1
0
Fork 0
mirror of https://github.com/OpenMW/openmw.git synced 2025-01-22 15:53:54 +00:00
openmw/components/nifogre/mesh.cpp

410 lines
14 KiB
C++

#include "mesh.hpp"
#include <limits>
#include <OgreMeshManager.h>
#include <OgreMesh.h>
#include <OgreSubMesh.h>
#include <OgreBone.h>
#include <OgreHardwareBufferManager.h>
#include <OgreMaterialManager.h>
#include <OgreSkeletonManager.h>
#include <OgreRenderSystem.h>
#include <OgreRoot.h>
#include <OgreSkeleton.h>
#include <OgreKeyFrame.h>
#include <components/nif/node.hpp>
#include <components/misc/stringops.hpp>
#include "material.hpp"
namespace NifOgre
{
// Helper class that computes the bounding box and of a mesh
class BoundsFinder
{
struct MaxMinFinder
{
float max, min;
MaxMinFinder()
{
min = std::numeric_limits<float>::infinity();
max = -min;
}
void add(float f)
{
if (f > max) max = f;
if (f < min) min = f;
}
// Return Max(max**2, min**2)
float getMaxSquared()
{
float m1 = max*max;
float m2 = min*min;
if (m1 >= m2) return m1;
return m2;
}
};
MaxMinFinder X, Y, Z;
public:
// Add 'verts' vertices to the calculation. The 'data' pointer is
// expected to point to 3*verts floats representing x,y,z for each
// point.
void add(float *data, int verts)
{
for (int i=0;i<verts;i++)
{
X.add(*(data++));
Y.add(*(data++));
Z.add(*(data++));
}
}
// True if this structure has valid values
bool isValid()
{
return
minX() <= maxX() &&
minY() <= maxY() &&
minZ() <= maxZ();
}
// Compute radius
float getRadius()
{
assert(isValid());
// The radius is computed from the origin, not from the geometric
// center of the mesh.
return sqrt(X.getMaxSquared() + Y.getMaxSquared() + Z.getMaxSquared());
}
float minX() {
return X.min;
}
float maxX() {
return X.max;
}
float minY() {
return Y.min;
}
float maxY() {
return Y.max;
}
float minZ() {
return Z.min;
}
float maxZ() {
return Z.max;
}
};
NIFMeshLoader::LoaderMap NIFMeshLoader::sLoaders;
void NIFMeshLoader::createSubMesh(Ogre::Mesh *mesh, const Nif::NiTriShape *shape)
{
const Nif::NiTriShapeData *data = shape->data.getPtr();
const Nif::NiSkinInstance *skin = (shape->skin.empty() ? NULL : shape->skin.getPtr());
std::vector<Ogre::Vector3> srcVerts = data->vertices;
std::vector<Ogre::Vector3> srcNorms = data->normals;
Ogre::HardwareBuffer::Usage vertUsage = Ogre::HardwareBuffer::HBU_STATIC;
bool vertShadowBuffer = false;
if(skin != NULL)
{
vertUsage = Ogre::HardwareBuffer::HBU_DYNAMIC_WRITE_ONLY;
vertShadowBuffer = true;
// Only set a skeleton when skinning. Unskinned meshes with a skeleton will be
// explicitly attached later.
mesh->setSkeletonName(mName);
// Convert vertices and normals to bone space from bind position. It would be
// better to transform the bones into bind position, but there doesn't seem to
// be a reliable way to do that.
std::vector<Ogre::Vector3> newVerts(srcVerts.size(), Ogre::Vector3(0.0f));
std::vector<Ogre::Vector3> newNorms(srcNorms.size(), Ogre::Vector3(0.0f));
const Nif::NiSkinData *data = skin->data.getPtr();
const Nif::NodeList &bones = skin->bones;
for(size_t b = 0;b < bones.length();b++)
{
Ogre::Matrix4 mat;
mat.makeTransform(data->bones[b].trafo.trans, Ogre::Vector3(data->bones[b].trafo.scale),
Ogre::Quaternion(data->bones[b].trafo.rotation));
mat = bones[b]->getWorldTransform() * mat;
const std::vector<Nif::NiSkinData::VertWeight> &weights = data->bones[b].weights;
for(size_t i = 0;i < weights.size();i++)
{
size_t index = weights[i].vertex;
float weight = weights[i].weight;
newVerts.at(index) += (mat*srcVerts[index]) * weight;
if(newNorms.size() > index)
{
Ogre::Vector4 vec4(srcNorms[index][0], srcNorms[index][1], srcNorms[index][2], 0.0f);
vec4 = mat*vec4 * weight;
newNorms[index] += Ogre::Vector3(&vec4[0]);
}
}
}
srcVerts = newVerts;
srcNorms = newNorms;
}
else
{
Ogre::SkeletonManager *skelMgr = Ogre::SkeletonManager::getSingletonPtr();
if(skelMgr->getByName(mName).isNull())
{
// No skinning and no skeleton, so just transform the vertices and
// normals into position.
Ogre::Matrix4 mat4 = shape->getWorldTransform();
for(size_t i = 0;i < srcVerts.size();i++)
{
Ogre::Vector4 vec4(srcVerts[i].x, srcVerts[i].y, srcVerts[i].z, 1.0f);
vec4 = mat4*vec4;
srcVerts[i] = Ogre::Vector3(&vec4[0]);
}
for(size_t i = 0;i < srcNorms.size();i++)
{
Ogre::Vector4 vec4(srcNorms[i].x, srcNorms[i].y, srcNorms[i].z, 0.0f);
vec4 = mat4*vec4;
srcNorms[i] = Ogre::Vector3(&vec4[0]);
}
}
}
// Set the bounding box first
BoundsFinder bounds;
bounds.add(&srcVerts[0][0], srcVerts.size());
if(!bounds.isValid())
{
float v[3] = { 0.0f, 0.0f, 0.0f };
bounds.add(&v[0], 1);
}
mesh->_setBounds(Ogre::AxisAlignedBox(bounds.minX()-0.5f, bounds.minY()-0.5f, bounds.minZ()-0.5f,
bounds.maxX()+0.5f, bounds.maxY()+0.5f, bounds.maxZ()+0.5f));
mesh->_setBoundingSphereRadius(bounds.getRadius());
// This function is just one long stream of Ogre-barf, but it works
// great.
Ogre::HardwareBufferManager *hwBufMgr = Ogre::HardwareBufferManager::getSingletonPtr();
Ogre::HardwareVertexBufferSharedPtr vbuf;
Ogre::HardwareIndexBufferSharedPtr ibuf;
Ogre::VertexBufferBinding *bind;
Ogre::VertexDeclaration *decl;
int nextBuf = 0;
Ogre::SubMesh *sub = mesh->createSubMesh();
// Add vertices
sub->useSharedVertices = false;
sub->vertexData = new Ogre::VertexData();
sub->vertexData->vertexStart = 0;
sub->vertexData->vertexCount = srcVerts.size();
decl = sub->vertexData->vertexDeclaration;
bind = sub->vertexData->vertexBufferBinding;
if(srcVerts.size())
{
vbuf = hwBufMgr->createVertexBuffer(Ogre::VertexElement::getTypeSize(Ogre::VET_FLOAT3),
srcVerts.size(), vertUsage, vertShadowBuffer);
vbuf->writeData(0, vbuf->getSizeInBytes(), &srcVerts[0][0], true);
decl->addElement(nextBuf, 0, Ogre::VET_FLOAT3, Ogre::VES_POSITION);
bind->setBinding(nextBuf++, vbuf);
}
// Vertex normals
if(srcNorms.size())
{
vbuf = hwBufMgr->createVertexBuffer(Ogre::VertexElement::getTypeSize(Ogre::VET_FLOAT3),
srcNorms.size(), vertUsage, vertShadowBuffer);
vbuf->writeData(0, vbuf->getSizeInBytes(), &srcNorms[0][0], true);
decl->addElement(nextBuf, 0, Ogre::VET_FLOAT3, Ogre::VES_NORMAL);
bind->setBinding(nextBuf++, vbuf);
}
// Vertex colors
const std::vector<Ogre::Vector4> &colors = data->colors;
if(colors.size())
{
Ogre::RenderSystem *rs = Ogre::Root::getSingleton().getRenderSystem();
std::vector<Ogre::RGBA> colorsRGB(colors.size());
for(size_t i = 0;i < colorsRGB.size();i++)
{
Ogre::ColourValue clr(colors[i][0], colors[i][1], colors[i][2], colors[i][3]);
rs->convertColourValue(clr, &colorsRGB[i]);
}
vbuf = hwBufMgr->createVertexBuffer(Ogre::VertexElement::getTypeSize(Ogre::VET_COLOUR),
colorsRGB.size(), Ogre::HardwareBuffer::HBU_STATIC);
vbuf->writeData(0, vbuf->getSizeInBytes(), &colorsRGB[0], true);
decl->addElement(nextBuf, 0, Ogre::VET_COLOUR, Ogre::VES_DIFFUSE);
bind->setBinding(nextBuf++, vbuf);
}
// Texture UV coordinates
size_t numUVs = data->uvlist.size();
if (numUVs)
{
size_t elemSize = Ogre::VertexElement::getTypeSize(Ogre::VET_FLOAT2);
for(size_t i = 0; i < numUVs; i++)
decl->addElement(nextBuf, elemSize*i, Ogre::VET_FLOAT2, Ogre::VES_TEXTURE_COORDINATES, i);
vbuf = hwBufMgr->createVertexBuffer(decl->getVertexSize(nextBuf), srcVerts.size(),
Ogre::HardwareBuffer::HBU_STATIC);
std::vector<Ogre::Vector2> allUVs;
allUVs.reserve(srcVerts.size()*numUVs);
for (size_t vert = 0; vert<srcVerts.size(); ++vert)
for(size_t i = 0; i < numUVs; i++)
allUVs.push_back(data->uvlist[i][vert]);
vbuf->writeData(0, elemSize*srcVerts.size()*numUVs, &allUVs[0], true);
bind->setBinding(nextBuf++, vbuf);
}
// Triangle faces
const std::vector<short> &srcIdx = data->triangles;
if(srcIdx.size())
{
ibuf = hwBufMgr->createIndexBuffer(Ogre::HardwareIndexBuffer::IT_16BIT, srcIdx.size(),
Ogre::HardwareBuffer::HBU_STATIC);
ibuf->writeData(0, ibuf->getSizeInBytes(), &srcIdx[0], true);
sub->indexData->indexBuffer = ibuf;
sub->indexData->indexCount = srcIdx.size();
sub->indexData->indexStart = 0;
}
// Assign bone weights for this TriShape
if(skin != NULL)
{
Ogre::SkeletonPtr skel = Ogre::SkeletonManager::getSingleton().getByName(mName);
const Nif::NiSkinData *data = skin->data.getPtr();
const Nif::NodeList &bones = skin->bones;
for(size_t i = 0;i < bones.length();i++)
{
Ogre::VertexBoneAssignment boneInf;
boneInf.boneIndex = skel->getBone(bones[i]->name)->getHandle();
const std::vector<Nif::NiSkinData::VertWeight> &weights = data->bones[i].weights;
for(size_t j = 0;j < weights.size();j++)
{
boneInf.vertexIndex = weights[j].vertex;
boneInf.weight = weights[j].weight;
sub->addBoneAssignment(boneInf);
}
}
}
const Nif::NiTexturingProperty *texprop = NULL;
const Nif::NiMaterialProperty *matprop = NULL;
const Nif::NiAlphaProperty *alphaprop = NULL;
const Nif::NiVertexColorProperty *vertprop = NULL;
const Nif::NiZBufferProperty *zprop = NULL;
const Nif::NiSpecularProperty *specprop = NULL;
const Nif::NiWireframeProperty *wireprop = NULL;
bool needTangents = false;
shape->getProperties(texprop, matprop, alphaprop, vertprop, zprop, specprop, wireprop);
std::string matname = NIFMaterialLoader::getMaterial(data, mesh->getName(), mGroup,
texprop, matprop, alphaprop,
vertprop, zprop, specprop,
wireprop, needTangents);
if(matname.length() > 0)
sub->setMaterialName(matname);
// build tangents if the material needs them
if (needTangents)
{
unsigned short src,dest;
if (!mesh->suggestTangentVectorBuildParams(Ogre::VES_TANGENT, src,dest))
mesh->buildTangentVectors(Ogre::VES_TANGENT, src,dest);
}
if(!shape->controller.empty())
{
Nif::ControllerPtr ctrl = shape->controller;
do {
// Load GeomMorpherController into an Ogre::Pose and Animation
if(ctrl->recType == Nif::RC_NiGeomMorpherController && ctrl->flags & Nif::NiNode::ControllerFlag_Active)
{
const Nif::NiGeomMorpherController *geom =
static_cast<const Nif::NiGeomMorpherController*>(ctrl.getPtr());
const std::vector<Nif::NiMorphData::MorphData>& morphs = geom->data.getPtr()->mMorphs;
// Note we are not interested in morph 0, which just contains the original vertices
for (unsigned int i = 1; i < morphs.size(); ++i)
{
Ogre::Pose* pose = mesh->createPose(i);
const Nif::NiMorphData::MorphData& data = morphs[i];
for (unsigned int v = 0; v < data.mVertices.size(); ++v)
pose->addVertex(v, data.mVertices[v]);
Ogre::String animationID = Ogre::StringConverter::toString(ctrl->recIndex)
+ "_" + Ogre::StringConverter::toString(i);
Ogre::VertexAnimationTrack* track =
mesh->createAnimation(animationID, 0)
->createVertexTrack(1, Ogre::VAT_POSE);
Ogre::VertexPoseKeyFrame* keyframe = track->createVertexPoseKeyFrame(0);
keyframe->addPoseReference(i-1, 1);
}
break;
}
} while(!(ctrl=ctrl->next).empty());
}
}
NIFMeshLoader::NIFMeshLoader(const std::string &name, const std::string &group, size_t idx)
: mName(name), mGroup(group), mShapeIndex(idx)
{
}
void NIFMeshLoader::loadResource(Ogre::Resource *resource)
{
Ogre::Mesh *mesh = dynamic_cast<Ogre::Mesh*>(resource);
OgreAssert(mesh, "Attempting to load a mesh into a non-mesh resource!");
Nif::NIFFile::ptr nif = Nif::NIFFile::create(mName);
if(mShapeIndex >= nif->numRecords())
{
Ogre::SkeletonManager *skelMgr = Ogre::SkeletonManager::getSingletonPtr();
if(!skelMgr->getByName(mName).isNull())
mesh->setSkeletonName(mName);
return;
}
const Nif::Record *record = nif->getRecord(mShapeIndex);
createSubMesh(mesh, dynamic_cast<const Nif::NiTriShape*>(record));
}
void NIFMeshLoader::createMesh(const std::string &name, const std::string &fullname, const std::string &group, size_t idx)
{
NIFMeshLoader::LoaderMap::iterator loader;
loader = sLoaders.insert(std::make_pair(fullname, NIFMeshLoader(name, group, idx))).first;
Ogre::MeshManager &meshMgr = Ogre::MeshManager::getSingleton();
Ogre::MeshPtr mesh = meshMgr.createManual(fullname, group, &loader->second);
mesh->setAutoBuildEdgeLists(false);
}
}