1
0
Fork 0
mirror of https://github.com/OpenMW/openmw.git synced 2025-01-21 07:53:53 +00:00
openmw/apps/benchmarks/detournavigator/navmeshtilescache.cpp
elsid da5ab2b2c9
Fix benchmark warning: -Wdeprecated-declarations
/home/elsid/dev/openmw/apps/benchmarks/detournavigator/navmeshtilescache.cpp: In function ‘void {anonymous}::getFromFilledCache(benchmark::State&)’:
/home/elsid/dev/openmw/apps/benchmarks/detournavigator/navmeshtilescache.cpp:186:37: warning: ‘typename std::enable_if<((! std::is_trivially_copyable<_Tp>::value) || (sizeof (Tp) > sizeof (Tp*)))>::type benchmark::DoNotOptimize(const Tp&) [with Tp = DetourNavigator::NavMeshTilesCache::Value; typename std::enable_if<((! std::is_trivially_copyable<_Tp>::value) || (sizeof (Tp) > sizeof (Tp*)))>::type = void]’ is deprecated: The const-ref version of this method can permit undesired compiler optimizations in benchmarks [-Wdeprecated-declarations]
  186 |             benchmark::DoNotOptimize(result);
      |             ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~
In file included from /home/elsid/dev/openmw/apps/benchmarks/detournavigator/navmeshtilescache.cpp:1:
/home/elsid/dev/benchmark/build/gcc/release/install/include/benchmark/benchmark.h:507:5: note: declared here
  507 |     DoNotOptimize(Tp const& value) {
      |     ^~~~~~~~~~~~~
2024-02-18 14:25:03 +01:00

284 lines
9.5 KiB
C++

#include <benchmark/benchmark.h>
#include <components/detournavigator/navmeshtilescache.hpp>
#include <components/detournavigator/stats.hpp>
#include <components/esm3/loadland.hpp>
#include <algorithm>
#include <iterator>
#include <random>
namespace
{
using namespace DetourNavigator;
struct Key
{
AgentBounds mAgentBounds;
TilePosition mTilePosition;
RecastMesh mRecastMesh;
};
struct Item
{
Key mKey;
PreparedNavMeshData mValue;
};
osg::Vec2i generateVec2i(int max, auto& random)
{
std::uniform_int_distribution<int> distribution(0, max);
return osg::Vec2i(distribution(random), distribution(random));
}
osg::Vec3f generateAgentHalfExtents(float min, float max, auto& random)
{
std::uniform_int_distribution<int> distribution(min, max);
return osg::Vec3f(distribution(random), distribution(random), distribution(random));
}
void generateVertices(std::output_iterator<int> auto out, std::size_t number, auto& random)
{
std::uniform_real_distribution<float> distribution(0.0, 1.0);
std::generate_n(out, 3 * (number - number % 3), [&] { return distribution(random); });
}
void generateIndices(std::output_iterator<int> auto out, int max, std::size_t number, auto& random)
{
std::uniform_int_distribution<int> distribution(0, max);
std::generate_n(out, number - number % 3, [&] { return distribution(random); });
}
AreaType toAreaType(int index)
{
switch (index)
{
case 0:
return AreaType_null;
case 1:
return AreaType_water;
case 2:
return AreaType_door;
case 3:
return AreaType_pathgrid;
case 4:
return AreaType_ground;
}
return AreaType_null;
}
AreaType generateAreaType(auto& random)
{
std::uniform_int_distribution<int> distribution(0, 4);
return toAreaType(distribution(random));
}
void generateAreaTypes(std::output_iterator<AreaType> auto out, std::size_t triangles, auto& random)
{
std::generate_n(out, triangles, [&] { return generateAreaType(random); });
}
void generateWater(std::output_iterator<CellWater> auto out, std::size_t count, auto& random)
{
std::uniform_real_distribution<float> distribution(0.0, 1.0);
std::generate_n(out, count, [&] {
return CellWater{ generateVec2i(1000, random), Water{ ESM::Land::REAL_SIZE, distribution(random) } };
});
}
Mesh generateMesh(std::size_t triangles, auto& random)
{
std::uniform_real_distribution<float> distribution(0.0, 1.0);
std::vector<float> vertices;
std::vector<int> indices;
std::vector<AreaType> areaTypes;
if (distribution(random) < 0.939)
{
generateVertices(std::back_inserter(vertices), triangles * 2.467, random);
generateIndices(std::back_inserter(indices), static_cast<int>(vertices.size() / 3) - 1,
vertices.size() * 1.279, random);
generateAreaTypes(std::back_inserter(areaTypes), indices.size() / 3, random);
}
return Mesh(std::move(indices), std::move(vertices), std::move(areaTypes));
}
Heightfield generateHeightfield(auto& random)
{
std::uniform_real_distribution<float> distribution(0.0, 1.0);
Heightfield result;
result.mCellPosition = generateVec2i(1000, random);
result.mCellSize = ESM::Land::REAL_SIZE;
result.mMinHeight = distribution(random);
result.mMaxHeight = result.mMinHeight + 1.0;
result.mLength = static_cast<std::uint8_t>(ESM::Land::LAND_SIZE);
std::generate_n(
std::back_inserter(result.mHeights), ESM::Land::LAND_NUM_VERTS, [&] { return distribution(random); });
result.mOriginalSize = ESM::Land::LAND_SIZE;
result.mMinX = 0;
result.mMinY = 0;
return result;
}
FlatHeightfield generateFlatHeightfield(auto& random)
{
std::uniform_real_distribution<float> distribution(0.0, 1.0);
FlatHeightfield result;
result.mCellPosition = generateVec2i(1000, random);
result.mCellSize = ESM::Land::REAL_SIZE;
result.mHeight = distribution(random);
return result;
}
Key generateKey(std::size_t triangles, auto& random)
{
const CollisionShapeType agentShapeType = CollisionShapeType::Aabb;
const osg::Vec3f agentHalfExtents = generateAgentHalfExtents(0.5, 1.5, random);
const TilePosition tilePosition = generateVec2i(10000, random);
const Version version{
.mGeneration = std::uniform_int_distribution<std::size_t>(0, 100)(random),
.mRevision = std::uniform_int_distribution<std::size_t>(0, 10000)(random),
};
Mesh mesh = generateMesh(triangles, random);
std::vector<CellWater> water;
generateWater(std::back_inserter(water), 1, random);
RecastMesh recastMesh(version, std::move(mesh), std::move(water), { generateHeightfield(random) },
{ generateFlatHeightfield(random) }, {});
return Key{ AgentBounds{ agentShapeType, agentHalfExtents }, tilePosition, std::move(recastMesh) };
}
constexpr std::size_t trianglesPerTile = 239;
void generateKeys(std::output_iterator<Key> auto out, std::size_t count, auto& random)
{
std::generate_n(out, count, [&] { return generateKey(trianglesPerTile, random); });
}
void fillCache(std::output_iterator<Key> auto out, auto& random, NavMeshTilesCache& cache)
{
std::size_t size = cache.getStats().mNavMeshCacheSize;
while (true)
{
Key key = generateKey(trianglesPerTile, random);
cache.set(key.mAgentBounds, key.mTilePosition, key.mRecastMesh, std::make_unique<PreparedNavMeshData>());
*out++ = std::move(key);
const std::size_t newSize = cache.getStats().mNavMeshCacheSize;
if (size >= newSize)
break;
size = newSize;
}
}
template <std::size_t maxCacheSize, int hitPercentage>
void getFromFilledCache(benchmark::State& state)
{
NavMeshTilesCache cache(maxCacheSize);
std::minstd_rand random;
std::vector<Key> keys;
fillCache(std::back_inserter(keys), random, cache);
generateKeys(std::back_inserter(keys), keys.size() * (100 - hitPercentage) / 100, random);
std::size_t n = 0;
for (auto _ : state)
{
const auto& key = keys[n++ % keys.size()];
auto result = cache.get(key.mAgentBounds, key.mTilePosition, key.mRecastMesh);
benchmark::DoNotOptimize(result);
}
}
void getFromFilledCache_1m_100hit(benchmark::State& state)
{
getFromFilledCache<1 * 1024 * 1024, 100>(state);
}
void getFromFilledCache_4m_100hit(benchmark::State& state)
{
getFromFilledCache<4 * 1024 * 1024, 100>(state);
}
void getFromFilledCache_16m_100hit(benchmark::State& state)
{
getFromFilledCache<16 * 1024 * 1024, 100>(state);
}
void getFromFilledCache_64m_100hit(benchmark::State& state)
{
getFromFilledCache<64 * 1024 * 1024, 100>(state);
}
void getFromFilledCache_1m_70hit(benchmark::State& state)
{
getFromFilledCache<1 * 1024 * 1024, 70>(state);
}
void getFromFilledCache_4m_70hit(benchmark::State& state)
{
getFromFilledCache<4 * 1024 * 1024, 70>(state);
}
void getFromFilledCache_16m_70hit(benchmark::State& state)
{
getFromFilledCache<16 * 1024 * 1024, 70>(state);
}
void getFromFilledCache_64m_70hit(benchmark::State& state)
{
getFromFilledCache<64 * 1024 * 1024, 70>(state);
}
template <std::size_t maxCacheSize>
void setToBoundedNonEmptyCache(benchmark::State& state)
{
NavMeshTilesCache cache(maxCacheSize);
std::minstd_rand random;
std::vector<Key> keys;
fillCache(std::back_inserter(keys), random, cache);
generateKeys(std::back_inserter(keys), keys.size() * 2, random);
std::reverse(keys.begin(), keys.end());
std::size_t n = 0;
while (state.KeepRunning())
{
const auto& key = keys[n++ % keys.size()];
auto result = cache.set(
key.mAgentBounds, key.mTilePosition, key.mRecastMesh, std::make_unique<PreparedNavMeshData>());
benchmark::DoNotOptimize(result);
}
}
void setToBoundedNonEmptyCache_1m(benchmark::State& state)
{
setToBoundedNonEmptyCache<1 * 1024 * 1024>(state);
}
void setToBoundedNonEmptyCache_4m(benchmark::State& state)
{
setToBoundedNonEmptyCache<4 * 1024 * 1024>(state);
}
void setToBoundedNonEmptyCache_16m(benchmark::State& state)
{
setToBoundedNonEmptyCache<16 * 1024 * 1024>(state);
}
void setToBoundedNonEmptyCache_64m(benchmark::State& state)
{
setToBoundedNonEmptyCache<64 * 1024 * 1024>(state);
}
} // namespace
BENCHMARK(getFromFilledCache_1m_100hit);
BENCHMARK(getFromFilledCache_4m_100hit);
BENCHMARK(getFromFilledCache_16m_100hit);
BENCHMARK(getFromFilledCache_64m_100hit);
BENCHMARK(getFromFilledCache_1m_70hit);
BENCHMARK(getFromFilledCache_4m_70hit);
BENCHMARK(getFromFilledCache_16m_70hit);
BENCHMARK(getFromFilledCache_64m_70hit);
BENCHMARK(setToBoundedNonEmptyCache_1m);
BENCHMARK(setToBoundedNonEmptyCache_4m);
BENCHMARK(setToBoundedNonEmptyCache_16m);
BENCHMARK(setToBoundedNonEmptyCache_64m);
BENCHMARK_MAIN();