::get<T>(nullptr, 0));
 | |
| 		return right.template get<optional<G>>() == left;
 | |
| 	}
 | |
| 
 | |
| 	template <typename Table, typename Key, typename T>
 | |
| 	inline bool operator==(const table_proxy<Table, Key>& right, T&& left) {
 | |
| 		using G = decltype(stack::get<T>(nullptr, 0));
 | |
| 		return right.template get<optional<G>>() == left;
 | |
| 	}
 | |
| 
 | |
| 	template <typename Table, typename Key, typename T>
 | |
| 	inline bool operator!=(T&& left, const table_proxy<Table, Key>& right) {
 | |
| 		using G = decltype(stack::get<T>(nullptr, 0));
 | |
| 		return right.template get<optional<G>>() != left;
 | |
| 	}
 | |
| 
 | |
| 	template <typename Table, typename Key, typename T>
 | |
| 	inline bool operator!=(const table_proxy<Table, Key>& right, T&& left) {
 | |
| 		using G = decltype(stack::get<T>(nullptr, 0));
 | |
| 		return right.template get<optional<G>>() != left;
 | |
| 	}
 | |
| 
 | |
| 	template <typename Table, typename Key>
 | |
| 	inline bool operator==(lua_nil_t, const table_proxy<Table, Key>& right) {
 | |
| 		return !right.valid();
 | |
| 	}
 | |
| 
 | |
| 	template <typename Table, typename Key>
 | |
| 	inline bool operator==(const table_proxy<Table, Key>& right, lua_nil_t) {
 | |
| 		return !right.valid();
 | |
| 	}
 | |
| 
 | |
| 	template <typename Table, typename Key>
 | |
| 	inline bool operator!=(lua_nil_t, const table_proxy<Table, Key>& right) {
 | |
| 		return right.valid();
 | |
| 	}
 | |
| 
 | |
| 	template <typename Table, typename Key>
 | |
| 	inline bool operator!=(const table_proxy<Table, Key>& right, lua_nil_t) {
 | |
| 		return right.valid();
 | |
| 	}
 | |
| 
 | |
| 	template <bool b>
 | |
| 	template <typename Super>
 | |
| 	basic_reference<b>& basic_reference<b>::operator=(proxy_base<Super>&& r) {
 | |
| 		basic_reference<b> v = r;
 | |
| 		this->operator=(std::move(v));
 | |
| 		return *this;
 | |
| 	}
 | |
| 
 | |
| 	template <bool b>
 | |
| 	template <typename Super>
 | |
| 	basic_reference<b>& basic_reference<b>::operator=(const proxy_base<Super>& r) {
 | |
| 		basic_reference<b> v = r;
 | |
| 		this->operator=(std::move(v));
 | |
| 		return *this;
 | |
| 	}
 | |
| 
 | |
| 	namespace stack {
 | |
| 		template <typename Table, typename Key>
 | |
| 		struct unqualified_pusher<table_proxy<Table, Key>> {
 | |
| 			static int push(lua_State* L, const table_proxy<Table, Key>& p) {
 | |
| 				return p.push(L);
 | |
| 			}
 | |
| 		};
 | |
| 	} // namespace stack
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/table_proxy.hpp
 | |
| 
 | |
| // beginning of sol/table_iterator.hpp
 | |
| 
 | |
| #include <iterator>
 | |
| 
 | |
| namespace sol {
 | |
| 
 | |
| 	template <typename reference_type>
 | |
| 	class basic_table_iterator {
 | |
| 	public:
 | |
| 		typedef object key_type;
 | |
| 		typedef object mapped_type;
 | |
| 		typedef std::pair<object, object> value_type;
 | |
| 		typedef std::input_iterator_tag iterator_category;
 | |
| 		typedef std::ptrdiff_t difference_type;
 | |
| 		typedef value_type* pointer;
 | |
| 		typedef value_type& reference;
 | |
| 		typedef const value_type& const_reference;
 | |
| 
 | |
| 	private:
 | |
| 		std::pair<object, object> kvp;
 | |
| 		reference_type ref;
 | |
| 		int tableidx = 0;
 | |
| 		int keyidx = 0;
 | |
| 		std::ptrdiff_t idx = 0;
 | |
| 
 | |
| 	public:
 | |
| 		basic_table_iterator() : keyidx(-1), idx(-1) {
 | |
| 		}
 | |
| 
 | |
| 		basic_table_iterator(reference_type x) : ref(std::move(x)) {
 | |
| 			ref.push();
 | |
| 			tableidx = lua_gettop(ref.lua_state());
 | |
| 			stack::push(ref.lua_state(), lua_nil);
 | |
| 			this->operator++();
 | |
| 			if (idx == -1) {
 | |
| 				return;
 | |
| 			}
 | |
| 			--idx;
 | |
| 		}
 | |
| 
 | |
| 		basic_table_iterator& operator++() {
 | |
| 			if (idx == -1)
 | |
| 				return *this;
 | |
| 
 | |
| 			if (lua_next(ref.lua_state(), tableidx) == 0) {
 | |
| 				idx = -1;
 | |
| 				keyidx = -1;
 | |
| 				return *this;
 | |
| 			}
 | |
| 			++idx;
 | |
| 			kvp.first = object(ref.lua_state(), -2);
 | |
| 			kvp.second = object(ref.lua_state(), -1);
 | |
| 			lua_pop(ref.lua_state(), 1);
 | |
| 			// leave key on the stack
 | |
| 			keyidx = lua_gettop(ref.lua_state());
 | |
| 			return *this;
 | |
| 		}
 | |
| 
 | |
| 		basic_table_iterator operator++(int) {
 | |
| 			auto saved = *this;
 | |
| 			this->operator++();
 | |
| 			return saved;
 | |
| 		}
 | |
| 
 | |
| 		reference operator*() {
 | |
| 			return kvp;
 | |
| 		}
 | |
| 
 | |
| 		const_reference operator*() const {
 | |
| 			return kvp;
 | |
| 		}
 | |
| 
 | |
| 		bool operator==(const basic_table_iterator& right) const {
 | |
| 			return idx == right.idx;
 | |
| 		}
 | |
| 
 | |
| 		bool operator!=(const basic_table_iterator& right) const {
 | |
| 			return idx != right.idx;
 | |
| 		}
 | |
| 
 | |
| 		~basic_table_iterator() {
 | |
| 			if (keyidx != -1) {
 | |
| 				stack::remove(ref.lua_state(), keyidx, 1);
 | |
| 			}
 | |
| 			if (ref.lua_state() != nullptr && ref.valid()) {
 | |
| 				stack::remove(ref.lua_state(), tableidx, 1);
 | |
| 			}
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/table_iterator.hpp
 | |
| 
 | |
| namespace sol {
 | |
| 	namespace detail {
 | |
| 		template <std::size_t n>
 | |
| 		struct clean {
 | |
| 			lua_State* L;
 | |
| 			clean(lua_State* luastate) : L(luastate) {
 | |
| 			}
 | |
| 			~clean() {
 | |
| 				lua_pop(L, static_cast<int>(n));
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		struct ref_clean {
 | |
| 			lua_State* L;
 | |
| 			int& n;
 | |
| 			ref_clean(lua_State* luastate, int& n) : L(luastate), n(n) {
 | |
| 			}
 | |
| 			~ref_clean() {
 | |
| 				lua_pop(L, static_cast<int>(n));
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		inline int fail_on_newindex(lua_State* L) {
 | |
| 			return luaL_error(L, "sol: cannot modify the elements of an enumeration table");
 | |
| 		}
 | |
| 
 | |
| 	} // namespace detail
 | |
| 
 | |
| 	template <bool top_level, typename ref_t>
 | |
| 	class basic_table_core : public basic_object<ref_t> {
 | |
| 	private:
 | |
| 		using base_t = basic_object<ref_t>;
 | |
| 
 | |
| 		friend class state;
 | |
| 		friend class state_view;
 | |
| 		template <typename, typename>
 | |
| 		friend class basic_usertype;
 | |
| 		template <typename>
 | |
| 		friend class basic_metatable;
 | |
| 
 | |
| 		template <bool raw, typename... Ret, typename... Keys>
 | |
| 		decltype(auto) tuple_get(int table_index, Keys&&... keys) const {
 | |
| 			if constexpr (sizeof...(Ret) < 2) {
 | |
| 				return traverse_get_single_maybe_tuple<raw, Ret...>(table_index, std::forward<Keys>(keys)...);
 | |
| 			}
 | |
| 			else {
 | |
| 				using multi_ret = decltype(stack::pop<std::tuple<Ret...>>(nullptr));
 | |
| 				return multi_ret(traverse_get_single_maybe_tuple<raw, Ret>(table_index, std::forward<Keys>(keys))...);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		template <bool raw, typename Ret, size_t... I, typename Key>
 | |
| 		decltype(auto) traverse_get_single_tuple(int table_index, std::index_sequence<I...>, Key&& key) const {
 | |
| 			return traverse_get_single<raw, Ret>(table_index, std::get<I>(std::forward<Key>(key))...);
 | |
| 		}
 | |
| 
 | |
| 		template <bool raw, typename Ret, typename Key>
 | |
| 		decltype(auto) traverse_get_single_maybe_tuple(int table_index, Key&& key) const {
 | |
| 			if constexpr (meta::is_tuple_v<meta::unqualified_t<Key>>) {
 | |
| 				return traverse_get_single_tuple<raw, Ret>(
 | |
| 				     table_index, std::make_index_sequence<std::tuple_size_v<meta::unqualified_t<Key>>>(), std::forward<Key>(key));
 | |
| 			}
 | |
| 			else {
 | |
| 				return traverse_get_single<raw, Ret>(table_index, std::forward<Key>(key));
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		template <bool raw, typename Ret, typename... Keys>
 | |
| 		decltype(auto) traverse_get_single(int table_index, Keys&&... keys) const {
 | |
| 			constexpr static bool global = top_level && (meta::count_for_to_pack_v<1, meta::is_c_str, meta::unqualified_t<Keys>...> > 0);
 | |
| 			if constexpr (meta::is_optional_v<meta::unqualified_t<Ret>>) {
 | |
| 				int popcount = 0;
 | |
| 				detail::ref_clean c(base_t::lua_state(), popcount);
 | |
| 				return traverse_get_deep_optional<global, raw, detail::insert_mode::none, Ret>(popcount, table_index, std::forward<Keys>(keys)...);
 | |
| 			}
 | |
| 			else {
 | |
| 				detail::clean<sizeof...(Keys) - meta::count_for_pack_v<detail::is_insert_mode, meta::unqualified_t<Keys>...>> c(base_t::lua_state());
 | |
| 				return traverse_get_deep<global, raw, detail::insert_mode::none, Ret>(table_index, std::forward<Keys>(keys)...);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		template <bool raw, typename Pairs, std::size_t... I>
 | |
| 		void tuple_set(std::index_sequence<I...>, Pairs&& pairs) {
 | |
| 			constexpr static bool global = top_level
 | |
| 			     && (meta::count_even_for_pack_v<meta::is_c_str, meta::unqualified_t<decltype(std::get<I * 2>(std::forward<Pairs>(pairs)))>...> > 0);
 | |
| 			auto pp = stack::push_pop<global>(*this);
 | |
| 			int table_index = pp.index_of(*this);
 | |
| 			lua_State* L = base_t::lua_state();
 | |
| 			(void)table_index;
 | |
| 			(void)L;
 | |
| 			void(detail::swallow { (stack::set_field<(top_level), raw>(
 | |
| 			                             L, std::get<I * 2>(std::forward<Pairs>(pairs)), std::get<I * 2 + 1>(std::forward<Pairs>(pairs)), table_index),
 | |
| 			     0)... });
 | |
| 		}
 | |
| 
 | |
| 		template <bool global, bool raw, detail::insert_mode mode, typename T, typename Key, typename... Keys>
 | |
| 		decltype(auto) traverse_get_deep(int table_index, Key&& key, Keys&&... keys) const {
 | |
| 			if constexpr (std::is_same_v<meta::unqualified_t<Key>, create_if_nil_t>) {
 | |
| 				(void)key;
 | |
| 				return traverse_get_deep<false, raw, static_cast<detail::insert_mode>(mode | detail::insert_mode::create_if_nil), T>(
 | |
| 				     table_index, std::forward<Keys>(keys)...);
 | |
| 			}
 | |
| 			else {
 | |
| 				lua_State* L = base_t::lua_state();
 | |
| 				stack::get_field<global, raw>(L, std::forward<Key>(key), table_index);
 | |
| 				if constexpr (sizeof...(Keys) > 0) {
 | |
| 					if constexpr ((mode & detail::insert_mode::create_if_nil) == detail::insert_mode::create_if_nil) {
 | |
| 						type t = type_of(L, -1);
 | |
| 						if (t == type::lua_nil || t == type::none) {
 | |
| 							lua_pop(L, 1);
 | |
| 							stack::push(L, new_table(0, 0));
 | |
| 						}
 | |
| 					}
 | |
| 					return traverse_get_deep<false, raw, mode, T>(lua_gettop(L), std::forward<Keys>(keys)...);
 | |
| 				}
 | |
| 				else {
 | |
| 					if constexpr ((mode & detail::insert_mode::create_if_nil) == detail::insert_mode::create_if_nil) {
 | |
| 						type t = type_of(L, -1);
 | |
| 						if ((t == type::lua_nil || t == type::none) && (is_table_like_v<T>)) {
 | |
| 							lua_pop(L, 1);
 | |
| 							stack::push(L, new_table(0, 0));
 | |
| 						}
 | |
| 					}
 | |
| 					return stack::get<T>(L);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		template <bool global, bool raw, detail::insert_mode mode, typename T, typename Key, typename... Keys>
 | |
| 		decltype(auto) traverse_get_deep_optional(int& popcount, int table_index, Key&& key, Keys&&... keys) const {
 | |
| 			if constexpr (std::is_same_v<meta::unqualified_t<Key>, create_if_nil_t>) {
 | |
| 				constexpr detail::insert_mode new_mode = static_cast<detail::insert_mode>(mode | detail::insert_mode::create_if_nil);
 | |
| 				(void)key;
 | |
| 				return traverse_get_deep_optional<global, raw, new_mode, T>(popcount, table_index, std::forward<Keys>(keys)...);
 | |
| 			}
 | |
| 			else if constexpr (std::is_same_v<meta::unqualified_t<Key>, update_if_empty_t>) {
 | |
| 				constexpr detail::insert_mode new_mode = static_cast<detail::insert_mode>(mode | detail::insert_mode::update_if_empty);
 | |
| 				(void)key;
 | |
| 				return traverse_get_deep_optional<global, raw, new_mode, T>(popcount, table_index, std::forward<Keys>(keys)...);
 | |
| 			}
 | |
| 			else if constexpr (std::is_same_v<meta::unqualified_t<Key>, override_value_t>) {
 | |
| 				constexpr detail::insert_mode new_mode = static_cast<detail::insert_mode>(mode | detail::insert_mode::override_value);
 | |
| 				(void)key;
 | |
| 				return traverse_get_deep_optional<global, raw, new_mode, T>(popcount, table_index, std::forward<Keys>(keys)...);
 | |
| 			}
 | |
| 			else {
 | |
| 				if constexpr (sizeof...(Keys) > 0) {
 | |
| 					lua_State* L = base_t::lua_state();
 | |
| 					auto p = stack::probe_get_field<global, raw>(L, std::forward<Key>(key), table_index);
 | |
| 					popcount += p.levels;
 | |
| 					if (!p.success) {
 | |
| 						if constexpr ((mode & detail::insert_mode::create_if_nil) == detail::insert_mode::create_if_nil) {
 | |
| 							lua_pop(L, 1);
 | |
| 							constexpr bool is_seq = meta::count_for_to_pack_v<1, std::is_integral, Keys...> > 0;
 | |
| 							stack::push(L, new_table(static_cast<int>(is_seq), static_cast<int>(!is_seq)));
 | |
| 							stack::set_field<global, raw>(L, std::forward<Key>(key), stack_reference(L, -1), table_index);
 | |
| 						}
 | |
| 						else {
 | |
| 							return T(nullopt);
 | |
| 						}
 | |
| 					}
 | |
| 					return traverse_get_deep_optional<false, raw, mode, T>(popcount, lua_gettop(L), std::forward<Keys>(keys)...);
 | |
| 				}
 | |
| 				else {
 | |
| 					using R = decltype(stack::get<T>(nullptr));
 | |
| 					using value_type = typename meta::unqualified_t<R>::value_type;
 | |
| 					lua_State* L = base_t::lua_state();
 | |
| 					auto p = stack::probe_get_field<global, raw, value_type>(L, key, table_index);
 | |
| 					popcount += p.levels;
 | |
| 					if (!p.success) {
 | |
| 						if constexpr ((mode & detail::insert_mode::create_if_nil) == detail::insert_mode::create_if_nil) {
 | |
| 							lua_pop(L, 1);
 | |
| 							stack::push(L, new_table(0, 0));
 | |
| 							stack::set_field<global, raw>(L, std::forward<Key>(key), stack_reference(L, -1), table_index);
 | |
| 							if (stack::check<value_type>(L, lua_gettop(L), no_panic)) {
 | |
| 								return stack::get<T>(L);
 | |
| 							}
 | |
| 						}
 | |
| 						return R(nullopt);
 | |
| 					}
 | |
| 					return stack::get<T>(L);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		template <bool global, bool raw, detail::insert_mode mode, typename Key, typename... Keys>
 | |
| 		void traverse_set_deep(int table_index, Key&& key, Keys&&... keys) const {
 | |
| 			using KeyU = meta::unqualified_t<Key>;
 | |
| 			if constexpr (std::is_same_v<KeyU, update_if_empty_t>) {
 | |
| 				(void)key;
 | |
| 				traverse_set_deep<global, raw, static_cast<detail::insert_mode>(mode | detail::insert_mode::update_if_empty)>(
 | |
| 				     table_index, std::forward<Keys>(keys)...);
 | |
| 			}
 | |
| 			else if constexpr (std::is_same_v<KeyU, create_if_nil_t>) {
 | |
| 				(void)key;
 | |
| 				traverse_set_deep<global, raw, static_cast<detail::insert_mode>(mode | detail::insert_mode::create_if_nil)>(
 | |
| 				     table_index, std::forward<Keys>(keys)...);
 | |
| 			}
 | |
| 			else if constexpr (std::is_same_v<KeyU, override_value_t>) {
 | |
| 				(void)key;
 | |
| 				traverse_set_deep<global, raw, static_cast<detail::insert_mode>(mode | detail::insert_mode::override_value)>(
 | |
| 				     table_index, std::forward<Keys>(keys)...);
 | |
| 			}
 | |
| 			else {
 | |
| 				lua_State* L = base_t::lua_state();
 | |
| 				if constexpr (sizeof...(Keys) == 1) {
 | |
| 					if constexpr ((mode & detail::insert_mode::update_if_empty) == detail::insert_mode::update_if_empty) {
 | |
| 						auto p = stack::probe_get_field<global, raw>(L, key, table_index);
 | |
| 						lua_pop(L, p.levels);
 | |
| 						if (!p.success) {
 | |
| 							stack::set_field<global, raw>(L, std::forward<Key>(key), std::forward<Keys>(keys)..., table_index);
 | |
| 						}
 | |
| 					}
 | |
| 					else {
 | |
| 						stack::set_field<global, raw>(L, std::forward<Key>(key), std::forward<Keys>(keys)..., table_index);
 | |
| 					}
 | |
| 				}
 | |
| 				else {
 | |
| 					if constexpr (mode != detail::insert_mode::none) {
 | |
| 						stack::get_field<global, raw>(L, key, table_index);
 | |
| 						type vt = type_of(L, -1);
 | |
| 						if constexpr ((mode & detail::insert_mode::update_if_empty) == detail::insert_mode::update_if_empty
 | |
| 						     || (mode & detail::insert_mode::create_if_nil) == detail::insert_mode::create_if_nil) {
 | |
| 							if (vt == type::lua_nil || vt == type::none) {
 | |
| 								constexpr bool is_seq = meta::count_for_to_pack_v<1, std::is_integral, Keys...> > 0;
 | |
| 								lua_pop(L, 1);
 | |
| 								stack::push(L, new_table(static_cast<int>(is_seq), static_cast<int>(!is_seq)));
 | |
| 								stack::set_field<global, raw>(L, std::forward<Key>(key), stack_reference(L, -1), table_index);
 | |
| 							}
 | |
| 						}
 | |
| 						else {
 | |
| 							if (vt != type::table) {
 | |
| 								constexpr bool is_seq = meta::count_for_to_pack_v<1, std::is_integral, Keys...> > 0;
 | |
| 								lua_pop(L, 1);
 | |
| 								stack::push(L, new_table(static_cast<int>(is_seq), static_cast<int>(!is_seq)));
 | |
| 								stack::set_field<global, raw>(L, std::forward<Key>(key), stack_reference(L, -1), table_index);
 | |
| 							}
 | |
| 						}
 | |
| 					}
 | |
| 					else {
 | |
| 						stack::get_field<global, raw>(L, std::forward<Key>(key), table_index);
 | |
| 					}
 | |
| 					traverse_set_deep<false, raw, mode>(lua_gettop(L), std::forward<Keys>(keys)...);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		basic_table_core(lua_State* L, detail::global_tag t) noexcept : base_t(L, t) {
 | |
| 		}
 | |
| 
 | |
| 	protected:
 | |
| 		basic_table_core(detail::no_safety_tag, lua_nil_t n) : base_t(n) {
 | |
| 		}
 | |
| 		basic_table_core(detail::no_safety_tag, lua_State* L, int index) : base_t(L, index) {
 | |
| 		}
 | |
| 		basic_table_core(detail::no_safety_tag, lua_State* L, ref_index index) : base_t(L, index) {
 | |
| 		}
 | |
| 		template <typename T,
 | |
| 		     meta::enable<meta::neg<meta::any_same<meta::unqualified_t<T>, basic_table_core>>, meta::neg<std::is_same<ref_t, stack_reference>>,
 | |
| 		          meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
 | |
| 		basic_table_core(detail::no_safety_tag, T&& r) noexcept : base_t(std::forward<T>(r)) {
 | |
| 		}
 | |
| 		template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
 | |
| 		basic_table_core(detail::no_safety_tag, lua_State* L, T&& r) noexcept : base_t(L, std::forward<T>(r)) {
 | |
| 		}
 | |
| 
 | |
| 	public:
 | |
| 		using iterator = basic_table_iterator<ref_t>;
 | |
| 		using const_iterator = iterator;
 | |
| 
 | |
| 		using base_t::lua_state;
 | |
| 
 | |
| 		basic_table_core() noexcept = default;
 | |
| 		basic_table_core(const basic_table_core&) = default;
 | |
| 		basic_table_core(basic_table_core&&) = default;
 | |
| 		basic_table_core& operator=(const basic_table_core&) = default;
 | |
| 		basic_table_core& operator=(basic_table_core&&) = default;
 | |
| 		basic_table_core(const stack_reference& r) : basic_table_core(r.lua_state(), r.stack_index()) {
 | |
| 		}
 | |
| 		basic_table_core(stack_reference&& r) : basic_table_core(r.lua_state(), r.stack_index()) {
 | |
| 		}
 | |
| 		template <typename T, meta::enable_any<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
 | |
| 		basic_table_core(lua_State* L, T&& r) : base_t(L, std::forward<T>(r)) {
 | |
| #if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
 | |
| 			auto pp = stack::push_pop(*this);
 | |
| 			int table_index = pp.index_of(*this);
 | |
| 			constructor_handler handler {};
 | |
| 			stack::check<basic_table_core>(lua_state(), table_index, handler);
 | |
| #endif // Safety
 | |
| 		}
 | |
| 		basic_table_core(lua_State* L, const new_table& nt) : base_t(L, -stack::push(L, nt)) {
 | |
| 			if (!is_stack_based<meta::unqualified_t<ref_t>>::value) {
 | |
| 				lua_pop(L, 1);
 | |
| 			}
 | |
| 		}
 | |
| 		basic_table_core(lua_State* L, int index = -1) : basic_table_core(detail::no_safety, L, index) {
 | |
| #if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
 | |
| 			constructor_handler handler {};
 | |
| 			stack::check<basic_table_core>(L, index, handler);
 | |
| #endif // Safety
 | |
| 		}
 | |
| 		basic_table_core(lua_State* L, ref_index index) : basic_table_core(detail::no_safety, L, index) {
 | |
| #if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
 | |
| 			auto pp = stack::push_pop(*this);
 | |
| 			int table_index = pp.index_of(*this);
 | |
| 			constructor_handler handler {};
 | |
| 			stack::check<basic_table_core>(lua_state(), table_index, handler);
 | |
| #endif // Safety
 | |
| 		}
 | |
| 		template <typename T,
 | |
| 		     meta::enable<meta::neg<meta::any_same<meta::unqualified_t<T>, basic_table_core>>, meta::neg<std::is_same<ref_t, stack_reference>>,
 | |
| 		          meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
 | |
| 		basic_table_core(T&& r) noexcept : basic_table_core(detail::no_safety, std::forward<T>(r)) {
 | |
| #if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
 | |
| 			if (!is_table<meta::unqualified_t<T>>::value) {
 | |
| 				auto pp = stack::push_pop(*this);
 | |
| 				int table_index = pp.index_of(*this);
 | |
| 				constructor_handler handler {};
 | |
| 				stack::check<basic_table_core>(lua_state(), table_index, handler);
 | |
| 			}
 | |
| #endif // Safety
 | |
| 		}
 | |
| 		basic_table_core(lua_nil_t r) noexcept : basic_table_core(detail::no_safety, r) {
 | |
| 		}
 | |
| 
 | |
| 		iterator begin() const {
 | |
| 			if (this->get_type() == type::table) {
 | |
| 				return iterator(*this);
 | |
| 			}
 | |
| 			return iterator();
 | |
| 		}
 | |
| 
 | |
| 		iterator end() const {
 | |
| 			return iterator();
 | |
| 		}
 | |
| 
 | |
| 		const_iterator cbegin() const {
 | |
| 			return begin();
 | |
| 		}
 | |
| 
 | |
| 		const_iterator cend() const {
 | |
| 			return end();
 | |
| 		}
 | |
| 
 | |
| 		void clear() {
 | |
| 			auto pp = stack::push_pop<false>(*this);
 | |
| 			int table_index = pp.index_of(*this);
 | |
| 			stack::clear(lua_state(), table_index);
 | |
| 		}
 | |
| 
 | |
| 		template <typename... Ret, typename... Keys>
 | |
| 		decltype(auto) get(Keys&&... keys) const {
 | |
| 			static_assert(sizeof...(Keys) == sizeof...(Ret), "number of keys and number of return types do not match");
 | |
| 			constexpr static bool global = meta::all<meta::boolean<top_level>, meta::is_c_str<meta::unqualified_t<Keys>>...>::value;
 | |
| 			auto pp = stack::push_pop<global>(*this);
 | |
| 			int table_index = pp.index_of(*this);
 | |
| 			return tuple_get<false, Ret...>(table_index, std::forward<Keys>(keys)...);
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, typename Key>
 | |
| 		decltype(auto) get_or(Key&& key, T&& otherwise) const {
 | |
| 			typedef decltype(get<T>("")) U;
 | |
| 			optional<U> option = get<optional<U>>(std::forward<Key>(key));
 | |
| 			if (option) {
 | |
| 				return static_cast<U>(option.value());
 | |
| 			}
 | |
| 			return static_cast<U>(std::forward<T>(otherwise));
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, typename Key, typename D>
 | |
| 		decltype(auto) get_or(Key&& key, D&& otherwise) const {
 | |
| 			optional<T> option = get<optional<T>>(std::forward<Key>(key));
 | |
| 			if (option) {
 | |
| 				return static_cast<T>(option.value());
 | |
| 			}
 | |
| 			return static_cast<T>(std::forward<D>(otherwise));
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, typename... Keys>
 | |
| 		decltype(auto) traverse_get(Keys&&... keys) const {
 | |
| 			static_assert(sizeof...(Keys) > 0, "must pass at least 1 key to get");
 | |
| 			constexpr static bool global = top_level && (meta::count_for_to_pack_v<1, meta::is_c_str, meta::unqualified_t<Keys>...> > 0);
 | |
| 			auto pp = stack::push_pop<global>(*this);
 | |
| 			int table_index = pp.index_of(*this);
 | |
| 			return traverse_get_single<false, T>(table_index, std::forward<Keys>(keys)...);
 | |
| 		}
 | |
| 
 | |
| 		template <typename... Keys>
 | |
| 		basic_table_core& traverse_set(Keys&&... keys) {
 | |
| 			static_assert(sizeof...(Keys) > 1, "must pass at least 1 key and 1 value to set");
 | |
| 			constexpr static bool global
 | |
| 			     = top_level && (meta::count_when_for_to_pack_v<detail::is_not_insert_mode, 1, meta::is_c_str, meta::unqualified_t<Keys>...> > 0);
 | |
| 			auto pp = stack::push_pop<global>(*this);
 | |
| 			int table_index = pp.index_of(*this);
 | |
| 			lua_State* L = base_t::lua_state();
 | |
| 			auto pn = stack::pop_n(L, static_cast<int>(sizeof...(Keys) - 2 - meta::count_for_pack_v<detail::is_insert_mode, meta::unqualified_t<Keys>...>));
 | |
| 			traverse_set_deep<top_level, false, detail::insert_mode::none>(table_index, std::forward<Keys>(keys)...);
 | |
| 			return *this;
 | |
| 		}
 | |
| 
 | |
| 		template <typename... Args>
 | |
| 		basic_table_core& set(Args&&... args) {
 | |
| 			if constexpr (sizeof...(Args) == 2) {
 | |
| 				traverse_set(std::forward<Args>(args)...);
 | |
| 			}
 | |
| 			else {
 | |
| 				tuple_set<false>(std::make_index_sequence<sizeof...(Args) / 2>(), std::forward_as_tuple(std::forward<Args>(args)...));
 | |
| 			}
 | |
| 			return *this;
 | |
| 		}
 | |
| 
 | |
| 		template <typename... Ret, typename... Keys>
 | |
| 		decltype(auto) raw_get(Keys&&... keys) const {
 | |
| 			static_assert(sizeof...(Keys) == sizeof...(Ret), "number of keys and number of return types do not match");
 | |
| 			constexpr static bool global = top_level && (meta::count_for_to_pack_v<1, meta::is_c_str, meta::unqualified_t<Keys>...> > 0);
 | |
| 			auto pp = stack::push_pop<global>(*this);
 | |
| 			int table_index = pp.index_of(*this);
 | |
| 			return tuple_get<true, Ret...>(table_index, std::forward<Keys>(keys)...);
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, typename Key>
 | |
| 		decltype(auto) raw_get_or(Key&& key, T&& otherwise) const {
 | |
| 			typedef decltype(raw_get<T>("")) U;
 | |
| 			optional<U> option = raw_get<optional<U>>(std::forward<Key>(key));
 | |
| 			if (option) {
 | |
| 				return static_cast<U>(option.value());
 | |
| 			}
 | |
| 			return static_cast<U>(std::forward<T>(otherwise));
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, typename Key, typename D>
 | |
| 		decltype(auto) raw_get_or(Key&& key, D&& otherwise) const {
 | |
| 			optional<T> option = raw_get<optional<T>>(std::forward<Key>(key));
 | |
| 			if (option) {
 | |
| 				return static_cast<T>(option.value());
 | |
| 			}
 | |
| 			return static_cast<T>(std::forward<D>(otherwise));
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, typename... Keys>
 | |
| 		decltype(auto) traverse_raw_get(Keys&&... keys) const {
 | |
| 			constexpr static bool global = top_level && (meta::count_for_to_pack_v<1, meta::is_c_str, meta::unqualified_t<Keys>...> > 0);
 | |
| 			auto pp = stack::push_pop<global>(*this);
 | |
| 			int table_index = pp.index_of(*this);
 | |
| 			return traverse_get_single<true, T>(table_index, std::forward<Keys>(keys)...);
 | |
| 		}
 | |
| 
 | |
| 		template <typename... Keys>
 | |
| 		basic_table_core& traverse_raw_set(Keys&&... keys) {
 | |
| 			constexpr static bool global = top_level && (meta::count_for_to_pack_v<1, meta::is_c_str, meta::unqualified_t<Keys>...> > 0);
 | |
| 			auto pp = stack::push_pop<global>(*this);
 | |
| 			lua_State* L = base_t::lua_state();
 | |
| 			auto pn = stack::pop_n(L, static_cast<int>(sizeof...(Keys) - 2 - meta::count_for_pack_v<detail::is_insert_mode, meta::unqualified_t<Keys>...>));
 | |
| 			traverse_set_deep<top_level, true, false>(std::forward<Keys>(keys)...);
 | |
| 			return *this;
 | |
| 		}
 | |
| 
 | |
| 		template <typename... Args>
 | |
| 		basic_table_core& raw_set(Args&&... args) {
 | |
| 			tuple_set<true>(std::make_index_sequence<sizeof...(Args) / 2>(), std::forward_as_tuple(std::forward<Args>(args)...));
 | |
| 			return *this;
 | |
| 		}
 | |
| 
 | |
| 		template <typename Class, typename Key>
 | |
| 		usertype<Class> new_usertype(Key&& key);
 | |
| 
 | |
| 		template <typename Class, typename Key>
 | |
| 		usertype<Class> new_usertype(Key&& key, automagic_enrollments enrollment);
 | |
| 
 | |
| 		template <typename Class, typename Key, typename Arg, typename... Args,
 | |
| 		     typename = std::enable_if_t<!std::is_same_v<meta::unqualified_t<Arg>, automagic_enrollments>>>
 | |
| 		usertype<Class> new_usertype(Key&& key, Arg&& arg, Args&&... args);
 | |
| 
 | |
| 		template <bool read_only = true, typename... Args>
 | |
| 		table new_enum(const string_view& name, Args&&... args) {
 | |
| 			table target = create_with(std::forward<Args>(args)...);
 | |
| 			if (read_only) {
 | |
| 				table x = create_with(meta_function::new_index, detail::fail_on_newindex, meta_function::index, target);
 | |
| 				table shim = create_named(name, metatable_key, x);
 | |
| 				return shim;
 | |
| 			}
 | |
| 			else {
 | |
| 				set(name, target);
 | |
| 				return target;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, bool read_only = true>
 | |
| 		table new_enum(const string_view& name, std::initializer_list<std::pair<string_view, T>> items) {
 | |
| 			table target = create(static_cast<int>(items.size()), static_cast<int>(0));
 | |
| 			for (const auto& kvp : items) {
 | |
| 				target.set(kvp.first, kvp.second);
 | |
| 			}
 | |
| 			if constexpr (read_only) {
 | |
| 				table x = create_with(meta_function::new_index, detail::fail_on_newindex, meta_function::index, target);
 | |
| 				table shim = create_named(name, metatable_key, x);
 | |
| 				return shim;
 | |
| 			}
 | |
| 			else {
 | |
| 				set(name, target);
 | |
| 				return target;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		template <typename Key = object, typename Value = object, typename Fx>
 | |
| 		void for_each(Fx&& fx) const {
 | |
| 			lua_State* L = base_t::lua_state();
 | |
| 			if constexpr (std::is_invocable_v<Fx, Key, Value>) {
 | |
| 				auto pp = stack::push_pop(*this);
 | |
| 				int table_index = pp.index_of(*this);
 | |
| 				stack::push(L, lua_nil);
 | |
| 				while (lua_next(L, table_index)) {
 | |
| 					Key key(L, -2);
 | |
| 					Value value(L, -1);
 | |
| 					auto pn = stack::pop_n(L, 1);
 | |
| 					fx(key, value);
 | |
| 				}
 | |
| 			}
 | |
| 			else {
 | |
| 				auto pp = stack::push_pop(*this);
 | |
| 				int table_index = pp.index_of(*this);
 | |
| 				stack::push(L, lua_nil);
 | |
| 				while (lua_next(L, table_index)) {
 | |
| 					Key key(L, -2);
 | |
| 					Value value(L, -1);
 | |
| 					auto pn = stack::pop_n(L, 1);
 | |
| 					std::pair<Key&, Value&> keyvalue(key, value);
 | |
| 					fx(keyvalue);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		size_t size() const {
 | |
| 			auto pp = stack::push_pop(*this);
 | |
| 			int table_index = pp.index_of(*this);
 | |
| 			lua_State* L = base_t::lua_state();
 | |
| 			lua_len(L, table_index);
 | |
| 			return stack::pop<size_t>(L);
 | |
| 		}
 | |
| 
 | |
| 		bool empty() const {
 | |
| 			return cbegin() == cend();
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		auto operator[](T&& key) & {
 | |
| 			return table_proxy<basic_table_core&, detail::proxy_key_t<T>>(*this, std::forward<T>(key));
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		auto operator[](T&& key) const& {
 | |
| 			return table_proxy<const basic_table_core&, detail::proxy_key_t<T>>(*this, std::forward<T>(key));
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		auto operator[](T&& key) && {
 | |
| 			return table_proxy<basic_table_core, detail::proxy_key_t<T>>(std::move(*this), std::forward<T>(key));
 | |
| 		}
 | |
| 
 | |
| 		template <typename Sig, typename Key, typename... Args>
 | |
| 		basic_table_core& set_function(Key&& key, Args&&... args) {
 | |
| 			set_fx(types<Sig>(), std::forward<Key>(key), std::forward<Args>(args)...);
 | |
| 			return *this;
 | |
| 		}
 | |
| 
 | |
| 		template <typename Key, typename... Args>
 | |
| 		basic_table_core& set_function(Key&& key, Args&&... args) {
 | |
| 			set_fx(types<>(), std::forward<Key>(key), std::forward<Args>(args)...);
 | |
| 			return *this;
 | |
| 		}
 | |
| 
 | |
| 		template <typename... Args>
 | |
| 		basic_table_core& add(Args&&... args) {
 | |
| 			auto pp = stack::push_pop(*this);
 | |
| 			int table_index = pp.index_of(*this);
 | |
| 			lua_State* L = base_t::lua_state();
 | |
| 			(void)detail::swallow { 0, (stack::set_ref(L, std::forward<Args>(args), table_index), 0)... };
 | |
| 			return *this;
 | |
| 		}
 | |
| 
 | |
| 	private:
 | |
| 		template <typename R, typename... Args, typename Fx, typename Key, typename = std::invoke_result_t<Fx, Args...>>
 | |
| 		void set_fx(types<R(Args...)>, Key&& key, Fx&& fx) {
 | |
| 			set_resolved_function<R(Args...)>(std::forward<Key>(key), std::forward<Fx>(fx));
 | |
| 		}
 | |
| 
 | |
| 		template <typename Fx, typename Key, meta::enable<meta::is_specialization_of<meta::unqualified_t<Fx>, overload_set>> = meta::enabler>
 | |
| 		void set_fx(types<>, Key&& key, Fx&& fx) {
 | |
| 			set(std::forward<Key>(key), std::forward<Fx>(fx));
 | |
| 		}
 | |
| 
 | |
| 		template <typename Fx, typename Key, typename... Args,
 | |
| 		     meta::disable<meta::is_specialization_of<meta::unqualified_t<Fx>, overload_set>> = meta::enabler>
 | |
| 		void set_fx(types<>, Key&& key, Fx&& fx, Args&&... args) {
 | |
| 			set(std::forward<Key>(key), as_function_reference(std::forward<Fx>(fx), std::forward<Args>(args)...));
 | |
| 		}
 | |
| 
 | |
| 		template <typename... Sig, typename... Args, typename Key>
 | |
| 		void set_resolved_function(Key&& key, Args&&... args) {
 | |
| 			set(std::forward<Key>(key), as_function_reference<function_sig<Sig...>>(std::forward<Args>(args)...));
 | |
| 		}
 | |
| 
 | |
| 	public:
 | |
| 		static inline table create(lua_State* L, int narr = 0, int nrec = 0) {
 | |
| 			lua_createtable(L, narr, nrec);
 | |
| 			table result(L);
 | |
| 			lua_pop(L, 1);
 | |
| 			return result;
 | |
| 		}
 | |
| 
 | |
| 		template <typename Key, typename Value, typename... Args>
 | |
| 		static inline table create(lua_State* L, int narr, int nrec, Key&& key, Value&& value, Args&&... args) {
 | |
| 			lua_createtable(L, narr, nrec);
 | |
| 			table result(L);
 | |
| 			result.set(std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...);
 | |
| 			lua_pop(L, 1);
 | |
| 			return result;
 | |
| 		}
 | |
| 
 | |
| 		template <typename... Args>
 | |
| 		static inline table create_with(lua_State* L, Args&&... args) {
 | |
| 			static_assert(sizeof...(Args) % 2 == 0, "You must have an even number of arguments for a key, value ... list.");
 | |
| 			constexpr int narr = static_cast<int>(meta::count_odd_for_pack_v<std::is_integral, Args...>);
 | |
| 			return create(L, narr, static_cast<int>((sizeof...(Args) / 2) - narr), std::forward<Args>(args)...);
 | |
| 		}
 | |
| 
 | |
| 		table create(int narr = 0, int nrec = 0) {
 | |
| 			return create(base_t::lua_state(), narr, nrec);
 | |
| 		}
 | |
| 
 | |
| 		template <typename Key, typename Value, typename... Args>
 | |
| 		table create(int narr, int nrec, Key&& key, Value&& value, Args&&... args) {
 | |
| 			return create(base_t::lua_state(), narr, nrec, std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...);
 | |
| 		}
 | |
| 
 | |
| 		template <typename Name>
 | |
| 		table create(Name&& name, int narr = 0, int nrec = 0) {
 | |
| 			table x = create(base_t::lua_state(), narr, nrec);
 | |
| 			this->set(std::forward<Name>(name), x);
 | |
| 			return x;
 | |
| 		}
 | |
| 
 | |
| 		template <typename Name, typename Key, typename Value, typename... Args>
 | |
| 		table create(Name&& name, int narr, int nrec, Key&& key, Value&& value, Args&&... args) {
 | |
| 			table x = create(base_t::lua_state(), narr, nrec, std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...);
 | |
| 			this->set(std::forward<Name>(name), x);
 | |
| 			return x;
 | |
| 		}
 | |
| 
 | |
| 		template <typename... Args>
 | |
| 		table create_with(Args&&... args) {
 | |
| 			return create_with(base_t::lua_state(), std::forward<Args>(args)...);
 | |
| 		}
 | |
| 
 | |
| 		template <typename Name, typename... Args>
 | |
| 		table create_named(Name&& name, Args&&... args) {
 | |
| 			static const int narr = static_cast<int>(meta::count_even_for_pack_v<std::is_integral, Args...>);
 | |
| 			return create(std::forward<Name>(name), narr, (sizeof...(Args) / 2) - narr, std::forward<Args>(args)...);
 | |
| 		}
 | |
| 	};
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/table_core.hpp
 | |
| 
 | |
| namespace sol {
 | |
| 
 | |
| 	template <typename base_type>
 | |
| 	class basic_metatable : public basic_table<base_type> {
 | |
| 		typedef basic_table<base_type> base_t;
 | |
| 		friend class state;
 | |
| 		friend class state_view;
 | |
| 
 | |
| 	protected:
 | |
| 		basic_metatable(detail::no_safety_tag, lua_nil_t n) : base_t(n) {
 | |
| 		}
 | |
| 		basic_metatable(detail::no_safety_tag, lua_State* L, int index) : base_t(L, index) {
 | |
| 		}
 | |
| 		basic_metatable(detail::no_safety_tag, lua_State* L, ref_index index) : base_t(L, index) {
 | |
| 		}
 | |
| 		template <typename T,
 | |
| 		     meta::enable<meta::neg<meta::any_same<meta::unqualified_t<T>, basic_metatable>>, meta::neg<std::is_same<base_type, stack_reference>>,
 | |
| 		          meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
 | |
| 		basic_metatable(detail::no_safety_tag, T&& r) noexcept : base_t(std::forward<T>(r)) {
 | |
| 		}
 | |
| 		template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
 | |
| 		basic_metatable(detail::no_safety_tag, lua_State* L, T&& r) noexcept : base_t(L, std::forward<T>(r)) {
 | |
| 		}
 | |
| 
 | |
| 	public:
 | |
| 		using base_t::lua_state;
 | |
| 
 | |
| 		basic_metatable() noexcept = default;
 | |
| 		basic_metatable(const basic_metatable&) = default;
 | |
| 		basic_metatable(basic_metatable&&) = default;
 | |
| 		basic_metatable& operator=(const basic_metatable&) = default;
 | |
| 		basic_metatable& operator=(basic_metatable&&) = default;
 | |
| 		basic_metatable(const stack_reference& r) : basic_metatable(r.lua_state(), r.stack_index()) {
 | |
| 		}
 | |
| 		basic_metatable(stack_reference&& r) : basic_metatable(r.lua_state(), r.stack_index()) {
 | |
| 		}
 | |
| 		template <typename T, meta::enable_any<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
 | |
| 		basic_metatable(lua_State* L, T&& r) : base_t(L, std::forward<T>(r)) {
 | |
| #if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
 | |
| 			auto pp = stack::push_pop(*this);
 | |
| 			constructor_handler handler{};
 | |
| 			stack::check<basic_metatable>(lua_state(), -1, handler);
 | |
| #endif // Safety
 | |
| 		}
 | |
| 		basic_metatable(lua_State* L, int index = -1) : basic_metatable(detail::no_safety, L, index) {
 | |
| #if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
 | |
| 			constructor_handler handler{};
 | |
| 			stack::check<basic_metatable>(L, index, handler);
 | |
| #endif // Safety
 | |
| 		}
 | |
| 		basic_metatable(lua_State* L, ref_index index) : basic_metatable(detail::no_safety, L, index) {
 | |
| #if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
 | |
| 			auto pp = stack::push_pop(*this);
 | |
| 			constructor_handler handler{};
 | |
| 			stack::check<basic_metatable>(lua_state(), -1, handler);
 | |
| #endif // Safety
 | |
| 		}
 | |
| 		template <typename T,
 | |
| 		     meta::enable<meta::neg<meta::any_same<meta::unqualified_t<T>, basic_metatable>>, meta::neg<std::is_same<base_type, stack_reference>>,
 | |
| 		          meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
 | |
| 		basic_metatable(T&& r) noexcept : basic_metatable(detail::no_safety, std::forward<T>(r)) {
 | |
| #if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
 | |
| 			if (!is_table<meta::unqualified_t<T>>::value) {
 | |
| 				auto pp = stack::push_pop(*this);
 | |
| 				constructor_handler handler{};
 | |
| 				stack::check<basic_metatable>(base_t::lua_state(), -1, handler);
 | |
| 			}
 | |
| #endif // Safety
 | |
| 		}
 | |
| 		basic_metatable(lua_nil_t r) noexcept : basic_metatable(detail::no_safety, r) {
 | |
| 		}
 | |
| 
 | |
| 		template <typename Key, typename Value>
 | |
| 		void set(Key&& key, Value&& value);
 | |
| 
 | |
| 		void unregister() {
 | |
| 			using ustorage_base = u_detail::usertype_storage_base;
 | |
| 
 | |
| 			lua_State* L = this->lua_state();
 | |
| 
 | |
| 			auto pp = stack::push_pop(*this);
 | |
| 			int top = lua_gettop(L);
 | |
| 
 | |
| 			stack_reference mt(L, -1);
 | |
| 			stack::get_field(L, meta_function::gc_names, mt.stack_index());
 | |
| 			if (type_of(L, -1) != type::table) {
 | |
| 				return;
 | |
| 			}
 | |
| 			stack_reference gc_names_table(L, -1);
 | |
| 			stack::get_field(L, meta_function::storage, mt.stack_index());
 | |
| 			if (type_of(L, -1) != type::lightuserdata) {
 | |
| 				return;
 | |
| 			}
 | |
| 			ustorage_base& base_storage = *static_cast<ustorage_base*>(stack::get<void*>(L, -1));
 | |
| 			std::array<string_view, 6> registry_traits;
 | |
| 			for (std::size_t i = 0; i < registry_traits.size(); ++i) {
 | |
| 				u_detail::submetatable_type smt = static_cast<u_detail::submetatable_type>(i);
 | |
| 				stack::get_field<false, true>(L, smt, gc_names_table.stack_index());
 | |
| 				registry_traits[i] = stack::get<string_view>(L, -1);
 | |
| 			}
 | |
| 
 | |
| 			// get the registry
 | |
| 			stack_reference registry(L, raw_index(LUA_REGISTRYINDEX));
 | |
| 			registry.push();
 | |
| 			// eliminate all named entries for this usertype
 | |
| 			// in the registry (luaL_newmetatable does
 | |
| 			// [name] = new table
 | |
| 			// in registry upon creation)
 | |
| 			for (std::size_t i = 0; i < registry_traits.size(); ++i) {
 | |
| 				u_detail::submetatable_type smt = static_cast<u_detail::submetatable_type>(i);
 | |
| 				const string_view& gcmetakey = registry_traits[i];
 | |
| 				if (smt == u_detail::submetatable_type::named) {
 | |
| 					// use .data() to make it treat it like a c string,
 | |
| 					// which it is...
 | |
| 					stack::set_field<true>(L, gcmetakey.data(), lua_nil);
 | |
| 				}
 | |
| 				else {
 | |
| 					// do not change the values in the registry: they need to be present
 | |
| 					// no matter what, for safety's sake
 | |
| 					//stack::set_field(L, gcmetakey, lua_nil, registry.stack_index());
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			// destroy all storage and tables
 | |
| 			base_storage.clear();
 | |
| 
 | |
| 			// 6 strings from gc_names table,
 | |
| 			// + 1 registry,
 | |
| 			// + 1 gc_names table
 | |
| 			// + 1 light userdata of storage
 | |
| 			// + 1 registry
 | |
| 			// 10 total, 4 left since popping off 6 gc_names tables
 | |
| 			lua_settop(L, top);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/metatable.hpp
 | |
| 
 | |
| namespace sol {
 | |
| 
 | |
| 	template <typename T, typename base_type>
 | |
| 	class basic_usertype : private basic_metatable<base_type> {
 | |
| 	private:
 | |
| 		using base_t = basic_metatable<base_type>;
 | |
| 		using table_base_t = basic_table<base_type>;
 | |
| 
 | |
| 		template <typename>
 | |
| 		friend class basic_metatable;
 | |
| 
 | |
| 		template <bool, typename>
 | |
| 		friend class basic_table_core;
 | |
| 
 | |
| 		template <std::size_t... I, typename... Args>
 | |
| 		void tuple_set(std::index_sequence<I...>, std::tuple<Args...>&& args) {
 | |
| 			(void)args;
 | |
| 			(void)detail::swallow{ 0,
 | |
| 				(this->set(std::get<I * 2>(std::move(args)), std::get<I * 2 + 1>(std::move(args))), 0)... };
 | |
| 		}
 | |
| 
 | |
| 	public:
 | |
| 		using base_t::base_t;
 | |
| 
 | |
| 		using base_t::pop;
 | |
| 		using base_t::push;
 | |
| 		using base_t::lua_state;
 | |
| 		using base_t::get;
 | |
| 		using base_t::set_function;
 | |
| 		using base_t::traverse_set;
 | |
| 		using base_t::traverse_get;
 | |
| 		using base_t::unregister;
 | |
| 
 | |
| 		template <typename Key, typename Value>
 | |
| 		void set(Key&& key, Value&& value) {
 | |
| 			optional<u_detail::usertype_storage<T>&> maybe_uts = u_detail::maybe_get_usertype_storage<T>(this->lua_state());
 | |
| 			if (maybe_uts) {
 | |
| 				u_detail::usertype_storage<T>& uts = *maybe_uts;
 | |
| 				uts.set(this->lua_state(), std::forward<Key>(key), std::forward<Value>(value));
 | |
| 			}
 | |
| 			else {
 | |
| 				using ValueU = meta::unqualified_t<Value>;
 | |
| 				// cannot get metatable: try regular table set?
 | |
| 				if constexpr (detail::is_non_factory_constructor_v<ValueU> || detail::is_policy_v<ValueU>) {
 | |
| 					// tag constructors so we don't get destroyed by lack of info
 | |
| 					table_base_t::set(std::forward<Key>(key), detail::tagged<T, Value>(std::forward<Value>(value)));
 | |
| 				}
 | |
| 				else {
 | |
| 					table_base_t::set(std::forward<Key>(key), std::forward<Value>(value));
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		template <typename Key>
 | |
| 		usertype_proxy<basic_usertype&, std::decay_t<Key>> operator[](Key&& key) {
 | |
| 			return usertype_proxy<basic_usertype&, std::decay_t<Key>>(*this, std::forward<Key>(key));
 | |
| 		}
 | |
| 
 | |
| 		template <typename Key>
 | |
| 		usertype_proxy<const basic_usertype&, std::decay_t<Key>> operator[](Key&& key) const {
 | |
| 			return usertype_proxy<const basic_usertype&, std::decay_t<Key>>(*this, std::forward<Key>(key));
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/usertype.hpp
 | |
| 
 | |
| // beginning of sol/table.hpp
 | |
| 
 | |
| // beginning of sol/lua_table.hpp
 | |
| 
 | |
| namespace sol {
 | |
| 
 | |
| 	template <typename ref_t>
 | |
| 	struct basic_lua_table : basic_table_core<false, ref_t> {
 | |
| 	private:
 | |
| 		using base_t = basic_table_core<false, ref_t>;
 | |
| 
 | |
| 		friend class state;
 | |
| 		friend class state_view;
 | |
| 
 | |
| 	public:
 | |
| 		using base_t::lua_state;
 | |
| 
 | |
| 		basic_lua_table() noexcept = default;
 | |
| 		basic_lua_table(const basic_lua_table&) = default;
 | |
| 		basic_lua_table(basic_lua_table&&) = default;
 | |
| 		basic_lua_table& operator=(const basic_lua_table&) = default;
 | |
| 		basic_lua_table& operator=(basic_lua_table&&) = default;
 | |
| 		basic_lua_table(const stack_reference& r) : basic_lua_table(r.lua_state(), r.stack_index()) {
 | |
| 		}
 | |
| 		basic_lua_table(stack_reference&& r) : basic_lua_table(r.lua_state(), r.stack_index()) {
 | |
| 		}
 | |
| 		template <typename T, meta::enable_any<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
 | |
| 		basic_lua_table(lua_State* L, T&& r) : base_t(L, std::forward<T>(r)) {
 | |
| #if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
 | |
| 			auto pp = stack::push_pop(*this);
 | |
| 			constructor_handler handler{};
 | |
| 			stack::check<basic_lua_table>(lua_state(), -1, handler);
 | |
| #endif // Safety
 | |
| 		}
 | |
| 		basic_lua_table(lua_State* L, const new_table& nt) : base_t(L, nt) {
 | |
| 			if (!is_stack_based<meta::unqualified_t<ref_t>>::value) {
 | |
| 				lua_pop(L, 1);
 | |
| 			}
 | |
| 		}
 | |
| 		basic_lua_table(lua_State* L, int index = -1) : base_t(detail::no_safety, L, index) {
 | |
| #if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
 | |
| 			constructor_handler handler{};
 | |
| 			stack::check<basic_lua_table>(L, index, handler);
 | |
| #endif // Safety
 | |
| 		}
 | |
| 		basic_lua_table(lua_State* L, ref_index index) : base_t(detail::no_safety, L, index) {
 | |
| #if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
 | |
| 			auto pp = stack::push_pop(*this);
 | |
| 			constructor_handler handler{};
 | |
| 			stack::check<basic_lua_table>(lua_state(), -1, handler);
 | |
| #endif // Safety
 | |
| 		}
 | |
| 		template <typename T,
 | |
| 		     meta::enable<meta::neg<meta::any_same<meta::unqualified_t<T>, basic_lua_table>>, meta::neg<std::is_same<ref_t, stack_reference>>,
 | |
| 		          meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
 | |
| 		basic_lua_table(T&& r) noexcept : basic_lua_table(detail::no_safety, std::forward<T>(r)) {
 | |
| #if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
 | |
| 			if (!is_table<meta::unqualified_t<T>>::value) {
 | |
| 				auto pp = stack::push_pop(*this);
 | |
| 				constructor_handler handler{};
 | |
| 				stack::check<basic_lua_table>(lua_state(), -1, handler);
 | |
| 			}
 | |
| #endif // Safety
 | |
| 		}
 | |
| 		basic_lua_table(lua_nil_t r) noexcept : basic_lua_table(detail::no_safety, r) {
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| }
 | |
| 
 | |
| // end of sol/lua_table.hpp
 | |
| 
 | |
| namespace sol {
 | |
| 	typedef table_core<false> table;
 | |
| 
 | |
| 	template <bool is_global, typename base_type>
 | |
| 	template <typename Class, typename Key>
 | |
| 	usertype<Class> basic_table_core<is_global, base_type>::new_usertype(Key&& key) {
 | |
| 		automagic_enrollments enrollments;
 | |
| 		return this->new_usertype<Class>(std::forward<Key>(key), std::move(enrollments));
 | |
| 	}
 | |
| 
 | |
| 	template <bool is_global, typename base_type>
 | |
| 	template <typename Class, typename Key>
 | |
| 	usertype<Class> basic_table_core<is_global, base_type>::new_usertype(Key&& key, automagic_enrollments enrollments) {
 | |
| 		int mt_index = u_detail::register_usertype<Class>(this->lua_state(), std::move(enrollments));
 | |
| 		usertype<Class> mt(this->lua_state(), -mt_index);
 | |
| 		lua_pop(this->lua_state(), 1);
 | |
| 		set(std::forward<Key>(key), mt);
 | |
| 		return mt;
 | |
| 	}
 | |
| 
 | |
| 	template <bool is_global, typename base_type>
 | |
| 	template <typename Class, typename Key, typename Arg, typename... Args, typename>
 | |
| 	usertype<Class> basic_table_core<is_global, base_type>::new_usertype(Key&& key, Arg&& arg, Args&&... args) {
 | |
| 		automagic_enrollments enrollments;
 | |
| 		enrollments.default_constructor = !detail::any_is_constructor_v<Arg, Args...>;
 | |
| 		enrollments.destructor = !detail::any_is_destructor_v<Arg, Args...>;
 | |
| 		usertype<Class> ut = this->new_usertype<Class>(std::forward<Key>(key), std::move(enrollments));
 | |
| 		static_assert(sizeof...(Args) % 2 == static_cast<std::size_t>(!detail::any_is_constructor_v<Arg>), 
 | |
| 			"you must pass an even number of arguments to new_usertype after first passing a constructor");
 | |
| 		if constexpr (detail::any_is_constructor_v<Arg>) {
 | |
| 			ut.set(meta_function::construct, std::forward<Arg>(arg));
 | |
| 			ut.tuple_set(std::make_index_sequence<(sizeof...(Args)) / 2>(), std::forward_as_tuple(std::forward<Args>(args)...));
 | |
| 		}
 | |
| 		else {
 | |
| 			ut.tuple_set(std::make_index_sequence<(sizeof...(Args) + 1) / 2>(), std::forward_as_tuple(std::forward<Arg>(arg), std::forward<Args>(args)...));
 | |
| 		}
 | |
| 		return ut;
 | |
| 	}
 | |
| 
 | |
| 	template <typename base_type>
 | |
| 	template <typename Key, typename Value>
 | |
| 	void basic_metatable<base_type>::set(Key&& key, Value&& value) {
 | |
| 		this->push();
 | |
| 		lua_State* L = this->lua_state();
 | |
| 		int target = lua_gettop(L);
 | |
| 		optional<u_detail::usertype_storage_base&> maybe_uts = u_detail::maybe_get_usertype_storage_base(L, target);
 | |
| 		lua_pop(L, 1);
 | |
| 		if (maybe_uts) {
 | |
| 			u_detail::usertype_storage_base& uts = *maybe_uts;
 | |
| 			uts.set(L, std::forward<Key>(key), std::forward<Value>(value));
 | |
| 		}
 | |
| 		else {
 | |
| 			base_t::set(std::forward<Key>(key), std::forward<Value>(value));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	namespace stack {
 | |
| 		template <>
 | |
| 		struct unqualified_getter<metatable_key_t> {
 | |
| 			static table get(lua_State* L, int index = -1) {
 | |
| 				if (lua_getmetatable(L, index) == 0) {
 | |
| 					return table(L, ref_index(LUA_REFNIL));
 | |
| 				}
 | |
| 				return table(L, -1);
 | |
| 			}
 | |
| 		};
 | |
| 	} // namespace stack
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/table.hpp
 | |
| 
 | |
| // beginning of sol/state.hpp
 | |
| 
 | |
| // beginning of sol/state_view.hpp
 | |
| 
 | |
| // beginning of sol/environment.hpp
 | |
| 
 | |
| namespace sol {
 | |
| 
 | |
| 	template <typename base_type>
 | |
| 	struct basic_environment : basic_table<base_type> {
 | |
| 	private:
 | |
| 		typedef basic_table<base_type> base_t;
 | |
| 
 | |
| 	public:
 | |
| 		using base_t::lua_state;
 | |
| 
 | |
| 		basic_environment() noexcept = default;
 | |
| 		basic_environment(const basic_environment&) = default;
 | |
| 		basic_environment(basic_environment&&) = default;
 | |
| 		basic_environment& operator=(const basic_environment&) = default;
 | |
| 		basic_environment& operator=(basic_environment&&) = default;
 | |
| 		basic_environment(const stack_reference& r) : basic_environment(r.lua_state(), r.stack_index()) {
 | |
| 		}
 | |
| 		basic_environment(stack_reference&& r) : basic_environment(r.lua_state(), r.stack_index()) {
 | |
| 		}
 | |
| 
 | |
| 		basic_environment(lua_State* L, new_table nt) : base_t(L, std::move(nt)) {
 | |
| 		}
 | |
| 		template <bool b>
 | |
| 		basic_environment(lua_State* L, new_table t, const basic_reference<b>& fallback) : basic_environment(L, std::move(t)) {
 | |
| 			stack_table mt(L, new_table(0, 1));
 | |
| 			mt.set(meta_function::index, fallback);
 | |
| 			this->set(metatable_key, mt);
 | |
| 			mt.pop();
 | |
| 		}
 | |
| 
 | |
| 		basic_environment(env_key_t, const stack_reference& extraction_target)
 | |
| 		: base_t(detail::no_safety, extraction_target.lua_state(), (stack::push_environment_of(extraction_target), -1)) {
 | |
| #if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
 | |
| 			constructor_handler handler {};
 | |
| 			stack::check<env_key_t>(this->lua_state(), -1, handler);
 | |
| #endif // Safety
 | |
| 			lua_pop(this->lua_state(), 2);
 | |
| 		}
 | |
| 		template <bool b>
 | |
| 		basic_environment(env_key_t, const basic_reference<b>& extraction_target)
 | |
| 		: base_t(detail::no_safety, extraction_target.lua_state(), (stack::push_environment_of(extraction_target), -1)) {
 | |
| #if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
 | |
| 			constructor_handler handler {};
 | |
| 			stack::check<env_key_t>(this->lua_state(), -1, handler);
 | |
| #endif // Safety
 | |
| 			lua_pop(this->lua_state(), 2);
 | |
| 		}
 | |
| 		basic_environment(lua_State* L, int index = -1) : base_t(detail::no_safety, L, index) {
 | |
| #if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
 | |
| 			constructor_handler handler {};
 | |
| 			stack::check<basic_environment>(L, index, handler);
 | |
| #endif // Safety
 | |
| 		}
 | |
| 		basic_environment(lua_State* L, ref_index index) : base_t(detail::no_safety, L, index) {
 | |
| #if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
 | |
| 			auto pp = stack::push_pop(*this);
 | |
| 			constructor_handler handler {};
 | |
| 			stack::check<basic_environment>(L, -1, handler);
 | |
| #endif // Safety
 | |
| 		}
 | |
| 		template <typename T,
 | |
| 		     meta::enable<meta::neg<meta::any_same<meta::unqualified_t<T>, basic_environment>>, meta::neg<std::is_same<base_type, stack_reference>>,
 | |
| 		          meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
 | |
| 		basic_environment(T&& r) noexcept : base_t(detail::no_safety, std::forward<T>(r)) {
 | |
| #if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
 | |
| 			if (!is_environment<meta::unqualified_t<T>>::value) {
 | |
| 				auto pp = stack::push_pop(*this);
 | |
| 				constructor_handler handler {};
 | |
| 				stack::check<basic_environment>(lua_state(), -1, handler);
 | |
| 			}
 | |
| #endif // Safety
 | |
| 		}
 | |
| 		basic_environment(lua_nil_t r) noexcept : base_t(detail::no_safety, r) {
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
 | |
| 		basic_environment(lua_State* L, T&& r) noexcept : base_t(detail::no_safety, L, std::forward<T>(r)) {
 | |
| #if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
 | |
| 			if (!is_environment<meta::unqualified_t<T>>::value) {
 | |
| 				auto pp = stack::push_pop(*this);
 | |
| 				constructor_handler handler {};
 | |
| 				stack::check<basic_environment>(lua_state(), -1, handler);
 | |
| 			}
 | |
| #endif // Safety
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		void set_on(const T& target) const {
 | |
| 			lua_State* L = target.lua_state();
 | |
| 			auto pp = stack::push_pop(target);
 | |
| #if SOL_LUA_VESION_I_ < 502
 | |
| 			// Use lua_setfenv
 | |
| 			this->push();
 | |
| 			lua_setfenv(L, -2);
 | |
| #else
 | |
| 			// Use upvalues as explained in Lua 5.2 and beyond's manual
 | |
| 			this->push();
 | |
| 			const char* name = lua_setupvalue(L, -2, 1);
 | |
| 			if (name == nullptr) {
 | |
| 				this->pop();
 | |
| 			}
 | |
| #endif
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename T, typename E>
 | |
| 	void set_environment(const basic_environment<E>& env, const T& target) {
 | |
| 		env.set_on(target);
 | |
| 	}
 | |
| 
 | |
| 	template <typename E = reference, typename T>
 | |
| 	basic_environment<E> get_environment(const T& target) {
 | |
| 		lua_State* L = target.lua_state();
 | |
| 		auto pp = stack::pop_n(L, stack::push_environment_of(target));
 | |
| 		return basic_environment<E>(L, -1);
 | |
| 	}
 | |
| 
 | |
| 	struct this_environment {
 | |
| 		optional<environment> env;
 | |
| 
 | |
| 		this_environment() : env(nullopt) {
 | |
| 		}
 | |
| 		this_environment(environment e) : env(std::move(e)) {
 | |
| 		}
 | |
| 		this_environment(const this_environment&) = default;
 | |
| 		this_environment(this_environment&&) = default;
 | |
| 		this_environment& operator=(const this_environment&) = default;
 | |
| 		this_environment& operator=(this_environment&&) = default;
 | |
| 
 | |
| 		explicit operator bool() const {
 | |
| 			return static_cast<bool>(env);
 | |
| 		}
 | |
| 
 | |
| 		operator optional<environment> &() {
 | |
| 			return env;
 | |
| 		}
 | |
| 
 | |
| 		operator const optional<environment> &() const {
 | |
| 			return env;
 | |
| 		}
 | |
| 
 | |
| 		operator environment&() {
 | |
| 			return env.value();
 | |
| 		}
 | |
| 
 | |
| 		operator const environment&() const {
 | |
| 			return env.value();
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	namespace stack {
 | |
| 		template <>
 | |
| 		struct unqualified_getter<env_key_t> {
 | |
| 			static environment get(lua_State* L, int index, record& tracking) {
 | |
| 				tracking.use(1);
 | |
| 				return get_environment(stack_reference(L, raw_index(index)));
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <>
 | |
| 		struct unqualified_getter<this_environment> {
 | |
| 			static this_environment get(lua_State* L, int, record& tracking) {
 | |
| 				tracking.use(0);
 | |
| 				lua_Debug info;
 | |
| 				// Level 0 means current function (this C function, which may or may not be useful for us?)
 | |
| 				// Level 1 means next call frame up the stack. (Can be nothing if function called directly from C++ with lua_p/call)
 | |
| 				int pre_stack_size = lua_gettop(L);
 | |
| 				if (lua_getstack(L, 1, &info) != 1) {
 | |
| 					if (lua_getstack(L, 0, &info) != 1) {
 | |
| 						lua_settop(L, pre_stack_size);
 | |
| 						return this_environment();
 | |
| 					}
 | |
| 				}
 | |
| 				if (lua_getinfo(L, "f", &info) == 0) {
 | |
| 					lua_settop(L, pre_stack_size);
 | |
| 					return this_environment();
 | |
| 				}
 | |
| 
 | |
| 				stack_reference f(L, -1);
 | |
| 				environment env(env_key, f);
 | |
| 				if (!env.valid()) {
 | |
| 					lua_settop(L, pre_stack_size);
 | |
| 					return this_environment();
 | |
| 				}
 | |
| 				return this_environment(std::move(env));
 | |
| 			}
 | |
| 		};
 | |
| 	} // namespace stack
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/environment.hpp
 | |
| 
 | |
| // beginning of sol/load_result.hpp
 | |
| 
 | |
| #include <cstdint>
 | |
| 
 | |
| namespace sol {
 | |
| 	struct load_result : public proxy_base<load_result> {
 | |
| 	private:
 | |
| 		lua_State* L;
 | |
| 		int index;
 | |
| 		int returncount;
 | |
| 		int popcount;
 | |
| 		load_status err;
 | |
| 
 | |
| 	public:
 | |
| 		load_result() noexcept = default;
 | |
| 		load_result(lua_State* Ls, int stackindex = -1, int retnum = 0, int popnum = 0, load_status lerr = load_status::ok) noexcept
 | |
| 		: L(Ls), index(stackindex), returncount(retnum), popcount(popnum), err(lerr) {
 | |
| 		}
 | |
| 
 | |
| 		// We do not want anyone to copy these around willy-nilly
 | |
| 		// Will likely break people, but also will probably get rid of quiet bugs that have
 | |
| 		// been lurking. (E.g., Vanilla Lua will just quietly discard over-pops and under-pops:
 | |
| 		// LuaJIT and other Lua engines will implode and segfault at random later times.)
 | |
| 		load_result(const load_result&) = delete;
 | |
| 		load_result& operator=(const load_result&) = delete;
 | |
| 
 | |
| 		load_result(load_result&& o) noexcept : L(o.L), index(o.index), returncount(o.returncount), popcount(o.popcount), err(o.err) {
 | |
| 			// Must be manual, otherwise destructor will screw us
 | |
| 			// return count being 0 is enough to keep things clean
 | |
| 			// but we will be thorough
 | |
| 			o.L = nullptr;
 | |
| 			o.index = 0;
 | |
| 			o.returncount = 0;
 | |
| 			o.popcount = 0;
 | |
| 			o.err = load_status::syntax;
 | |
| 		}
 | |
| 		load_result& operator=(load_result&& o) noexcept {
 | |
| 			L = o.L;
 | |
| 			index = o.index;
 | |
| 			returncount = o.returncount;
 | |
| 			popcount = o.popcount;
 | |
| 			err = o.err;
 | |
| 			// Must be manual, otherwise destructor will screw us
 | |
| 			// return count being 0 is enough to keep things clean
 | |
| 			// but we will be thorough
 | |
| 			o.L = nullptr;
 | |
| 			o.index = 0;
 | |
| 			o.returncount = 0;
 | |
| 			o.popcount = 0;
 | |
| 			o.err = load_status::syntax;
 | |
| 			return *this;
 | |
| 		}
 | |
| 
 | |
| 		load_status status() const noexcept {
 | |
| 			return err;
 | |
| 		}
 | |
| 
 | |
| 		bool valid() const noexcept {
 | |
| 			return status() == load_status::ok;
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		T get() const {
 | |
| 			using UT = meta::unqualified_t<T>;
 | |
| 			if constexpr (meta::is_optional_v<UT>) {
 | |
| 				using ValueType = typename UT::value_type;
 | |
| 				if constexpr (std::is_same_v<ValueType, error>) {
 | |
| 					if (valid()) {
 | |
| 						return UT(nullopt);
 | |
| 					}
 | |
| 					return error(detail::direct_error, stack::get<std::string>(L, index));
 | |
| 				}
 | |
| 				else {
 | |
| 					if (!valid()) {
 | |
| 						return UT(nullopt);
 | |
| 					}
 | |
| 					return stack::get<UT>(L, index);
 | |
| 				}
 | |
| 			}
 | |
| 			else {
 | |
| 				if constexpr (std::is_same_v<T, error>) {
 | |
| #if SOL_IS_ON(SOL_SAFE_PROXIES_I_)
 | |
| 					if (valid()) {
 | |
| 						type_panic_c_str(L, index, type_of(L, index), type::none, "expecting an error type (a string, from Lua)");
 | |
| 					}
 | |
| #endif // Check proxy type's safety
 | |
| 					return error(detail::direct_error, stack::get<std::string>(L, index));
 | |
| 				}
 | |
| 				else {
 | |
| #if SOL_IS_ON(SOL_SAFE_PROXIES_I_)
 | |
| 					if (!valid()) {
 | |
| 						type_panic_c_str(L, index, type_of(L, index), type::none);
 | |
| 					}
 | |
| #endif // Check proxy type's safety
 | |
| 					return stack::get<T>(L, index);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		template <typename... Ret, typename... Args>
 | |
| 		decltype(auto) call(Args&&... args) {
 | |
| #if !defined(__clang__) && defined(_MSC_FULL_VER) && _MSC_FULL_VER >= 191200000
 | |
| 			// MSVC is ass sometimes
 | |
| 			return get<protected_function>().call<Ret...>(std::forward<Args>(args)...);
 | |
| #else
 | |
| 			return get<protected_function>().template call<Ret...>(std::forward<Args>(args)...);
 | |
| #endif
 | |
| 		}
 | |
| 
 | |
| 		template <typename... Args>
 | |
| 		decltype(auto) operator()(Args&&... args) {
 | |
| 			return call<>(std::forward<Args>(args)...);
 | |
| 		}
 | |
| 
 | |
| 		lua_State* lua_state() const noexcept {
 | |
| 			return L;
 | |
| 		};
 | |
| 		int stack_index() const noexcept {
 | |
| 			return index;
 | |
| 		};
 | |
| 
 | |
| 		~load_result() {
 | |
| 			stack::remove(L, index, popcount);
 | |
| 		}
 | |
| 	};
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/load_result.hpp
 | |
| 
 | |
| // beginning of sol/state_handling.hpp
 | |
| 
 | |
| // beginning of sol/lua_value.hpp
 | |
| 
 | |
| namespace sol {
 | |
| 	struct lua_value {
 | |
| 	public:
 | |
| 		struct arr : detail::ebco<std::initializer_list<lua_value>> {
 | |
| 		private:
 | |
| 			using base_t = detail::ebco<std::initializer_list<lua_value>>;
 | |
| 
 | |
| 		public:
 | |
| 			using base_t::base_t;
 | |
| 		};
 | |
| 
 | |
| 	private:
 | |
| 		template <typename T>
 | |
| 		using is_reference_or_lua_value_init_list
 | |
| 		     = meta::any<meta::is_specialization_of<T, std::initializer_list>, std::is_same<T, reference>, std::is_same<T, arr>>;
 | |
| 
 | |
| 		template <typename T>
 | |
| 		using is_lua_value_single_constructible = meta::any<std::is_same<T, lua_value>, is_reference_or_lua_value_init_list<T>>;
 | |
| 
 | |
| 		static lua_State*& thread_local_lua_state() {
 | |
| #if SOL_IS_ON(SOL_USE_THREAD_LOCAL_I_)
 | |
| 			static thread_local lua_State* L = nullptr;
 | |
| #else
 | |
| 			static lua_State* L = nullptr;
 | |
| #endif
 | |
| 			return L;
 | |
| 		}
 | |
| 
 | |
| 		reference ref_value;
 | |
| 
 | |
| 	public:
 | |
| 		static void set_lua_state(lua_State* L) {
 | |
| 			thread_local_lua_state() = L;
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, meta::disable<is_reference_or_lua_value_init_list<meta::unqualified_t<T>>> = meta::enabler>
 | |
| 		lua_value(lua_State* L_, T&& value) : lua_value(((set_lua_state(L_)), std::forward<T>(value))) {
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, meta::disable<is_lua_value_single_constructible<meta::unqualified_t<T>>> = meta::enabler>
 | |
| 		lua_value(T&& value) : ref_value(make_reference(thread_local_lua_state(), std::forward<T>(value))) {
 | |
| 		}
 | |
| 
 | |
| 		lua_value(lua_State* L_, std::initializer_list<std::pair<lua_value, lua_value>> il)
 | |
| 		: lua_value([&L_, &il]() {
 | |
| 			set_lua_state(L_);
 | |
| 			return std::move(il);
 | |
| 		}()) {
 | |
| 		}
 | |
| 
 | |
| 		lua_value(std::initializer_list<std::pair<lua_value, lua_value>> il) : ref_value(make_reference(thread_local_lua_state(), std::move(il))) {
 | |
| 		}
 | |
| 
 | |
| 		lua_value(lua_State* L_, arr il)
 | |
| 		: lua_value([&L_, &il]() {
 | |
| 			set_lua_state(L_);
 | |
| 			return std::move(il);
 | |
| 		}()) {
 | |
| 		}
 | |
| 
 | |
| 		lua_value(arr il) : ref_value(make_reference(thread_local_lua_state(), std::move(il.value()))) {
 | |
| 		}
 | |
| 
 | |
| 		lua_value(lua_State* L_, reference r)
 | |
| 		: lua_value([&L_, &r]() {
 | |
| 			set_lua_state(L_);
 | |
| 			return std::move(r);
 | |
| 		}()) {
 | |
| 		}
 | |
| 
 | |
| 		lua_value(reference r) : ref_value(std::move(r)) {
 | |
| 		}
 | |
| 
 | |
| 		lua_value(const lua_value&) noexcept = default;
 | |
| 		lua_value(lua_value&&) = default;
 | |
| 		lua_value& operator=(const lua_value&) = default;
 | |
| 		lua_value& operator=(lua_value&&) = default;
 | |
| 
 | |
| 		const reference& value() const& {
 | |
| 			return ref_value;
 | |
| 		}
 | |
| 
 | |
| 		reference& value() & {
 | |
| 			return ref_value;
 | |
| 		}
 | |
| 
 | |
| 		reference&& value() && {
 | |
| 			return std::move(ref_value);
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		decltype(auto) as() const {
 | |
| 			ref_value.push();
 | |
| 			return stack::pop<T>(ref_value.lua_state());
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		bool is() const {
 | |
| 			int r = ref_value.registry_index();
 | |
| 			if (r == LUA_REFNIL)
 | |
| 				return meta::any_same<meta::unqualified_t<T>, lua_nil_t, nullopt_t, std::nullptr_t>::value ? true : false;
 | |
| 			if (r == LUA_NOREF)
 | |
| 				return false;
 | |
| 			auto pp = stack::push_pop(ref_value);
 | |
| 			return stack::check<T>(ref_value.lua_state(), -1, no_panic);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	using array_value = typename lua_value::arr;
 | |
| 
 | |
| 	namespace stack {
 | |
| 		template <>
 | |
| 		struct unqualified_pusher<lua_value> {
 | |
| 			static int push(lua_State* L, const lua_value& lv) {
 | |
| 				return stack::push(L, lv.value());
 | |
| 			}
 | |
| 
 | |
| 			static int push(lua_State* L, lua_value&& lv) {
 | |
| 				return stack::push(L, std::move(lv).value());
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <>
 | |
| 		struct unqualified_getter<lua_value> {
 | |
| 			static lua_value get(lua_State* L, int index, record& tracking) {
 | |
| 				return lua_value(L, stack::get<reference>(L, index, tracking));
 | |
| 			}
 | |
| 		};
 | |
| 	} // namespace stack
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/lua_value.hpp
 | |
| 
 | |
| #if SOL_IS_ON(SOL_PRINT_ERRORS_I_)
 | |
| #include <iostream>
 | |
| #endif
 | |
| 
 | |
| namespace sol {
 | |
| 	inline void register_main_thread(lua_State* L) {
 | |
| #if SOL_LUA_VESION_I_ < 502
 | |
| 		if (L == nullptr) {
 | |
| 			lua_pushnil(L);
 | |
| 			lua_setglobal(L, detail::default_main_thread_name());
 | |
| 			return;
 | |
| 		}
 | |
| 		lua_pushthread(L);
 | |
| 		lua_setglobal(L, detail::default_main_thread_name());
 | |
| #else
 | |
| 		(void)L;
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	inline int default_at_panic(lua_State* L) {
 | |
| #if SOL_IS_OFF(SOL_EXCEPTIONS_I_)
 | |
| 		(void)L;
 | |
| 		return -1;
 | |
| #else
 | |
| 		size_t messagesize;
 | |
| 		const char* message = lua_tolstring(L, -1, &messagesize);
 | |
| 		if (message) {
 | |
| 			std::string err(message, messagesize);
 | |
| 			lua_settop(L, 0);
 | |
| #if SOL_IS_ON(SOL_PRINT_ERRORS_I_)
 | |
| 			std::cerr << "[sol3] An error occurred and panic has been invoked: ";
 | |
| 			std::cerr << err;
 | |
| 			std::cerr << std::endl;
 | |
| #endif
 | |
| 			throw error(err);
 | |
| 		}
 | |
| 		lua_settop(L, 0);
 | |
| 		throw error(std::string("An unexpected error occurred and panic has been invoked"));
 | |
| #endif // Printing Errors
 | |
| 	}
 | |
| 
 | |
| 	inline int default_traceback_error_handler(lua_State* L) {
 | |
| 		std::string msg = "An unknown error has triggered the default error handler";
 | |
| 		optional<string_view> maybetopmsg = stack::unqualified_check_get<string_view>(L, 1, no_panic);
 | |
| 		if (maybetopmsg) {
 | |
| 			const string_view& topmsg = maybetopmsg.value();
 | |
| 			msg.assign(topmsg.data(), topmsg.size());
 | |
| 		}
 | |
| 		luaL_traceback(L, L, msg.c_str(), 1);
 | |
| 		optional<string_view> maybetraceback = stack::unqualified_check_get<string_view>(L, -1, no_panic);
 | |
| 		if (maybetraceback) {
 | |
| 			const string_view& traceback = maybetraceback.value();
 | |
| 			msg.assign(traceback.data(), traceback.size());
 | |
| 		}
 | |
| #if SOL_IS_ON(SOL_PRINT_ERRORS_I_)
 | |
| 		// std::cerr << "[sol3] An error occurred and was caught in traceback: ";
 | |
| 		// std::cerr << msg;
 | |
| 		// std::cerr << std::endl;
 | |
| #endif // Printing
 | |
| 		return stack::push(L, msg);
 | |
| 	}
 | |
| 
 | |
| 	inline void set_default_state(lua_State* L, lua_CFunction panic_function = &default_at_panic,
 | |
| 	     lua_CFunction traceback_function = c_call<decltype(&default_traceback_error_handler), &default_traceback_error_handler>,
 | |
| 	     exception_handler_function exf = detail::default_exception_handler) {
 | |
| 		lua_atpanic(L, panic_function);
 | |
| 		protected_function::set_default_handler(object(L, in_place, traceback_function));
 | |
| 		set_default_exception_handler(L, exf);
 | |
| 		register_main_thread(L);
 | |
| 		stack::luajit_exception_handler(L);
 | |
| 		lua_value::set_lua_state(L);
 | |
| 	}
 | |
| 
 | |
| 	inline std::size_t total_memory_used(lua_State* L) {
 | |
| 		std::size_t kb = lua_gc(L, LUA_GCCOUNT, 0);
 | |
| 		kb *= 1024;
 | |
| 		kb += lua_gc(L, LUA_GCCOUNTB, 0);
 | |
| 		return kb;
 | |
| 	}
 | |
| 
 | |
| 	inline protected_function_result script_pass_on_error(lua_State*, protected_function_result result) {
 | |
| 		return result;
 | |
| 	}
 | |
| 
 | |
| 	inline protected_function_result script_throw_on_error(lua_State* L, protected_function_result result) {
 | |
| 		type t = type_of(L, result.stack_index());
 | |
| 		std::string err = "sol: ";
 | |
| 		err += to_string(result.status());
 | |
| 		err += " error";
 | |
| #if SOL_IS_ON(SOL_EXCEPTIONS_I_)
 | |
| 		std::exception_ptr eptr = std::current_exception();
 | |
| 		if (eptr) {
 | |
| 			err += " with a ";
 | |
| 			try {
 | |
| 				std::rethrow_exception(eptr);
 | |
| 			}
 | |
| 			catch (const std::exception& ex) {
 | |
| 				err += "std::exception -- ";
 | |
| 				err.append(ex.what());
 | |
| 			}
 | |
| 			catch (const std::string& message) {
 | |
| 				err += "thrown message -- ";
 | |
| 				err.append(message);
 | |
| 			}
 | |
| 			catch (const char* message) {
 | |
| 				err += "thrown message -- ";
 | |
| 				err.append(message);
 | |
| 			}
 | |
| 			catch (...) {
 | |
| 				err.append("thrown but unknown type, cannot serialize into error message");
 | |
| 			}
 | |
| 		}
 | |
| #endif // serialize exception information if possible
 | |
| 		if (t == type::string) {
 | |
| 			err += ": ";
 | |
| 			string_view serr = stack::unqualified_get<string_view>(L, result.stack_index());
 | |
| 			err.append(serr.data(), serr.size());
 | |
| 		}
 | |
| #if SOL_IS_ON(SOL_PRINT_ERRORS_I_)
 | |
| 		std::cerr << "[sol3] An error occurred and has been passed to an error handler: ";
 | |
| 		std::cerr << err;
 | |
| 		std::cerr << std::endl;
 | |
| #endif
 | |
| 		// replacing information of stack error into pfr
 | |
| 		int target = result.stack_index();
 | |
| 		if (result.pop_count() > 0) {
 | |
| 			stack::remove(L, target, result.pop_count());
 | |
| 		}
 | |
| 		stack::push(L, err);
 | |
| 		int top = lua_gettop(L);
 | |
| 		int towards = top - target;
 | |
| 		if (towards != 0) {
 | |
| 			lua_rotate(L, top, towards);
 | |
| 		}
 | |
| #if SOL_IS_OFF(SOL_EXCEPTIONS_I_)
 | |
| 		return result;
 | |
| #else
 | |
| 		// just throw our error
 | |
| 		throw error(detail::direct_error, err);
 | |
| #endif // If exceptions are allowed
 | |
| 	}
 | |
| 
 | |
| 	inline protected_function_result script_default_on_error(lua_State* L, protected_function_result pfr) {
 | |
| #if SOL_IS_ON(SOL_DEFAULT_PASS_ON_ERROR_I_)
 | |
| 		return script_pass_on_error(L, std::move(pfr));
 | |
| #else
 | |
| 		return script_throw_on_error(L, std::move(pfr));
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	namespace stack {
 | |
| 		inline error get_traceback_or_errors(lua_State* L) {
 | |
| 			int p = default_traceback_error_handler(L);
 | |
| 			sol::error err = stack::get<sol::error>(L, -p);
 | |
| 			lua_pop(L, p);
 | |
| 			return err;
 | |
| 		}
 | |
| 	} // namespace stack
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/state_handling.hpp
 | |
| 
 | |
| #include <memory>
 | |
| #include <cstddef>
 | |
| 
 | |
| namespace sol {
 | |
| 
 | |
| 	class state_view {
 | |
| 	private:
 | |
| 		lua_State* L;
 | |
| 		table reg;
 | |
| 		global_table global;
 | |
| 
 | |
| 		optional<object> is_loaded_package(const std::string& key) {
 | |
| 			auto loaded = reg.traverse_get<optional<object>>("_LOADED", key);
 | |
| 			bool is53mod = loaded && !(loaded->is<bool>() && !loaded->as<bool>());
 | |
| 			if (is53mod)
 | |
| 				return loaded;
 | |
| #if SOL_LUA_VESION_I_ <= 501
 | |
| 			auto loaded51 = global.traverse_get<optional<object>>("package", "loaded", key);
 | |
| 			bool is51mod = loaded51 && !(loaded51->is<bool>() && !loaded51->as<bool>());
 | |
| 			if (is51mod)
 | |
| 				return loaded51;
 | |
| #endif
 | |
| 			return nullopt;
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		void ensure_package(const std::string& key, T&& sr) {
 | |
| #if SOL_LUA_VESION_I_ <= 501
 | |
| 			auto pkg = global["package"];
 | |
| 			if (!pkg.valid()) {
 | |
| 				pkg = create_table_with("loaded", create_table_with(key, sr));
 | |
| 			}
 | |
| 			else {
 | |
| 				auto ld = pkg["loaded"];
 | |
| 				if (!ld.valid()) {
 | |
| 					ld = create_table_with(key, sr);
 | |
| 				}
 | |
| 				else {
 | |
| 					ld[key] = sr;
 | |
| 				}
 | |
| 			}
 | |
| #endif
 | |
| 			auto loaded = reg["_LOADED"];
 | |
| 			if (!loaded.valid()) {
 | |
| 				loaded = create_table_with(key, sr);
 | |
| 			}
 | |
| 			else {
 | |
| 				loaded[key] = sr;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		template <typename Fx>
 | |
| 		object require_core(const std::string& key, Fx&& action, bool create_global = true) {
 | |
| 			optional<object> loaded = is_loaded_package(key);
 | |
| 			if (loaded && loaded->valid())
 | |
| 				return std::move(*loaded);
 | |
| 			action();
 | |
| 			stack_reference sr(L, -1);
 | |
| 			if (create_global)
 | |
| 				set(key, sr);
 | |
| 			ensure_package(key, sr);
 | |
| 			return stack::pop<object>(L);
 | |
| 		}
 | |
| 
 | |
| 	public:
 | |
| 		using iterator = typename global_table::iterator;
 | |
| 		using const_iterator = typename global_table::const_iterator;
 | |
| 
 | |
| 		state_view(lua_State* Ls) : L(Ls), reg(Ls, LUA_REGISTRYINDEX), global(Ls, detail::global_) {
 | |
| 		}
 | |
| 
 | |
| 		state_view(this_state Ls) : state_view(Ls.L) {
 | |
| 		}
 | |
| 
 | |
| 		lua_State* lua_state() const {
 | |
| 			return L;
 | |
| 		}
 | |
| 
 | |
| 		template <typename... Args>
 | |
| 		void open_libraries(Args&&... args) {
 | |
| 			static_assert(meta::all_same<lib, meta::unqualified_t<Args>...>::value, "all types must be libraries");
 | |
| 			if constexpr (sizeof...(args) == 0) {
 | |
| 				luaL_openlibs(L);
 | |
| 				return;
 | |
| 			}
 | |
| 			else {
 | |
| 				lib libraries[1 + sizeof...(args)] = { lib::count, std::forward<Args>(args)... };
 | |
| 
 | |
| 				for (auto&& library : libraries) {
 | |
| 					switch (library) {
 | |
| #if SOL_LUA_VESION_I_ <= 501 && defined(SOL_LUAJIT)
 | |
| 					case lib::coroutine:
 | |
| #endif // luajit opens coroutine base stuff
 | |
| 					case lib::base:
 | |
| 						luaL_requiref(L, "base", luaopen_base, 1);
 | |
| 						lua_pop(L, 1);
 | |
| 						break;
 | |
| 					case lib::package:
 | |
| 						luaL_requiref(L, "package", luaopen_package, 1);
 | |
| 						lua_pop(L, 1);
 | |
| 						break;
 | |
| #if !defined(SOL_LUAJIT)
 | |
| 					case lib::coroutine:
 | |
| #if SOL_LUA_VESION_I_ > 501
 | |
| 						luaL_requiref(L, "coroutine", luaopen_coroutine, 1);
 | |
| 						lua_pop(L, 1);
 | |
| #endif // Lua 5.2+ only
 | |
| 						break;
 | |
| #endif // Not LuaJIT - comes builtin
 | |
| 					case lib::string:
 | |
| 						luaL_requiref(L, "string", luaopen_string, 1);
 | |
| 						lua_pop(L, 1);
 | |
| 						break;
 | |
| 					case lib::table:
 | |
| 						luaL_requiref(L, "table", luaopen_table, 1);
 | |
| 						lua_pop(L, 1);
 | |
| 						break;
 | |
| 					case lib::math:
 | |
| 						luaL_requiref(L, "math", luaopen_math, 1);
 | |
| 						lua_pop(L, 1);
 | |
| 						break;
 | |
| 					case lib::bit32:
 | |
| #ifdef SOL_LUAJIT
 | |
| 						luaL_requiref(L, "bit32", luaopen_bit, 1);
 | |
| 						lua_pop(L, 1);
 | |
| #elif (SOL_LUA_VESION_I_ == 502) || defined(LUA_COMPAT_BITLIB) || defined(LUA_COMPAT_5_2)
 | |
| 						luaL_requiref(L, "bit32", luaopen_bit32, 1);
 | |
| 						lua_pop(L, 1);
 | |
| #else
 | |
| #endif // Lua 5.2 only (deprecated in 5.3 (503)) (Can be turned on with Compat flags)
 | |
| 						break;
 | |
| 					case lib::io:
 | |
| 						luaL_requiref(L, "io", luaopen_io, 1);
 | |
| 						lua_pop(L, 1);
 | |
| 						break;
 | |
| 					case lib::os:
 | |
| 						luaL_requiref(L, "os", luaopen_os, 1);
 | |
| 						lua_pop(L, 1);
 | |
| 						break;
 | |
| 					case lib::debug:
 | |
| 						luaL_requiref(L, "debug", luaopen_debug, 1);
 | |
| 						lua_pop(L, 1);
 | |
| 						break;
 | |
| 					case lib::utf8:
 | |
| #if SOL_LUA_VESION_I_ > 502 && !defined(SOL_LUAJIT)
 | |
| 						luaL_requiref(L, "utf8", luaopen_utf8, 1);
 | |
| 						lua_pop(L, 1);
 | |
| #endif // Lua 5.3+ only
 | |
| 						break;
 | |
| 					case lib::ffi:
 | |
| #ifdef SOL_LUAJIT
 | |
| 						luaL_requiref(L, "ffi", luaopen_ffi, 1);
 | |
| 						lua_pop(L, 1);
 | |
| #endif // LuaJIT only
 | |
| 						break;
 | |
| 					case lib::jit:
 | |
| #ifdef SOL_LUAJIT
 | |
| 						luaL_requiref(L, "jit", luaopen_jit, 0);
 | |
| 						lua_pop(L, 1);
 | |
| #endif // LuaJIT Only
 | |
| 						break;
 | |
| 					case lib::count:
 | |
| 					default:
 | |
| 						break;
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		object require(const std::string& key, lua_CFunction open_function, bool create_global = true) {
 | |
| 			luaL_requiref(L, key.c_str(), open_function, create_global ? 1 : 0);
 | |
| 			return stack::pop<object>(L);
 | |
| 		}
 | |
| 
 | |
| 		object require_script(const std::string& key, const string_view& code, bool create_global = true,
 | |
| 		     const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
 | |
| 			auto action = [this, &code, &chunkname, &mode]() { stack::script(L, code, chunkname, mode); };
 | |
| 			return require_core(key, action, create_global);
 | |
| 		}
 | |
| 
 | |
| 		object require_file(const std::string& key, const std::string& filename, bool create_global = true, load_mode mode = load_mode::any) {
 | |
| 			auto action = [this, &filename, &mode]() { stack::script_file(L, filename, mode); };
 | |
| 			return require_core(key, action, create_global);
 | |
| 		}
 | |
| 
 | |
| 		void clear_package_loaders() {
 | |
| 			optional<table> maybe_package = this->global["package"];
 | |
| 			if (!maybe_package) {
 | |
| 				// package lib wasn't opened
 | |
| 				// open package lib
 | |
| 				return;
 | |
| 			}
 | |
| 			table& package = *maybe_package;
 | |
| 			// yay for version differences...
 | |
| 			// one day Lua 5.1 will die a peaceful death
 | |
| 			// and its old bones will find blissful rest
 | |
| 			auto loaders_proxy = package
 | |
| #if SOL_LUA_VESION_I_ < 502
 | |
| 			     ["loaders"]
 | |
| #else
 | |
| 			     ["searchers"]
 | |
| #endif
 | |
| 			     ;
 | |
| 			if (!loaders_proxy.valid()) {
 | |
| 				// nothing to clear
 | |
| 				return;
 | |
| 			}
 | |
| 			// we need to create the table for loaders
 | |
| 			// table does not exist, so create and move forward
 | |
| 			loaders_proxy = new_table(1, 0);
 | |
| 		}
 | |
| 
 | |
| 		template <typename Fx>
 | |
| 		void add_package_loader(Fx&& fx, bool clear_all_package_loaders = false) {
 | |
| 			optional<table> maybe_package = this->global["package"];
 | |
| 			if (!maybe_package) {
 | |
| 				// package lib wasn't opened
 | |
| 				// open package lib
 | |
| 				return;
 | |
| 			}
 | |
| 			table& package = *maybe_package;
 | |
| 			// yay for version differences...
 | |
| 			// one day Lua 5.1 will die a peaceful death
 | |
| 			// and its old bones will find blissful rest
 | |
| 			auto loaders_proxy = package
 | |
| #if SOL_LUA_VESION_I_ < 502
 | |
| 			     ["loaders"]
 | |
| #else
 | |
| 			     ["searchers"]
 | |
| #endif
 | |
| 			     ;
 | |
| 			bool make_new_table = clear_all_package_loaders || !loaders_proxy.valid();
 | |
| 			if (make_new_table) {
 | |
| 				// we need to create the table for loaders
 | |
| 				// table does not exist, so create and move forward
 | |
| 				loaders_proxy = new_table(1, 0);
 | |
| 			}
 | |
| 			optional<table> maybe_loaders = loaders_proxy;
 | |
| 			if (!maybe_loaders) {
 | |
| 				// loaders/searches
 | |
| 				// thing exists in package, but it
 | |
| 				// ain't a table or a table-alike...!
 | |
| 				return;
 | |
| 			}
 | |
| 			table loaders = loaders_proxy;
 | |
| 			loaders.add(std::forward<Fx>(fx));
 | |
| 		}
 | |
| 
 | |
| 		template <typename E>
 | |
| 		protected_function_result do_reader(lua_Reader reader, void* data, const basic_environment<E>& env,
 | |
| 		     const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
 | |
| 			detail::typical_chunk_name_t basechunkname = {};
 | |
| 			const char* chunknametarget = detail::make_chunk_name("lua_Reader", chunkname, basechunkname);
 | |
| 			load_status x = static_cast<load_status>(lua_load(L, reader, data, chunknametarget, to_string(mode).c_str()));
 | |
| 			if (x != load_status::ok) {
 | |
| 				return protected_function_result(L, absolute_index(L, -1), 0, 1, static_cast<call_status>(x));
 | |
| 			}
 | |
| 			stack_aligned_protected_function pf(L, -1);
 | |
| 			set_environment(env, pf);
 | |
| 			return pf();
 | |
| 		}
 | |
| 
 | |
| 		protected_function_result do_reader(
 | |
| 		     lua_Reader reader, void* data, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
 | |
| 			detail::typical_chunk_name_t basechunkname = {};
 | |
| 			const char* chunknametarget = detail::make_chunk_name("lua_Reader", chunkname, basechunkname);
 | |
| 			load_status x = static_cast<load_status>(lua_load(L, reader, data, chunknametarget, to_string(mode).c_str()));
 | |
| 			if (x != load_status::ok) {
 | |
| 				return protected_function_result(L, absolute_index(L, -1), 0, 1, static_cast<call_status>(x));
 | |
| 			}
 | |
| 			stack_aligned_protected_function pf(L, -1);
 | |
| 			return pf();
 | |
| 		}
 | |
| 
 | |
| 		template <typename E>
 | |
| 		protected_function_result do_string(const string_view& code, const basic_environment<E>& env,
 | |
| 		     const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
 | |
| 			detail::typical_chunk_name_t basechunkname = {};
 | |
| 			const char* chunknametarget = detail::make_chunk_name(code, chunkname, basechunkname);
 | |
| 			load_status x = static_cast<load_status>(luaL_loadbufferx(L, code.data(), code.size(), chunknametarget, to_string(mode).c_str()));
 | |
| 			if (x != load_status::ok) {
 | |
| 				return protected_function_result(L, absolute_index(L, -1), 0, 1, static_cast<call_status>(x));
 | |
| 			}
 | |
| 			stack_aligned_protected_function pf(L, -1);
 | |
| 			set_environment(env, pf);
 | |
| 			return pf();
 | |
| 		}
 | |
| 
 | |
| 		protected_function_result do_string(
 | |
| 		     const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
 | |
| 			detail::typical_chunk_name_t basechunkname = {};
 | |
| 			const char* chunknametarget = detail::make_chunk_name(code, chunkname, basechunkname);
 | |
| 			load_status x = static_cast<load_status>(luaL_loadbufferx(L, code.data(), code.size(), chunknametarget, to_string(mode).c_str()));
 | |
| 			if (x != load_status::ok) {
 | |
| 				return protected_function_result(L, absolute_index(L, -1), 0, 1, static_cast<call_status>(x));
 | |
| 			}
 | |
| 			stack_aligned_protected_function pf(L, -1);
 | |
| 			return pf();
 | |
| 		}
 | |
| 
 | |
| 		template <typename E>
 | |
| 		protected_function_result do_file(const std::string& filename, const basic_environment<E>& env, load_mode mode = load_mode::any) {
 | |
| 			load_status x = static_cast<load_status>(luaL_loadfilex(L, filename.c_str(), to_string(mode).c_str()));
 | |
| 			if (x != load_status::ok) {
 | |
| 				return protected_function_result(L, absolute_index(L, -1), 0, 1, static_cast<call_status>(x));
 | |
| 			}
 | |
| 			stack_aligned_protected_function pf(L, -1);
 | |
| 			set_environment(env, pf);
 | |
| 			return pf();
 | |
| 		}
 | |
| 
 | |
| 		protected_function_result do_file(const std::string& filename, load_mode mode = load_mode::any) {
 | |
| 			load_status x = static_cast<load_status>(luaL_loadfilex(L, filename.c_str(), to_string(mode).c_str()));
 | |
| 			if (x != load_status::ok) {
 | |
| 				return protected_function_result(L, absolute_index(L, -1), 0, 1, static_cast<call_status>(x));
 | |
| 			}
 | |
| 			stack_aligned_protected_function pf(L, -1);
 | |
| 			return pf();
 | |
| 		}
 | |
| 
 | |
| 		template <typename Fx,
 | |
| 		     meta::disable_any<meta::is_string_constructible<meta::unqualified_t<Fx>>,
 | |
| 		          meta::is_specialization_of<meta::unqualified_t<Fx>, basic_environment>> = meta::enabler>
 | |
| 		protected_function_result safe_script(
 | |
| 		     lua_Reader reader, void* data, Fx&& on_error, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
 | |
| 			protected_function_result pfr = do_reader(reader, data, chunkname, mode);
 | |
| 			if (!pfr.valid()) {
 | |
| 				return on_error(L, std::move(pfr));
 | |
| 			}
 | |
| 			return pfr;
 | |
| 		}
 | |
| 
 | |
| 		protected_function_result safe_script(
 | |
| 		     lua_Reader reader, void* data, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
 | |
| 			return safe_script(reader, data, script_default_on_error, chunkname, mode);
 | |
| 		}
 | |
| 
 | |
| 		template <typename Fx,
 | |
| 		     meta::disable_any<meta::is_string_constructible<meta::unqualified_t<Fx>>,
 | |
| 		          meta::is_specialization_of<meta::unqualified_t<Fx>, basic_environment>> = meta::enabler>
 | |
| 		protected_function_result safe_script(
 | |
| 		     const string_view& code, Fx&& on_error, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
 | |
| 			protected_function_result pfr = do_string(code, chunkname, mode);
 | |
| 			if (!pfr.valid()) {
 | |
| 				return on_error(L, std::move(pfr));
 | |
| 			}
 | |
| 			return pfr;
 | |
| 		}
 | |
| 
 | |
| 		template <typename Fx, typename E>
 | |
| 		protected_function_result safe_script(const string_view& code, const basic_environment<E>& env, Fx&& on_error,
 | |
| 		     const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
 | |
| 			protected_function_result pfr = do_string(code, env, chunkname, mode);
 | |
| 			if (!pfr.valid()) {
 | |
| 				return on_error(L, std::move(pfr));
 | |
| 			}
 | |
| 			return pfr;
 | |
| 		}
 | |
| 
 | |
| 		template <typename E>
 | |
| 		protected_function_result safe_script(const string_view& code, const basic_environment<E>& env,
 | |
| 		     const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
 | |
| 			return safe_script(code, env, script_default_on_error, chunkname, mode);
 | |
| 		}
 | |
| 
 | |
| 		protected_function_result safe_script(
 | |
| 		     const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
 | |
| 			return safe_script(code, script_default_on_error, chunkname, mode);
 | |
| 		}
 | |
| 
 | |
| 		template <typename Fx,
 | |
| 		     meta::disable_any<meta::is_string_constructible<meta::unqualified_t<Fx>>,
 | |
| 		          meta::is_specialization_of<meta::unqualified_t<Fx>, basic_environment>> = meta::enabler>
 | |
| 		protected_function_result safe_script_file(const std::string& filename, Fx&& on_error, load_mode mode = load_mode::any) {
 | |
| 			protected_function_result pfr = do_file(filename, mode);
 | |
| 			if (!pfr.valid()) {
 | |
| 				return on_error(L, std::move(pfr));
 | |
| 			}
 | |
| 			return pfr;
 | |
| 		}
 | |
| 
 | |
| 		template <typename Fx, typename E>
 | |
| 		protected_function_result safe_script_file(
 | |
| 		     const std::string& filename, const basic_environment<E>& env, Fx&& on_error, load_mode mode = load_mode::any) {
 | |
| 			protected_function_result pfr = do_file(filename, env, mode);
 | |
| 			if (!pfr.valid()) {
 | |
| 				return on_error(L, std::move(pfr));
 | |
| 			}
 | |
| 			return pfr;
 | |
| 		}
 | |
| 
 | |
| 		template <typename E>
 | |
| 		protected_function_result safe_script_file(const std::string& filename, const basic_environment<E>& env, load_mode mode = load_mode::any) {
 | |
| 			return safe_script_file(filename, env, script_default_on_error, mode);
 | |
| 		}
 | |
| 
 | |
| 		protected_function_result safe_script_file(const std::string& filename, load_mode mode = load_mode::any) {
 | |
| 			return safe_script_file(filename, script_default_on_error, mode);
 | |
| 		}
 | |
| 
 | |
| 		template <typename E>
 | |
| 		unsafe_function_result unsafe_script(lua_Reader reader, void* data, const basic_environment<E>& env,
 | |
| 		     const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
 | |
| 			detail::typical_chunk_name_t basechunkname = {};
 | |
| 			const char* chunknametarget = detail::make_chunk_name("lua_Reader", chunkname, basechunkname);
 | |
| 			int index = lua_gettop(L);
 | |
| 			if (lua_load(L, reader, data, chunknametarget, to_string(mode).c_str())) {
 | |
| 				lua_error(L);
 | |
| 			}
 | |
| 			set_environment(env, stack_reference(L, raw_index(index + 1)));
 | |
| 			if (lua_pcall(L, 0, LUA_MULTRET, 0)) {
 | |
| 				lua_error(L);
 | |
| 			}
 | |
| 			int postindex = lua_gettop(L);
 | |
| 			int returns = postindex - index;
 | |
| 			return unsafe_function_result(L, (std::max)(postindex - (returns - 1), 1), returns);
 | |
| 		}
 | |
| 
 | |
| 		unsafe_function_result unsafe_script(
 | |
| 		     lua_Reader reader, void* data, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
 | |
| 			int index = lua_gettop(L);
 | |
| 			stack::script(L, reader, data, chunkname, mode);
 | |
| 			int postindex = lua_gettop(L);
 | |
| 			int returns = postindex - index;
 | |
| 			return unsafe_function_result(L, (std::max)(postindex - (returns - 1), 1), returns);
 | |
| 		}
 | |
| 
 | |
| 		template <typename E>
 | |
| 		unsafe_function_result unsafe_script(const string_view& code, const basic_environment<E>& env,
 | |
| 		     const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
 | |
| 			detail::typical_chunk_name_t basechunkname = {};
 | |
| 			const char* chunknametarget = detail::make_chunk_name(code, chunkname, basechunkname);
 | |
| 			int index = lua_gettop(L);
 | |
| 			if (luaL_loadbufferx(L, code.data(), code.size(), chunknametarget, to_string(mode).c_str())) {
 | |
| 				lua_error(L);
 | |
| 			}
 | |
| 			set_environment(env, stack_reference(L, raw_index(index + 1)));
 | |
| 			if (lua_pcall(L, 0, LUA_MULTRET, 0)) {
 | |
| 				lua_error(L);
 | |
| 			}
 | |
| 			int postindex = lua_gettop(L);
 | |
| 			int returns = postindex - index;
 | |
| 			return unsafe_function_result(L, (std::max)(postindex - (returns - 1), 1), returns);
 | |
| 		}
 | |
| 
 | |
| 		unsafe_function_result unsafe_script(
 | |
| 		     const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
 | |
| 			int index = lua_gettop(L);
 | |
| 			stack::script(L, code, chunkname, mode);
 | |
| 			int postindex = lua_gettop(L);
 | |
| 			int returns = postindex - index;
 | |
| 			return unsafe_function_result(L, (std::max)(postindex - (returns - 1), 1), returns);
 | |
| 		}
 | |
| 
 | |
| 		template <typename E>
 | |
| 		unsafe_function_result unsafe_script_file(const std::string& filename, const basic_environment<E>& env, load_mode mode = load_mode::any) {
 | |
| 			int index = lua_gettop(L);
 | |
| 			if (luaL_loadfilex(L, filename.c_str(), to_string(mode).c_str())) {
 | |
| 				lua_error(L);
 | |
| 			}
 | |
| 			set_environment(env, stack_reference(L, raw_index(index + 1)));
 | |
| 			if (lua_pcall(L, 0, LUA_MULTRET, 0)) {
 | |
| 				lua_error(L);
 | |
| 			}
 | |
| 			int postindex = lua_gettop(L);
 | |
| 			int returns = postindex - index;
 | |
| 			return unsafe_function_result(L, (std::max)(postindex - (returns - 1), 1), returns);
 | |
| 		}
 | |
| 
 | |
| 		unsafe_function_result unsafe_script_file(const std::string& filename, load_mode mode = load_mode::any) {
 | |
| 			int index = lua_gettop(L);
 | |
| 			stack::script_file(L, filename, mode);
 | |
| 			int postindex = lua_gettop(L);
 | |
| 			int returns = postindex - index;
 | |
| 			return unsafe_function_result(L, (std::max)(postindex - (returns - 1), 1), returns);
 | |
| 		}
 | |
| 
 | |
| 		template <typename Fx,
 | |
| 		     meta::disable_any<meta::is_string_constructible<meta::unqualified_t<Fx>>,
 | |
| 		          meta::is_specialization_of<meta::unqualified_t<Fx>, basic_environment>> = meta::enabler>
 | |
| 		protected_function_result script(
 | |
| 		     const string_view& code, Fx&& on_error, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
 | |
| 			return safe_script(code, std::forward<Fx>(on_error), chunkname, mode);
 | |
| 		}
 | |
| 
 | |
| 		template <typename Fx,
 | |
| 		     meta::disable_any<meta::is_string_constructible<meta::unqualified_t<Fx>>,
 | |
| 		          meta::is_specialization_of<meta::unqualified_t<Fx>, basic_environment>> = meta::enabler>
 | |
| 		protected_function_result script_file(const std::string& filename, Fx&& on_error, load_mode mode = load_mode::any) {
 | |
| 			return safe_script_file(filename, std::forward<Fx>(on_error), mode);
 | |
| 		}
 | |
| 
 | |
| 		template <typename Fx, typename E>
 | |
| 		protected_function_result script(const string_view& code, const basic_environment<E>& env, Fx&& on_error,
 | |
| 		     const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
 | |
| 			return safe_script(code, env, std::forward<Fx>(on_error), chunkname, mode);
 | |
| 		}
 | |
| 
 | |
| 		template <typename Fx, typename E>
 | |
| 		protected_function_result script_file(const std::string& filename, const basic_environment<E>& env, Fx&& on_error, load_mode mode = load_mode::any) {
 | |
| 			return safe_script_file(filename, env, std::forward<Fx>(on_error), mode);
 | |
| 		}
 | |
| 
 | |
| 		protected_function_result script(
 | |
| 		     const string_view& code, const environment& env, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
 | |
| 			return safe_script(code, env, script_default_on_error, chunkname, mode);
 | |
| 		}
 | |
| 
 | |
| 		protected_function_result script_file(const std::string& filename, const environment& env, load_mode mode = load_mode::any) {
 | |
| 			return safe_script_file(filename, env, script_default_on_error, mode);
 | |
| 		}
 | |
| 
 | |
| #if SOL_IS_ON(SOL_SAFE_FUNCTION_OBJECTS_I_)
 | |
| 		protected_function_result script(
 | |
| 		     lua_Reader reader, void* data, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
 | |
| 			return safe_script(reader, data, chunkname, mode);
 | |
| 		}
 | |
| 
 | |
| 		protected_function_result script(
 | |
| 		     const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
 | |
| 			return safe_script(code, chunkname, mode);
 | |
| 		}
 | |
| 
 | |
| 		protected_function_result script_file(const std::string& filename, load_mode mode = load_mode::any) {
 | |
| 			return safe_script_file(filename, mode);
 | |
| 		}
 | |
| #else
 | |
| 		unsafe_function_result script(const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
 | |
| 			return unsafe_script(code, chunkname, mode);
 | |
| 		}
 | |
| 
 | |
| 		unsafe_function_result script_file(const std::string& filename, load_mode mode = load_mode::any) {
 | |
| 			return unsafe_script_file(filename, mode);
 | |
| 		}
 | |
| #endif
 | |
| 		load_result load(const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
 | |
| 			detail::typical_chunk_name_t basechunkname = {};
 | |
| 			const char* chunknametarget = detail::make_chunk_name(code, chunkname, basechunkname);
 | |
| 			load_status x = static_cast<load_status>(luaL_loadbufferx(L, code.data(), code.size(), chunknametarget, to_string(mode).c_str()));
 | |
| 			return load_result(L, absolute_index(L, -1), 1, 1, x);
 | |
| 		}
 | |
| 
 | |
| 		load_result load_buffer(const char* buff, size_t size, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
 | |
| 			return load(string_view(buff, size), chunkname, mode);
 | |
| 		}
 | |
| 
 | |
| 		load_result load_buffer(
 | |
| 		     const std::byte* buff, size_t size, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
 | |
| 			return load(string_view(reinterpret_cast<const char*>(buff), size), chunkname, mode);
 | |
| 		}
 | |
| 
 | |
| 		load_result load_file(const std::string& filename, load_mode mode = load_mode::any) {
 | |
| 			load_status x = static_cast<load_status>(luaL_loadfilex(L, filename.c_str(), to_string(mode).c_str()));
 | |
| 			return load_result(L, absolute_index(L, -1), 1, 1, x);
 | |
| 		}
 | |
| 
 | |
| 		load_result load(lua_Reader reader, void* data, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
 | |
| 			detail::typical_chunk_name_t basechunkname = {};
 | |
| 			const char* chunknametarget = detail::make_chunk_name("lua_Reader", chunkname, basechunkname);
 | |
| 			load_status x = static_cast<load_status>(lua_load(L, reader, data, chunknametarget, to_string(mode).c_str()));
 | |
| 			return load_result(L, absolute_index(L, -1), 1, 1, x);
 | |
| 		}
 | |
| 
 | |
| 		iterator begin() const {
 | |
| 			return global.begin();
 | |
| 		}
 | |
| 
 | |
| 		iterator end() const {
 | |
| 			return global.end();
 | |
| 		}
 | |
| 
 | |
| 		const_iterator cbegin() const {
 | |
| 			return global.cbegin();
 | |
| 		}
 | |
| 
 | |
| 		const_iterator cend() const {
 | |
| 			return global.cend();
 | |
| 		}
 | |
| 
 | |
| 		global_table globals() const {
 | |
| 			// if we return a reference
 | |
| 			// we'll be screwed a bit
 | |
| 			return global;
 | |
| 		}
 | |
| 
 | |
| 		global_table& globals() {
 | |
| 			return global;
 | |
| 		}
 | |
| 
 | |
| 		table registry() const {
 | |
| 			return reg;
 | |
| 		}
 | |
| 
 | |
| 		std::size_t memory_used() const {
 | |
| 			return total_memory_used(lua_state());
 | |
| 		}
 | |
| 
 | |
| 		int stack_top() const {
 | |
| 			return stack::top(L);
 | |
| 		}
 | |
| 
 | |
| 		int stack_clear() {
 | |
| 			int s = stack_top();
 | |
| 			lua_pop(L, s);
 | |
| 			return s;
 | |
| 		}
 | |
| 
 | |
| 		bool supports_gc_mode(gc_mode mode) const noexcept {
 | |
| #if SOL_LUA_VESION_I_ >= 504
 | |
| 			// supports all modes
 | |
| 			(void)mode;
 | |
| 			return true;
 | |
| #endif
 | |
| 			return mode == gc_mode::default_value;
 | |
| 		}
 | |
| 
 | |
| 		bool is_gc_on() const {
 | |
| #if SOL_LUA_VESION_I_ >= 502
 | |
| 			return lua_gc(lua_state(), LUA_GCISRUNNING, 0) == 1;
 | |
| #else
 | |
| 			// You cannot turn it off in Lua 5.1
 | |
| 			return true;
 | |
| #endif
 | |
| 		}
 | |
| 
 | |
| 		void collect_garbage() {
 | |
| 			lua_gc(lua_state(), LUA_GCCOLLECT, 0);
 | |
| 		}
 | |
| 
 | |
| 		void collect_gc() {
 | |
| 			collect_garbage();
 | |
| 		}
 | |
| 
 | |
| 		bool step_gc(int step_size_kilobytes) {
 | |
| 			// THOUGHT: std::chrono-alikes to map "kilobyte size" here...?
 | |
| 			// Make it harder to give MB or KB to a B parameter...?
 | |
| 			// Probably overkill for now.
 | |
| #if SOL_LUA_VESION_I_ >= 504
 | |
| 			// The manual implies that this function is almost always successful...
 | |
| 			// is it?? It could depend on the GC mode...
 | |
| 			return lua_gc(lua_state(), LUA_GCSTEP, step_size_kilobytes) != 0;
 | |
| #else
 | |
| 			return lua_gc(lua_state(), LUA_GCSTEP, step_size_kilobytes) == 1;
 | |
| #endif
 | |
| 		}
 | |
| 
 | |
| 		void restart_gc() {
 | |
| 			lua_gc(lua_state(), LUA_GCRESTART, 0);
 | |
| 		}
 | |
| 
 | |
| 		void stop_gc() {
 | |
| 			lua_gc(lua_state(), LUA_GCSTOP, 0);
 | |
| 		}
 | |
| 
 | |
| 		// Returns the old GC mode. Check support using the supports_gc_mode function.
 | |
| 		gc_mode change_gc_mode_incremental(int pause, int step_multiplier, int step_byte_size) {
 | |
| 			// "What the fuck does any of this mean??"
 | |
| 			// http://www.lua.org/manual/5.4/manual.html#2.5.1
 | |
| 
 | |
| 			// THOUGHT: std::chrono-alikes to map "byte size" here...?
 | |
| 			// Make it harder to give MB or KB to a B parameter...?
 | |
| 			// Probably overkill for now.
 | |
| #if SOL_LUA_VESION_I_ >= 504
 | |
| 			int old_mode = lua_gc(lua_state(), LUA_GCINC, pause, step_multiplier, step_byte_size);
 | |
| 			if (old_mode == LUA_GCGEN) {
 | |
| 				return gc_mode::generational;
 | |
| 			}
 | |
| 			else if (old_mode == LUA_GCINC) {
 | |
| 				return gc_mode::incremental;
 | |
| 			}
 | |
| #else
 | |
| 			lua_gc(lua_state(), LUA_GCSETPAUSE, pause);
 | |
| 			lua_gc(lua_state(), LUA_GCSETSTEPMUL, step_multiplier);
 | |
| 			(void)step_byte_size; // means nothing in older versions
 | |
| #endif
 | |
| 			return gc_mode::default_value;
 | |
| 		}
 | |
| 
 | |
| 		// Returns the old GC mode. Check support using the supports_gc_mode function.
 | |
| 		gc_mode change_gc_mode_generational(int minor_multiplier, int major_multiplier) {
 | |
| #if SOL_LUA_VESION_I_ >= 504
 | |
| 			// "What does this shit mean?"
 | |
| 			// http://www.lua.org/manual/5.4/manual.html#2.5.2
 | |
| 			int old_mode = lua_gc(lua_state(), LUA_GCGEN, minor_multiplier, major_multiplier);
 | |
| 			if (old_mode == LUA_GCGEN) {
 | |
| 				return gc_mode::generational;
 | |
| 			}
 | |
| 			else if (old_mode == LUA_GCINC) {
 | |
| 				return gc_mode::incremental;
 | |
| 			}
 | |
| #endif
 | |
| 			return gc_mode::default_value;
 | |
| 		}
 | |
| 
 | |
| 		operator lua_State*() const {
 | |
| 			return lua_state();
 | |
| 		}
 | |
| 
 | |
| 		void set_panic(lua_CFunction panic) {
 | |
| 			lua_atpanic(lua_state(), panic);
 | |
| 		}
 | |
| 
 | |
| 		void set_exception_handler(exception_handler_function handler) {
 | |
| 			set_default_exception_handler(lua_state(), handler);
 | |
| 		}
 | |
| 
 | |
| 		template <typename... Args, typename... Keys>
 | |
| 		decltype(auto) get(Keys&&... keys) const {
 | |
| 			return global.get<Args...>(std::forward<Keys>(keys)...);
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, typename Key>
 | |
| 		decltype(auto) get_or(Key&& key, T&& otherwise) const {
 | |
| 			return global.get_or(std::forward<Key>(key), std::forward<T>(otherwise));
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, typename Key, typename D>
 | |
| 		decltype(auto) get_or(Key&& key, D&& otherwise) const {
 | |
| 			return global.get_or<T>(std::forward<Key>(key), std::forward<D>(otherwise));
 | |
| 		}
 | |
| 
 | |
| 		template <typename... Args>
 | |
| 		state_view& set(Args&&... args) {
 | |
| 			global.set(std::forward<Args>(args)...);
 | |
| 			return *this;
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, typename... Keys>
 | |
| 		decltype(auto) traverse_get(Keys&&... keys) const {
 | |
| 			return global.traverse_get<T>(std::forward<Keys>(keys)...);
 | |
| 		}
 | |
| 
 | |
| 		template <typename... Args>
 | |
| 		state_view& traverse_set(Args&&... args) {
 | |
| 			global.traverse_set(std::forward<Args>(args)...);
 | |
| 			return *this;
 | |
| 		}
 | |
| 
 | |
| 		template <typename Class, typename... Args>
 | |
| 		usertype<Class> new_usertype(const std::string& name, Args&&... args) {
 | |
| 			return global.new_usertype<Class>(name, std::forward<Args>(args)...);
 | |
| 		}
 | |
| 
 | |
| 		template <bool read_only = true, typename... Args>
 | |
| 		state_view& new_enum(const string_view& name, Args&&... args) {
 | |
| 			global.new_enum<read_only>(name, std::forward<Args>(args)...);
 | |
| 			return *this;
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, bool read_only = true>
 | |
| 		state_view& new_enum(const string_view& name, std::initializer_list<std::pair<string_view, T>> items) {
 | |
| 			global.new_enum<T, read_only>(name, std::move(items));
 | |
| 			return *this;
 | |
| 		}
 | |
| 
 | |
| 		template <typename Fx>
 | |
| 		void for_each(Fx&& fx) {
 | |
| 			global.for_each(std::forward<Fx>(fx));
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		table_proxy<global_table&, detail::proxy_key_t<T>> operator[](T&& key) {
 | |
| 			return global[std::forward<T>(key)];
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		table_proxy<const global_table&, detail::proxy_key_t<T>> operator[](T&& key) const {
 | |
| 			return global[std::forward<T>(key)];
 | |
| 		}
 | |
| 
 | |
| 		template <typename Sig, typename... Args, typename Key>
 | |
| 		state_view& set_function(Key&& key, Args&&... args) {
 | |
| 			global.set_function<Sig>(std::forward<Key>(key), std::forward<Args>(args)...);
 | |
| 			return *this;
 | |
| 		}
 | |
| 
 | |
| 		template <typename... Args, typename Key>
 | |
| 		state_view& set_function(Key&& key, Args&&... args) {
 | |
| 			global.set_function(std::forward<Key>(key), std::forward<Args>(args)...);
 | |
| 			return *this;
 | |
| 		}
 | |
| 
 | |
| 		template <typename Name>
 | |
| 		table create_table(Name&& name, int narr = 0, int nrec = 0) {
 | |
| 			return global.create(std::forward<Name>(name), narr, nrec);
 | |
| 		}
 | |
| 
 | |
| 		template <typename Name, typename Key, typename Value, typename... Args>
 | |
| 		table create_table(Name&& name, int narr, int nrec, Key&& key, Value&& value, Args&&... args) {
 | |
| 			return global.create(std::forward<Name>(name), narr, nrec, std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...);
 | |
| 		}
 | |
| 
 | |
| 		template <typename Name, typename... Args>
 | |
| 		table create_named_table(Name&& name, Args&&... args) {
 | |
| 			table x = global.create_with(std::forward<Args>(args)...);
 | |
| 			global.set(std::forward<Name>(name), x);
 | |
| 			return x;
 | |
| 		}
 | |
| 
 | |
| 		table create_table(int narr = 0, int nrec = 0) {
 | |
| 			return create_table(lua_state(), narr, nrec);
 | |
| 		}
 | |
| 
 | |
| 		template <typename Key, typename Value, typename... Args>
 | |
| 		table create_table(int narr, int nrec, Key&& key, Value&& value, Args&&... args) {
 | |
| 			return create_table(lua_state(), narr, nrec, std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...);
 | |
| 		}
 | |
| 
 | |
| 		template <typename... Args>
 | |
| 		table create_table_with(Args&&... args) {
 | |
| 			return create_table_with(lua_state(), std::forward<Args>(args)...);
 | |
| 		}
 | |
| 
 | |
| 		static inline table create_table(lua_State* L, int narr = 0, int nrec = 0) {
 | |
| 			return global_table::create(L, narr, nrec);
 | |
| 		}
 | |
| 
 | |
| 		template <typename Key, typename Value, typename... Args>
 | |
| 		static inline table create_table(lua_State* L, int narr, int nrec, Key&& key, Value&& value, Args&&... args) {
 | |
| 			return global_table::create(L, narr, nrec, std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...);
 | |
| 		}
 | |
| 
 | |
| 		template <typename... Args>
 | |
| 		static inline table create_table_with(lua_State* L, Args&&... args) {
 | |
| 			return global_table::create_with(L, std::forward<Args>(args)...);
 | |
| 		}
 | |
| 	};
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/state_view.hpp
 | |
| 
 | |
| // beginning of sol/thread.hpp
 | |
| 
 | |
| namespace sol {
 | |
| 	struct lua_thread_state {
 | |
| 		lua_State* L;
 | |
| 
 | |
| 		lua_thread_state(lua_State* Ls)
 | |
| 		: L(Ls) {
 | |
| 		}
 | |
| 
 | |
| 		lua_State* lua_state() const noexcept {
 | |
| 			return L;
 | |
| 		}
 | |
| 		operator lua_State*() const noexcept {
 | |
| 			return lua_state();
 | |
| 		}
 | |
| 		lua_State* operator->() const noexcept {
 | |
| 			return lua_state();
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	namespace stack {
 | |
| 		template <>
 | |
| 		struct unqualified_pusher<lua_thread_state> {
 | |
| 			int push(lua_State*, lua_thread_state lts) {
 | |
| 				lua_pushthread(lts.L);
 | |
| 				return 1;
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <>
 | |
| 		struct unqualified_getter<lua_thread_state> {
 | |
| 			lua_thread_state get(lua_State* L, int index, record& tracking) {
 | |
| 				tracking.use(1);
 | |
| 				lua_thread_state lts( lua_tothread(L, index) );
 | |
| 				return lts;
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <>
 | |
| 		struct unqualified_check_getter<lua_thread_state> {
 | |
| 			template <typename Handler>
 | |
| 			optional<lua_thread_state> get(lua_State* L, int index, Handler&& handler, record& tracking) {
 | |
| 				lua_thread_state lts( lua_tothread(L, index) );
 | |
| 				if (lts.lua_state() == nullptr) {
 | |
| 					handler(L, index, type::thread, type_of(L, index), "value is not a valid thread type");
 | |
| 					return nullopt;
 | |
| 				}
 | |
| 				tracking.use(1);
 | |
| 				return lts;
 | |
| 			}
 | |
| 		};
 | |
| 	} // namespace stack
 | |
| 
 | |
| 	template <typename ref_t>
 | |
| 	class basic_thread : public basic_object<ref_t> {
 | |
| 	private:
 | |
| 		using base_t = basic_object<ref_t>;
 | |
| 
 | |
| 	public:
 | |
| 		using base_t::lua_state;
 | |
| 
 | |
| 		basic_thread() noexcept = default;
 | |
| 		basic_thread(const basic_thread&) = default;
 | |
| 		basic_thread(basic_thread&&) = default;
 | |
| 		template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_thread>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
 | |
| 		basic_thread(T&& r)
 | |
| 		: base_t(std::forward<T>(r)) {
 | |
| #if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
 | |
| 			auto pp = stack::push_pop(*this);
 | |
| 			constructor_handler handler{};
 | |
| 			stack::check<basic_thread>(lua_state(), -1, handler);
 | |
| #endif // Safety
 | |
| 		}
 | |
| 		basic_thread(const stack_reference& r)
 | |
| 		: basic_thread(r.lua_state(), r.stack_index()){};
 | |
| 		basic_thread(stack_reference&& r)
 | |
| 		: basic_thread(r.lua_state(), r.stack_index()){};
 | |
| 		basic_thread& operator=(const basic_thread&) = default;
 | |
| 		basic_thread& operator=(basic_thread&&) = default;
 | |
| 		template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
 | |
| 		basic_thread(lua_State* L, T&& r)
 | |
| 		: base_t(L, std::forward<T>(r)) {
 | |
| #if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
 | |
| 			auto pp = stack::push_pop(*this);
 | |
| 			constructor_handler handler{};
 | |
| 			stack::check<basic_thread>(lua_state(), -1, handler);
 | |
| #endif // Safety
 | |
| 		}
 | |
| 		basic_thread(lua_State* L, int index = -1)
 | |
| 		: base_t(L, index) {
 | |
| #if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
 | |
| 			constructor_handler handler{};
 | |
| 			stack::check<basic_thread>(L, index, handler);
 | |
| #endif // Safety
 | |
| 		}
 | |
| 		basic_thread(lua_State* L, ref_index index)
 | |
| 		: base_t(L, index) {
 | |
| #if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
 | |
| 			auto pp = stack::push_pop(*this);
 | |
| 			constructor_handler handler{};
 | |
| 			stack::check<basic_thread>(lua_state(), -1, handler);
 | |
| #endif // Safety
 | |
| 		}
 | |
| 		basic_thread(lua_State* L, lua_State* actualthread)
 | |
| 		: basic_thread(L, lua_thread_state{ actualthread }) {
 | |
| 		}
 | |
| 		basic_thread(lua_State* L, this_state actualthread)
 | |
| 		: basic_thread(L, lua_thread_state{ actualthread.L }) {
 | |
| 		}
 | |
| 		basic_thread(lua_State* L, lua_thread_state actualthread)
 | |
| 		: base_t(L, -stack::push(L, actualthread)) {
 | |
| #if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
 | |
| 			constructor_handler handler{};
 | |
| 			stack::check<basic_thread>(lua_state(), -1, handler);
 | |
| #endif // Safety
 | |
| 			if (!is_stack_based<base_t>::value) {
 | |
| 				lua_pop(lua_state(), 1);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		state_view state() const {
 | |
| 			return state_view(this->thread_state());
 | |
| 		}
 | |
| 
 | |
| 		bool is_main_thread() const {
 | |
| 			return stack::is_main_thread(this->thread_state());
 | |
| 		}
 | |
| 
 | |
| 		lua_State* thread_state() const {
 | |
| 			auto pp = stack::push_pop(*this);
 | |
| 			lua_State* lthread = lua_tothread(lua_state(), -1);
 | |
| 			return lthread;
 | |
| 		}
 | |
| 
 | |
| 		thread_status status() const {
 | |
| 			lua_State* lthread = thread_state();
 | |
| 			auto lstat = static_cast<thread_status>(lua_status(lthread));
 | |
| 			if (lstat == thread_status::ok) {
 | |
| 				lua_Debug ar;
 | |
| 				if (lua_getstack(lthread, 0, &ar) > 0)
 | |
| 					return thread_status::ok;
 | |
| 				else if (lua_gettop(lthread) == 0)
 | |
| 					return thread_status::dead;
 | |
| 				else
 | |
| 					return thread_status::yielded;
 | |
| 			}
 | |
| 			return lstat;
 | |
| 		}
 | |
| 
 | |
| 		basic_thread create() {
 | |
| 			return create(lua_state());
 | |
| 		}
 | |
| 
 | |
| 		static basic_thread create(lua_State* L) {
 | |
| 			lua_newthread(L);
 | |
| 			basic_thread result(L);
 | |
| 			if (!is_stack_based<base_t>::value) {
 | |
| 				lua_pop(L, 1);
 | |
| 			}
 | |
| 			return result;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	typedef basic_thread<reference> thread;
 | |
| 	typedef basic_thread<stack_reference> stack_thread;
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/thread.hpp
 | |
| 
 | |
| namespace sol {
 | |
| 
 | |
| 	class state : private std::unique_ptr<lua_State, detail::state_deleter>, public state_view {
 | |
| 	private:
 | |
| 		typedef std::unique_ptr<lua_State, detail::state_deleter> unique_base;
 | |
| 
 | |
| 	public:
 | |
| 		state(lua_CFunction panic = default_at_panic)
 | |
| 		: unique_base(luaL_newstate()), state_view(unique_base::get()) {
 | |
| 			set_default_state(unique_base::get(), panic);
 | |
| 		}
 | |
| 
 | |
| 		state(lua_CFunction panic, lua_Alloc alfunc, void* alpointer = nullptr)
 | |
| 		: unique_base(lua_newstate(alfunc, alpointer)), state_view(unique_base::get()) {
 | |
| 			set_default_state(unique_base::get(), panic);
 | |
| 		}
 | |
| 
 | |
| 		state(const state&) = delete;
 | |
| 		state(state&&) = default;
 | |
| 		state& operator=(const state&) = delete;
 | |
| 		state& operator=(state&& that) {
 | |
| 			state_view::operator=(std::move(that));
 | |
| 			unique_base::operator=(std::move(that));
 | |
| 			return *this;
 | |
| 		}
 | |
| 
 | |
| 		using state_view::get;
 | |
| 
 | |
| 		~state() {
 | |
| 		}
 | |
| 	};
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/state.hpp
 | |
| 
 | |
| // beginning of sol/coroutine.hpp
 | |
| 
 | |
| namespace sol {
 | |
| 	template <typename ref_t>
 | |
| 	class basic_coroutine : public basic_object<ref_t> {
 | |
| 	private:
 | |
| 		using base_t = basic_object<ref_t>;
 | |
| 
 | |
| 	public:
 | |
| 		typedef reference handler_t;
 | |
| 		handler_t error_handler;
 | |
| 
 | |
| 	private:
 | |
| 		call_status stats = call_status::yielded;
 | |
| 
 | |
| 		void luacall(std::ptrdiff_t argcount, std::ptrdiff_t) {
 | |
| #if SOL_LUA_VESION_I_ >= 504
 | |
| 			int nresults;
 | |
| 			stats = static_cast<call_status>(lua_resume(lua_state(), nullptr, static_cast<int>(argcount), &nresults));
 | |
| #else
 | |
| 			stats = static_cast<call_status>(lua_resume(lua_state(), nullptr, static_cast<int>(argcount)));
 | |
| #endif
 | |
| 		}
 | |
| 
 | |
| 		template <std::size_t... I, typename... Ret>
 | |
| 		auto invoke(types<Ret...>, std::index_sequence<I...>, std::ptrdiff_t n) {
 | |
| 			luacall(n, sizeof...(Ret));
 | |
| 			return stack::pop<std::tuple<Ret...>>(lua_state());
 | |
| 		}
 | |
| 
 | |
| 		template <std::size_t I, typename Ret>
 | |
| 		Ret invoke(types<Ret>, std::index_sequence<I>, std::ptrdiff_t n) {
 | |
| 			luacall(n, 1);
 | |
| 			return stack::pop<Ret>(lua_state());
 | |
| 		}
 | |
| 
 | |
| 		template <std::size_t I>
 | |
| 		void invoke(types<void>, std::index_sequence<I>, std::ptrdiff_t n) {
 | |
| 			luacall(n, 0);
 | |
| 		}
 | |
| 
 | |
| 		protected_function_result invoke(types<>, std::index_sequence<>, std::ptrdiff_t n) {
 | |
| 			int firstreturn = 1;
 | |
| 			luacall(n, LUA_MULTRET);
 | |
| 			int poststacksize = lua_gettop(this->lua_state());
 | |
| 			int returncount = poststacksize - (firstreturn - 1);
 | |
| 			if (error()) {
 | |
| 				if (error_handler.valid()) {
 | |
| 					string_view err = stack::get<string_view>(this->lua_state(), poststacksize);
 | |
| 					error_handler.push();
 | |
| 					stack::push(this->lua_state(), err);
 | |
| 					lua_call(lua_state(), 1, 1);
 | |
| 				}
 | |
| 				return protected_function_result(this->lua_state(), lua_absindex(this->lua_state(), -1), 1, returncount, status());
 | |
| 			}
 | |
| 			return protected_function_result(this->lua_state(), firstreturn, returncount, returncount, status());
 | |
| 		}
 | |
| 
 | |
| 	public:
 | |
| 		using base_t::lua_state;
 | |
| 
 | |
| 		basic_coroutine() = default;
 | |
| 		template <typename T,
 | |
| 		     meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_coroutine>>,
 | |
| 		          meta::neg<std::is_base_of<proxy_base_tag, meta::unqualified_t<T>>>, meta::neg<std::is_same<base_t, stack_reference>>,
 | |
| 		          meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
 | |
| 		basic_coroutine(T&& r) noexcept
 | |
| 		: base_t(std::forward<T>(r)), error_handler(detail::get_default_handler<reference, is_main_threaded<base_t>::value>(r.lua_state())) {
 | |
| #if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
 | |
| 			if (!is_function<meta::unqualified_t<T>>::value) {
 | |
| 				auto pp = stack::push_pop(*this);
 | |
| 				constructor_handler handler {};
 | |
| 				stack::check<basic_coroutine>(lua_state(), -1, handler);
 | |
| 			}
 | |
| #endif // Safety
 | |
| 		}
 | |
| 		basic_coroutine(const basic_coroutine&) = default;
 | |
| 		basic_coroutine& operator=(const basic_coroutine&) = default;
 | |
| 		basic_coroutine(basic_coroutine&&) = default;
 | |
| 		basic_coroutine& operator=(basic_coroutine&&) = default;
 | |
| 		basic_coroutine(const basic_function<base_t>& b)
 | |
| 		: basic_coroutine(b, detail::get_default_handler<reference, is_main_threaded<base_t>::value>(b.lua_state())) {
 | |
| 		}
 | |
| 		basic_coroutine(basic_function<base_t>&& b)
 | |
| 		: basic_coroutine(std::move(b), detail::get_default_handler<reference, is_main_threaded<base_t>::value>(b.lua_state())) {
 | |
| 		}
 | |
| 		basic_coroutine(const basic_function<base_t>& b, handler_t eh) : base_t(b), error_handler(std::move(eh)) {
 | |
| 		}
 | |
| 		basic_coroutine(basic_function<base_t>&& b, handler_t eh) : base_t(std::move(b)), error_handler(std::move(eh)) {
 | |
| 		}
 | |
| 		basic_coroutine(const stack_reference& r)
 | |
| 		: basic_coroutine(r.lua_state(), r.stack_index(), detail::get_default_handler<reference, is_main_threaded<base_t>::value>(r.lua_state())) {
 | |
| 		}
 | |
| 		basic_coroutine(stack_reference&& r)
 | |
| 		: basic_coroutine(r.lua_state(), r.stack_index(), detail::get_default_handler<reference, is_main_threaded<base_t>::value>(r.lua_state())) {
 | |
| 		}
 | |
| 		basic_coroutine(const stack_reference& r, handler_t eh) : basic_coroutine(r.lua_state(), r.stack_index(), std::move(eh)) {
 | |
| 		}
 | |
| 		basic_coroutine(stack_reference&& r, handler_t eh) : basic_coroutine(r.lua_state(), r.stack_index(), std::move(eh)) {
 | |
| 		}
 | |
| 
 | |
| 		template <typename Super>
 | |
| 		basic_coroutine(const proxy_base<Super>& p)
 | |
| 		: basic_coroutine(p, detail::get_default_handler<reference, is_main_threaded<base_t>::value>(p.lua_state())) {
 | |
| 		}
 | |
| 		template <typename Super>
 | |
| 		basic_coroutine(proxy_base<Super>&& p)
 | |
| 		: basic_coroutine(std::move(p), detail::get_default_handler<reference, is_main_threaded<base_t>::value>(p.lua_state())) {
 | |
| 		}
 | |
| 		template <typename Proxy, typename Handler,
 | |
| 		     meta::enable<std::is_base_of<proxy_base_tag, meta::unqualified_t<Proxy>>, meta::neg<is_lua_index<meta::unqualified_t<Handler>>>> = meta::enabler>
 | |
| 		basic_coroutine(Proxy&& p, Handler&& eh) : basic_coroutine(detail::force_cast<base_t>(p), std::forward<Handler>(eh)) {
 | |
| 		}
 | |
| 
 | |
| 		template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
 | |
| 		basic_coroutine(lua_State* L, T&& r)
 | |
| 		: basic_coroutine(L, std::forward<T>(r), detail::get_default_handler<reference, is_main_threaded<base_t>::value>(L)) {
 | |
| 		}
 | |
| 		template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
 | |
| 		basic_coroutine(lua_State* L, T&& r, handler_t eh) : base_t(L, std::forward<T>(r)), error_handler(std::move(eh)) {
 | |
| #if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
 | |
| 			auto pp = stack::push_pop(*this);
 | |
| 			constructor_handler handler {};
 | |
| 			stack::check<basic_coroutine>(lua_state(), -1, handler);
 | |
| #endif // Safety
 | |
| 		}
 | |
| 
 | |
| 		basic_coroutine(lua_nil_t n) : base_t(n), error_handler(n) {
 | |
| 		}
 | |
| 
 | |
| 		basic_coroutine(lua_State* L, int index = -1)
 | |
| 		: basic_coroutine(L, index, detail::get_default_handler<reference, is_main_threaded<base_t>::value>(L)) {
 | |
| 		}
 | |
| 		basic_coroutine(lua_State* L, int index, handler_t eh) : base_t(L, index), error_handler(std::move(eh)) {
 | |
| #ifdef SOL_SAFE_REFERENCES
 | |
| 			constructor_handler handler {};
 | |
| 			stack::check<basic_coroutine>(L, index, handler);
 | |
| #endif // Safety
 | |
| 		}
 | |
| 		basic_coroutine(lua_State* L, absolute_index index)
 | |
| 		: basic_coroutine(L, index, detail::get_default_handler<reference, is_main_threaded<base_t>::value>(L)) {
 | |
| 		}
 | |
| 		basic_coroutine(lua_State* L, absolute_index index, handler_t eh) : base_t(L, index), error_handler(std::move(eh)) {
 | |
| #if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
 | |
| 			constructor_handler handler {};
 | |
| 			stack::check<basic_coroutine>(L, index, handler);
 | |
| #endif // Safety
 | |
| 		}
 | |
| 		basic_coroutine(lua_State* L, raw_index index)
 | |
| 		: basic_coroutine(L, index, detail::get_default_handler<reference, is_main_threaded<base_t>::value>(L)) {
 | |
| 		}
 | |
| 		basic_coroutine(lua_State* L, raw_index index, handler_t eh) : base_t(L, index), error_handler(std::move(eh)) {
 | |
| #if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
 | |
| 			constructor_handler handler {};
 | |
| 			stack::check<basic_coroutine>(L, index, handler);
 | |
| #endif // Safety
 | |
| 		}
 | |
| 		basic_coroutine(lua_State* L, ref_index index)
 | |
| 		: basic_coroutine(L, index, detail::get_default_handler<reference, is_main_threaded<base_t>::value>(L)) {
 | |
| 		}
 | |
| 		basic_coroutine(lua_State* L, ref_index index, handler_t eh) : base_t(L, index), error_handler(std::move(eh)) {
 | |
| #if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
 | |
| 			auto pp = stack::push_pop(*this);
 | |
| 			constructor_handler handler {};
 | |
| 			stack::check<basic_coroutine>(lua_state(), -1, handler);
 | |
| #endif // Safety
 | |
| 		}
 | |
| 
 | |
| 		call_status status() const noexcept {
 | |
| 			return stats;
 | |
| 		}
 | |
| 
 | |
| 		bool error() const noexcept {
 | |
| 			call_status cs = status();
 | |
| 			return cs != call_status::ok && cs != call_status::yielded;
 | |
| 		}
 | |
| 
 | |
| 		bool runnable() const noexcept {
 | |
| 			return base_t::valid() && (status() == call_status::yielded);
 | |
| 		}
 | |
| 
 | |
| 		explicit operator bool() const noexcept {
 | |
| 			return runnable();
 | |
| 		}
 | |
| 
 | |
| 		template <typename... Args>
 | |
| 		protected_function_result operator()(Args&&... args) {
 | |
| 			return call<>(std::forward<Args>(args)...);
 | |
| 		}
 | |
| 
 | |
| 		template <typename... Ret, typename... Args>
 | |
| 		decltype(auto) operator()(types<Ret...>, Args&&... args) {
 | |
| 			return call<Ret...>(std::forward<Args>(args)...);
 | |
| 		}
 | |
| 
 | |
| 		template <typename... Ret, typename... Args>
 | |
| 		decltype(auto) call(Args&&... args) {
 | |
| 			// some users screw up coroutine.create
 | |
| 			// and try to use it with sol::coroutine without ever calling the first resume in Lua
 | |
| 			// this makes the stack incompatible with other kinds of stacks: protect against this
 | |
| 			// make sure coroutines don't screw us over
 | |
| 			base_t::push();
 | |
| 			int pushcount = stack::multi_push_reference(lua_state(), std::forward<Args>(args)...);
 | |
| 			return invoke(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), pushcount);
 | |
| 		}
 | |
| 	};
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/coroutine.hpp
 | |
| 
 | |
| // beginning of sol/userdata.hpp
 | |
| 
 | |
| namespace sol {
 | |
| 	template <typename base_type>
 | |
| 	class basic_userdata : public basic_table<base_type> {
 | |
| 	private:
 | |
| 		using base_t = basic_table<base_type>;
 | |
| 
 | |
| 	public:
 | |
| 		using base_t::lua_state;
 | |
| 
 | |
| 		basic_userdata() noexcept = default;
 | |
| 		template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_userdata>>, meta::neg<std::is_same<base_t, stack_reference>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
 | |
| 		basic_userdata(T&& r) noexcept
 | |
| 		: base_t(std::forward<T>(r)) {
 | |
| #if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
 | |
| 			if (!is_userdata<meta::unqualified_t<T>>::value) {
 | |
| 				auto pp = stack::push_pop(*this);
 | |
| 				type_assert(lua_state(), -1, type::userdata);
 | |
| 			}
 | |
| #endif // Safety
 | |
| 		}
 | |
| 		basic_userdata(const basic_userdata&) = default;
 | |
| 		basic_userdata(basic_userdata&&) = default;
 | |
| 		basic_userdata& operator=(const basic_userdata&) = default;
 | |
| 		basic_userdata& operator=(basic_userdata&&) = default;
 | |
| 		basic_userdata(const stack_reference& r)
 | |
| 		: basic_userdata(r.lua_state(), r.stack_index()) {
 | |
| 		}
 | |
| 		basic_userdata(stack_reference&& r)
 | |
| 		: basic_userdata(r.lua_state(), r.stack_index()) {
 | |
| 		}
 | |
| 		template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
 | |
| 		basic_userdata(lua_State* L, T&& r)
 | |
| 		: base_t(L, std::forward<T>(r)) {
 | |
| #if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
 | |
| 			auto pp = stack::push_pop(*this);
 | |
| 			constructor_handler handler{};
 | |
| 			stack::check<basic_userdata>(L, -1, handler);
 | |
| #endif // Safety
 | |
| 		}
 | |
| 		basic_userdata(lua_State* L, int index = -1)
 | |
| 		: base_t(detail::no_safety, L, index) {
 | |
| #if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
 | |
| 			constructor_handler handler{};
 | |
| 			stack::check<basic_userdata>(L, index, handler);
 | |
| #endif // Safety
 | |
| 		}
 | |
| 		basic_userdata(lua_State* L, ref_index index)
 | |
| 		: base_t(detail::no_safety, L, index) {
 | |
| #if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
 | |
| 			auto pp = stack::push_pop(*this);
 | |
| 			constructor_handler handler{};
 | |
| 			stack::check<basic_userdata>(L, -1, handler);
 | |
| #endif // Safety
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	template <typename base_type>
 | |
| 	class basic_lightuserdata : public basic_object_base<base_type> {
 | |
| 		typedef basic_object_base<base_type> base_t;
 | |
| 
 | |
| 	public:
 | |
| 		using base_t::lua_state;
 | |
| 
 | |
| 		basic_lightuserdata() noexcept = default;
 | |
| 		template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_lightuserdata>>, meta::neg<std::is_same<base_t, stack_reference>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
 | |
| 		basic_lightuserdata(T&& r) noexcept
 | |
| 		: base_t(std::forward<T>(r)) {
 | |
| #if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
 | |
| 			if (!is_lightuserdata<meta::unqualified_t<T>>::value) {
 | |
| 				auto pp = stack::push_pop(*this);
 | |
| 				type_assert(lua_state(), -1, type::lightuserdata);
 | |
| 			}
 | |
| #endif // Safety
 | |
| 		}
 | |
| 		basic_lightuserdata(const basic_lightuserdata&) = default;
 | |
| 		basic_lightuserdata(basic_lightuserdata&&) = default;
 | |
| 		basic_lightuserdata& operator=(const basic_lightuserdata&) = default;
 | |
| 		basic_lightuserdata& operator=(basic_lightuserdata&&) = default;
 | |
| 		basic_lightuserdata(const stack_reference& r)
 | |
| 		: basic_lightuserdata(r.lua_state(), r.stack_index()) {
 | |
| 		}
 | |
| 		basic_lightuserdata(stack_reference&& r)
 | |
| 		: basic_lightuserdata(r.lua_state(), r.stack_index()) {
 | |
| 		}
 | |
| 		template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
 | |
| 		basic_lightuserdata(lua_State* L, T&& r)
 | |
| 		: basic_lightuserdata(L, std::forward<T>(r)) {
 | |
| #if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
 | |
| 			auto pp = stack::push_pop(*this);
 | |
| 			constructor_handler handler{};
 | |
| 			stack::check<basic_lightuserdata>(lua_state(), -1, handler);
 | |
| #endif // Safety
 | |
| 		}
 | |
| 		basic_lightuserdata(lua_State* L, int index = -1)
 | |
| 		: base_t(L, index) {
 | |
| #if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
 | |
| 			constructor_handler handler{};
 | |
| 			stack::check<basic_lightuserdata>(L, index, handler);
 | |
| #endif // Safety
 | |
| 		}
 | |
| 		basic_lightuserdata(lua_State* L, ref_index index)
 | |
| 		: base_t(L, index) {
 | |
| #if SOL_IS_ON(SOL_SAFE_REFERENCES_I_)
 | |
| 			auto pp = stack::push_pop(*this);
 | |
| 			constructor_handler handler{};
 | |
| 			stack::check<basic_lightuserdata>(lua_state(), index, handler);
 | |
| #endif // Safety
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/userdata.hpp
 | |
| 
 | |
| // beginning of sol/as_args.hpp
 | |
| 
 | |
| namespace sol {
 | |
| 	template <typename T>
 | |
| 	struct as_args_t {
 | |
| 		T src;
 | |
| 	};
 | |
| 
 | |
| 	template <typename Source>
 | |
| 	auto as_args(Source&& source) {
 | |
| 		return as_args_t<Source> { std::forward<Source>(source) };
 | |
| 	}
 | |
| 
 | |
| 	namespace stack {
 | |
| 		template <typename T>
 | |
| 		struct unqualified_pusher<as_args_t<T>> {
 | |
| 			int push(lua_State* L, const as_args_t<T>& e) {
 | |
| 				int p = 0;
 | |
| 				for (const auto& i : e.src) {
 | |
| 					p += stack::push(L, i);
 | |
| 				}
 | |
| 				return p;
 | |
| 			}
 | |
| 		};
 | |
| 	} // namespace stack
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/as_args.hpp
 | |
| 
 | |
| // beginning of sol/variadic_args.hpp
 | |
| 
 | |
| #include <limits>
 | |
| #include <iterator>
 | |
| 
 | |
| namespace sol {
 | |
| 	struct variadic_args {
 | |
| 	private:
 | |
| 		lua_State* L;
 | |
| 		int index;
 | |
| 		int stacktop;
 | |
| 
 | |
| 	public:
 | |
| 		typedef stack_proxy reference_type;
 | |
| 		typedef stack_proxy value_type;
 | |
| 		typedef stack_proxy* pointer;
 | |
| 		typedef std::ptrdiff_t difference_type;
 | |
| 		typedef std::size_t size_type;
 | |
| 		typedef stack_iterator<stack_proxy, false> iterator;
 | |
| 		typedef stack_iterator<stack_proxy, true> const_iterator;
 | |
| 		typedef std::reverse_iterator<iterator> reverse_iterator;
 | |
| 		typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
 | |
| 
 | |
| 		variadic_args() = default;
 | |
| 		variadic_args(lua_State* luastate, int stackindex = -1)
 | |
| 			: L(luastate), index(lua_absindex(luastate, stackindex)), stacktop(lua_gettop(luastate)) {
 | |
| 		}
 | |
| 		variadic_args(lua_State* luastate, int stackindex, int lastindex)
 | |
| 			: L(luastate), index(lua_absindex(luastate, stackindex)), stacktop(lastindex) {
 | |
| 		}
 | |
| 		variadic_args(const variadic_args&) = default;
 | |
| 		variadic_args& operator=(const variadic_args&) = default;
 | |
| 		variadic_args(variadic_args&& o)
 | |
| 			: L(o.L), index(o.index), stacktop(o.stacktop) {
 | |
| 			// Must be manual, otherwise destructor will screw us
 | |
| 			// return count being 0 is enough to keep things clean
 | |
| 			// but will be thorough
 | |
| 			o.L = nullptr;
 | |
| 			o.index = 0;
 | |
| 			o.stacktop = 0;
 | |
| 		}
 | |
| 		variadic_args& operator=(variadic_args&& o) {
 | |
| 			L = o.L;
 | |
| 			index = o.index;
 | |
| 			stacktop = o.stacktop;
 | |
| 			// Must be manual, otherwise destructor will screw us
 | |
| 			// return count being 0 is enough to keep things clean
 | |
| 			// but will be thorough
 | |
| 			o.L = nullptr;
 | |
| 			o.index = 0;
 | |
| 			o.stacktop = 0;
 | |
| 			return *this;
 | |
| 		}
 | |
| 
 | |
| 		iterator begin() {
 | |
| 			return iterator(L, index, stacktop + 1);
 | |
| 		}
 | |
| 		iterator end() {
 | |
| 			return iterator(L, stacktop + 1, stacktop + 1);
 | |
| 		}
 | |
| 		const_iterator begin() const {
 | |
| 			return const_iterator(L, index, stacktop + 1);
 | |
| 		}
 | |
| 		const_iterator end() const {
 | |
| 			return const_iterator(L, stacktop + 1, stacktop + 1);
 | |
| 		}
 | |
| 		const_iterator cbegin() const {
 | |
| 			return begin();
 | |
| 		}
 | |
| 		const_iterator cend() const {
 | |
| 			return end();
 | |
| 		}
 | |
| 
 | |
| 		reverse_iterator rbegin() {
 | |
| 			return std::reverse_iterator<iterator>(begin());
 | |
| 		}
 | |
| 		reverse_iterator rend() {
 | |
| 			return std::reverse_iterator<iterator>(end());
 | |
| 		}
 | |
| 		const_reverse_iterator rbegin() const {
 | |
| 			return std::reverse_iterator<const_iterator>(begin());
 | |
| 		}
 | |
| 		const_reverse_iterator rend() const {
 | |
| 			return std::reverse_iterator<const_iterator>(end());
 | |
| 		}
 | |
| 		const_reverse_iterator crbegin() const {
 | |
| 			return std::reverse_iterator<const_iterator>(cbegin());
 | |
| 		}
 | |
| 		const_reverse_iterator crend() const {
 | |
| 			return std::reverse_iterator<const_iterator>(cend());
 | |
| 		}
 | |
| 
 | |
| 		int push() const {
 | |
| 			return push(L);
 | |
| 		}
 | |
| 
 | |
| 		int push(lua_State* target) const {
 | |
| 			int pushcount = 0;
 | |
| 			for (int i = index; i <= stacktop; ++i) {
 | |
| 				lua_pushvalue(L, i);
 | |
| 				pushcount += 1;
 | |
| 			}
 | |
| 			if (target != L) {
 | |
| 				lua_xmove(L, target, pushcount);
 | |
| 			}
 | |
| 			return pushcount;
 | |
| 		}
 | |
| 
 | |
| 		template <typename T>
 | |
| 		decltype(auto) get(difference_type index_offset = 0) const {
 | |
| 			return stack::get<T>(L, index + static_cast<int>(index_offset));
 | |
| 		}
 | |
| 
 | |
| 		type get_type(difference_type index_offset = 0) const noexcept {
 | |
| 			return type_of(L, index + static_cast<int>(index_offset));
 | |
| 		}
 | |
| 
 | |
| 		stack_proxy operator[](difference_type index_offset) const {
 | |
| 			return stack_proxy(L, index + static_cast<int>(index_offset));
 | |
| 		}
 | |
| 
 | |
| 		lua_State* lua_state() const {
 | |
| 			return L;
 | |
| 		};
 | |
| 		int stack_index() const {
 | |
| 			return index;
 | |
| 		};
 | |
| 		int leftover_count() const {
 | |
| 			return stacktop - (index - 1);
 | |
| 		}
 | |
| 		std::size_t size() const {
 | |
| 			return static_cast<std::size_t>(leftover_count());
 | |
| 		}
 | |
| 		int top() const {
 | |
| 			return stacktop;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	namespace stack {
 | |
| 		template <>
 | |
| 		struct unqualified_getter<variadic_args> {
 | |
| 			static variadic_args get(lua_State* L, int index, record& tracking) {
 | |
| 				tracking.last = 0;
 | |
| 				return variadic_args(L, index);
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <>
 | |
| 		struct unqualified_pusher<variadic_args> {
 | |
| 			static int push(lua_State* L, const variadic_args& ref) {
 | |
| 				return ref.push(L);
 | |
| 			}
 | |
| 		};
 | |
| 	} // namespace stack
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/variadic_args.hpp
 | |
| 
 | |
| // beginning of sol/variadic_results.hpp
 | |
| 
 | |
| // beginning of sol/as_returns.hpp
 | |
| 
 | |
| namespace sol {
 | |
| 	template <typename T>
 | |
| 	struct as_returns_t {
 | |
| 		T src;
 | |
| 	};
 | |
| 
 | |
| 	template <typename Source>
 | |
| 	auto as_returns(Source&& source) {
 | |
| 		return as_returns_t<std::decay_t<Source>>{ std::forward<Source>(source) };
 | |
| 	}
 | |
| 
 | |
| 	namespace stack {
 | |
| 		template <typename T>
 | |
| 		struct unqualified_pusher<as_returns_t<T>> {
 | |
| 			int push(lua_State* L, const as_returns_t<T>& e) {
 | |
| 				auto& src = detail::unwrap(e.src);
 | |
| 				int p = 0;
 | |
| 				for (const auto& i : src) {
 | |
| 					p += stack::push(L, i);
 | |
| 				}
 | |
| 				return p;
 | |
| 			}
 | |
| 		};
 | |
| 	} // namespace stack
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/as_returns.hpp
 | |
| 
 | |
| #include <vector>
 | |
| 
 | |
| namespace sol {
 | |
| 
 | |
| 	template <typename Al = typename std::allocator<object>>
 | |
| 	struct basic_variadic_results : public std::vector<object, Al> {
 | |
| 	private:
 | |
| 		using base_t = std::vector<object, Al>;
 | |
| 
 | |
| 	public:
 | |
| 		basic_variadic_results() : base_t() {
 | |
| 		}
 | |
| 
 | |
| 		basic_variadic_results(unsafe_function_result fr) : base_t() {
 | |
| 			this->reserve(fr.return_count());
 | |
| 			this->insert(this->cend(), fr.begin(), fr.end());
 | |
| 		}
 | |
| 
 | |
| 		basic_variadic_results(protected_function_result fr) : base_t() {
 | |
| 			this->reserve(fr.return_count());
 | |
| 			this->insert(this->cend(), fr.begin(), fr.end());
 | |
| 		}
 | |
| 
 | |
| 		template <typename Arg0, typename... Args,
 | |
| 		     meta::disable_any<std::is_same<meta::unqualified_t<Arg0>, basic_variadic_results>, std::is_same<meta::unqualified_t<Arg0>, function_result>,
 | |
| 		          std::is_same<meta::unqualified_t<Arg0>, protected_function_result>> = meta::enabler>
 | |
| 		basic_variadic_results(Arg0&& arg0, Args&&... args) : base_t(std::forward<Arg0>(arg0), std::forward<Args>(args)...) {
 | |
| 		}
 | |
| 
 | |
| 		basic_variadic_results(const basic_variadic_results&) = default;
 | |
| 		basic_variadic_results(basic_variadic_results&&) = default;
 | |
| 	};
 | |
| 
 | |
| 	struct variadic_results : public basic_variadic_results<> {
 | |
| 	private:
 | |
| 		using base_t = basic_variadic_results<>;
 | |
| 
 | |
| 	public:
 | |
| 		using base_t::base_t;
 | |
| 	};
 | |
| 
 | |
| 	template <typename Al>
 | |
| 	struct is_container<basic_variadic_results<Al>> : std::false_type { };
 | |
| 
 | |
| 	template <>
 | |
| 	struct is_container<variadic_results> : std::false_type { };
 | |
| 
 | |
| 	namespace stack {
 | |
| 		template <typename Al>
 | |
| 		struct unqualified_pusher<basic_variadic_results<Al>> {
 | |
| 			int push(lua_State* L, const basic_variadic_results<Al>& e) {
 | |
| 				int p = 0;
 | |
| 				for (const auto& i : e) {
 | |
| 					p += stack::push(L, i);
 | |
| 				}
 | |
| 				return p;
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		template <>
 | |
| 		struct unqualified_pusher<variadic_results> {
 | |
| 			int push(lua_State* L, const variadic_results& r) {
 | |
| 				using base_t = basic_variadic_results<>;
 | |
| 				return stack::push(L, static_cast<const base_t&>(r));
 | |
| 			}
 | |
| 		};
 | |
| 	} // namespace stack
 | |
| 
 | |
| } // namespace sol
 | |
| 
 | |
| // end of sol/variadic_results.hpp
 | |
| 
 | |
| #if SOL_IS_ON(SOL_COMPILER_GCC_I_)
 | |
| #pragma GCC diagnostic pop
 | |
| #elif SOL_IS_ON(SOL_COMPILER_VCXX_I_)
 | |
| #pragma warning(pop)
 | |
| #endif // g++
 | |
| 
 | |
| #if SOL_IS_ON(SOL_INSIDE_UNREAL_ENGINE_I_)
 | |
| #undef check
 | |
| #pragma pop_macro("check")
 | |
| #endif // Unreal Engine 4 Bullshit
 | |
| 
 | |
| #endif // SOL_HPP
 | |
| // end of sol/sol.hpp
 | |
| 
 | |
| #endif // SOL_SINGLE_INCLUDE_HPP
 |