You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
openmw/components/esmterrain/storage.cpp

633 lines
23 KiB
C++

#include "storage.hpp"
#include <algorithm>
#include <optional>
#include <stdexcept>
#include <osg/Image>
#include <osg/Plane>
#include <components/debug/debuglog.hpp>
#include <components/esm/esmterrain.hpp>
#include <components/esm3/loadland.hpp>
#include <components/esm4/loadland.hpp>
#include <components/misc/resourcehelpers.hpp>
#include <components/misc/strings/algorithm.hpp>
#include <components/vfs/manager.hpp>
#include "gridsampling.hpp"
namespace ESMTerrain
{
namespace
{
UniqueTextureId getTextureIdAt(const LandObject* land, std::size_t x, std::size_t y)
{
assert(x < ESM::Land::LAND_TEXTURE_SIZE);
assert(y < ESM::Land::LAND_TEXTURE_SIZE);
if (land == nullptr)
return { 0, 0 };
const ESM::LandData* data = land->getData(ESM::Land::DATA_VTEX);
if (data == nullptr)
return { 0, 0 };
const std::uint16_t tex = data->getTextures()[y * ESM::Land::LAND_TEXTURE_SIZE + x];
if (tex == 0)
return { 0, 0 }; // vtex 0 is always the base texture, regardless of plugin
return { tex, land->getPlugin() };
}
}
class LandCache
{
public:
explicit LandCache(int offsetX, int offsetY, std::size_t size)
: mOffsetX(offsetX)
, mOffsetY(offsetY)
, mSize(size)
, mValues(size * size)
{
}
std::optional<const LandObject*> find(int x, int y) const
{
const std::size_t index = getIndex(x, y);
if (const auto& value = mValues[index])
return value->get();
return std::nullopt;
}
void insert(int x, int y, osg::ref_ptr<const LandObject>&& value)
{
const std::size_t index = getIndex(x, y);
mValues[index] = std::move(value);
}
private:
int mOffsetX;
int mOffsetY;
std::size_t mSize;
std::vector<std::optional<osg::ref_ptr<const LandObject>>> mValues;
std::size_t getIndex(int x, int y) const
{
return normalizeCoordinate(x, mOffsetX) * mSize + normalizeCoordinate(y, mOffsetY);
}
std::size_t normalizeCoordinate(int value, int offset) const
{
assert(value >= offset);
assert(value < offset + static_cast<int>(mSize));
return static_cast<std::size_t>(value - offset);
}
};
LandObject::LandObject(const ESM4::Land& land, int loadFlags)
: mData(land, loadFlags)
{
}
LandObject::LandObject(const ESM::Land& land, int loadFlags)
: mData(land, loadFlags)
{
}
LandObject::LandObject(const LandObject& /*copy*/, const osg::CopyOp& /*copyOp*/)
{
throw std::logic_error("LandObject copy constructor is not implemented");
}
const float defaultHeight = ESM::Land::DEFAULT_HEIGHT;
Storage::Storage(const VFS::Manager* vfs, const std::string& normalMapPattern,
const std::string& normalHeightMapPattern, bool autoUseNormalMaps, const std::string& specularMapPattern,
bool autoUseSpecularMaps)
: mVFS(vfs)
, mNormalMapPattern(normalMapPattern)
, mNormalHeightMapPattern(normalHeightMapPattern)
, mAutoUseNormalMaps(autoUseNormalMaps)
, mSpecularMapPattern(specularMapPattern)
, mAutoUseSpecularMaps(autoUseSpecularMaps)
{
}
bool Storage::getMinMaxHeights(float size, const osg::Vec2f& center, ESM::RefId worldspace, float& min, float& max)
{
assert(size <= 1 && "Storage::getMinMaxHeights, chunk size should be <= 1 cell");
osg::Vec2f origin = center - osg::Vec2f(size / 2.f, size / 2.f);
int cellX = static_cast<int>(std::floor(origin.x()));
int cellY = static_cast<int>(std::floor(origin.y()));
osg::ref_ptr<const LandObject> land = getLand(ESM::ExteriorCellLocation(cellX, cellY, worldspace));
const ESM::LandData* data = land ? land->getData(ESM::Land::DATA_VHGT) : nullptr;
const int landSize = ESM::getLandSize(worldspace);
int startRow = (origin.x() - cellX) * landSize;
int startColumn = (origin.y() - cellY) * landSize;
int endRow = startRow + size * (landSize - 1) + 1;
int endColumn = startColumn + size * (landSize - 1) + 1;
if (data)
{
min = std::numeric_limits<float>::max();
max = -std::numeric_limits<float>::max();
for (int row = startRow; row < endRow; ++row)
{
for (int col = startColumn; col < endColumn; ++col)
{
float h = data->getHeights()[col * landSize + row];
if (h > max)
max = h;
if (h < min)
min = h;
}
}
return true;
}
min = defaultHeight;
max = defaultHeight;
return false;
}
void Storage::fixNormal(
osg::Vec3f& normal, ESM::ExteriorCellLocation cellLocation, int col, int row, LandCache& cache)
{
const int landSize = ESM::getLandSize(cellLocation.mWorldspace);
while (col >= landSize - 1)
{
++cellLocation.mY;
col -= landSize - 1;
}
while (row >= landSize - 1)
{
++cellLocation.mX;
row -= landSize - 1;
}
while (col < 0)
{
--cellLocation.mY;
col += landSize - 1;
}
while (row < 0)
{
--cellLocation.mX;
row += landSize - 1;
}
const LandObject* land = getLand(cellLocation, cache);
const ESM::LandData* data = land ? land->getData(ESM::Land::DATA_VNML) : nullptr;
if (data)
{
normal.x() = data->getNormals()[col * landSize * 3 + row * 3];
normal.y() = data->getNormals()[col * landSize * 3 + row * 3 + 1];
normal.z() = data->getNormals()[col * landSize * 3 + row * 3 + 2];
normal.normalize();
}
else
normal = osg::Vec3f(0, 0, 1);
}
void Storage::averageNormal(
osg::Vec3f& normal, ESM::ExteriorCellLocation cellLocation, int col, int row, LandCache& cache)
{
osg::Vec3f n1, n2, n3, n4;
fixNormal(n1, cellLocation, col + 1, row, cache);
fixNormal(n2, cellLocation, col - 1, row, cache);
fixNormal(n3, cellLocation, col, row + 1, cache);
fixNormal(n4, cellLocation, col, row - 1, cache);
normal = (n1 + n2 + n3 + n4);
normal.normalize();
}
void Storage::fixColour(
osg::Vec4ub& color, ESM::ExteriorCellLocation cellLocation, int col, int row, LandCache& cache)
{
const int landSize = ESM::getLandSize(cellLocation.mWorldspace);
if (col == landSize - 1)
{
++cellLocation.mY;
col = 0;
}
if (row == landSize - 1)
{
++cellLocation.mX;
row = 0;
}
const LandObject* land = getLand(cellLocation, cache);
const ESM::LandData* data = land ? land->getData(ESM::Land::DATA_VCLR) : nullptr;
if (data)
{
color.r() = data->getColors()[col * landSize * 3 + row * 3];
color.g() = data->getColors()[col * landSize * 3 + row * 3 + 1];
color.b() = data->getColors()[col * landSize * 3 + row * 3 + 2];
}
else
{
color.r() = 255;
color.g() = 255;
color.b() = 255;
}
}
void Storage::fillVertexBuffers(int lodLevel, float size, const osg::Vec2f& center, ESM::RefId worldspace,
osg::Vec3Array& positions, osg::Vec3Array& normals, osg::Vec4ubArray& colours)
{
if (lodLevel < 0 || 63 < lodLevel)
throw std::invalid_argument("Invalid terrain lod level: " + std::to_string(lodLevel));
if (size <= 0)
throw std::invalid_argument("Invalid terrain size: " + std::to_string(size));
// LOD level n means every 2^n-th vertex is kept
const std::size_t sampleSize = std::size_t{ 1 } << lodLevel;
const std::size_t cellSize = static_cast<std::size_t>(ESM::getLandSize(worldspace));
const std::size_t numVerts = static_cast<std::size_t>(size * (cellSize - 1) / sampleSize) + 1;
positions.resize(numVerts * numVerts);
normals.resize(numVerts * numVerts);
colours.resize(numVerts * numVerts);
const bool alteration = useAlteration();
const int landSizeInUnits = ESM::getCellSize(worldspace);
const osg::Vec2f origin = center - osg::Vec2f(size, size) * 0.5f;
const int startCellX = static_cast<int>(std::floor(origin.x()));
const int startCellY = static_cast<int>(std::floor(origin.y()));
LandCache cache(startCellX - 1, startCellY - 1, static_cast<std::size_t>(std::ceil(size)) + 2);
std::pair lastCell{ startCellX, startCellY };
const LandObject* land = getLand(ESM::ExteriorCellLocation(startCellX, startCellY, worldspace), cache);
const ESM::LandData* heightData = nullptr;
const ESM::LandData* normalData = nullptr;
const ESM::LandData* colourData = nullptr;
bool validHeightDataExists = false;
if (land != nullptr)
{
heightData = land->getData(ESM::Land::DATA_VHGT);
normalData = land->getData(ESM::Land::DATA_VNML);
colourData = land->getData(ESM::Land::DATA_VCLR);
validHeightDataExists = true;
}
const auto handleSample = [&](std::size_t cellShiftX, std::size_t cellShiftY, std::size_t row, std::size_t col,
std::size_t vertX, std::size_t vertY) {
const int cellX = startCellX + cellShiftX;
const int cellY = startCellY + cellShiftY;
const std::pair cell{ cellX, cellY };
const ESM::ExteriorCellLocation cellLocation(cellX, cellY, worldspace);
if (lastCell != cell)
{
land = getLand(cellLocation, cache);
heightData = nullptr;
normalData = nullptr;
colourData = nullptr;
if (land != nullptr)
{
heightData = land->getData(ESM::Land::DATA_VHGT);
normalData = land->getData(ESM::Land::DATA_VNML);
colourData = land->getData(ESM::Land::DATA_VCLR);
validHeightDataExists = true;
}
lastCell = cell;
}
float height = defaultHeight;
if (heightData != nullptr)
height = heightData->getHeights()[col * cellSize + row];
if (alteration)
height += getAlteredHeight(col, row);
const std::size_t vertIndex = vertX * numVerts + vertY;
positions[vertIndex]
= osg::Vec3f((vertX / static_cast<float>(numVerts - 1) - 0.5f) * size * landSizeInUnits,
(vertY / static_cast<float>(numVerts - 1) - 0.5f) * size * landSizeInUnits, height);
const std::size_t srcArrayIndex = col * cellSize * 3 + row * 3;
osg::Vec3f normal(0, 0, 1);
if (normalData != nullptr)
{
for (std::size_t i = 0; i < 3; ++i)
normal[i] = normalData->getNormals()[srcArrayIndex + i];
normal.normalize();
}
// Normals apparently don't connect seamlessly between cells
if (col == cellSize - 1 || row == cellSize - 1)
fixNormal(normal, cellLocation, col, row, cache);
// some corner normals appear to be complete garbage (z < 0)
if ((row == 0 || row == cellSize - 1) && (col == 0 || col == cellSize - 1))
averageNormal(normal, cellLocation, col, row, cache);
assert(normal.z() > 0);
normals[vertIndex] = normal;
osg::Vec4ub color(255, 255, 255, 255);
if (colourData != nullptr)
for (std::size_t i = 0; i < 3; ++i)
color[i] = colourData->getColors()[srcArrayIndex + i];
// Does nothing by default, override in OpenMW-CS
if (alteration)
adjustColor(col, row, heightData, color);
// Unlike normals, colors mostly connect seamlessly between cells, but not always...
if (col == cellSize - 1 || row == cellSize - 1)
fixColour(color, cellLocation, col, row, cache);
colours[vertIndex] = color;
};
const std::size_t beginX = static_cast<std::size_t>((origin.x() - startCellX) * cellSize);
const std::size_t beginY = static_cast<std::size_t>((origin.y() - startCellY) * cellSize);
const std::size_t distance = static_cast<std::size_t>(size * (cellSize - 1)) + 1;
sampleCellGrid(cellSize, sampleSize, beginX, beginY, distance, handleSample);
if (!validHeightDataExists && ESM::isEsm4Ext(worldspace))
std::fill(positions.begin(), positions.end(), osg::Vec3f());
}
std::string Storage::getTextureName(UniqueTextureId id)
{
static constexpr char defaultTexture[] = "textures\\_land_default.dds";
if (id.first == 0)
return defaultTexture; // Not sure if the default texture really is hardcoded?
// NB: All vtex ids are +1 compared to the ltex ids
const ESM::LandTexture* ltex = getLandTexture(id.first - 1, id.second);
if (!ltex)
{
Log(Debug::Warning) << "Warning: Unable to find land texture index " << id.first - 1 << " in plugin "
<< id.second << ", using default texture instead";
return defaultTexture;
}
// this is needed due to MWs messed up texture handling
std::string texture = Misc::ResourceHelpers::correctTexturePath(ltex->mTexture, mVFS);
return texture;
}
void Storage::getBlendmaps(float chunkSize, const osg::Vec2f& chunkCenter, ImageVector& blendmaps,
std::vector<Terrain::LayerInfo>& layerList, ESM::RefId worldspace)
{
const osg::Vec2f origin = chunkCenter - osg::Vec2f(chunkSize, chunkSize) * 0.5f;
const int startCellX = static_cast<int>(std::floor(origin.x()));
const int startCellY = static_cast<int>(std::floor(origin.y()));
const std::size_t blendmapSize = getBlendmapSize(chunkSize, ESM::Land::LAND_TEXTURE_SIZE);
// We need to upscale the blendmap 2x with nearest neighbor sampling to look like Vanilla
constexpr std::size_t imageScaleFactor = 2;
const std::size_t blendmapImageSize = blendmapSize * imageScaleFactor;
std::vector<UniqueTextureId> textureIds(blendmapSize * blendmapSize);
LandCache cache(startCellX - 1, startCellY - 1, static_cast<std::size_t>(std::ceil(chunkSize)) + 2);
std::pair lastCell{ startCellX, startCellY };
const LandObject* land = getLand(ESM::ExteriorCellLocation(startCellX, startCellY, worldspace), cache);
const auto handleSample = [&](const CellSample& sample) {
const std::pair cell{ sample.mCellX, sample.mCellY };
if (lastCell != cell)
{
land = getLand(ESM::ExteriorCellLocation(sample.mCellX, sample.mCellY, worldspace), cache);
lastCell = cell;
}
textureIds[sample.mDstCol * blendmapSize + sample.mDstRow]
= getTextureIdAt(land, sample.mSrcRow, sample.mSrcCol);
};
sampleBlendmaps(chunkSize, origin.x(), origin.y(), ESM::Land::LAND_TEXTURE_SIZE, handleSample);
std::map<UniqueTextureId, unsigned int> textureIndicesMap;
for (std::size_t y = 0; y < blendmapSize; ++y)
{
for (std::size_t x = 0; x < blendmapSize; ++x)
{
const UniqueTextureId id = textureIds[y * blendmapSize + x];
std::map<UniqueTextureId, unsigned int>::iterator found = textureIndicesMap.find(id);
if (found == textureIndicesMap.end())
{
unsigned int layerIndex = layerList.size();
Terrain::LayerInfo info = getLayerInfo(getTextureName(id));
// look for existing diffuse map, which may be present when several plugins use the same texture
for (unsigned int i = 0; i < layerList.size(); ++i)
{
if (layerList[i].mDiffuseMap == info.mDiffuseMap)
{
layerIndex = i;
break;
}
}
found = textureIndicesMap.emplace(id, layerIndex).first;
if (layerIndex >= layerList.size())
{
osg::ref_ptr<osg::Image> image(new osg::Image);
image->allocateImage(static_cast<int>(blendmapImageSize), static_cast<int>(blendmapImageSize),
1, GL_ALPHA, GL_UNSIGNED_BYTE);
std::memset(image->data(), 0, image->getTotalDataSize());
blendmaps.push_back(std::move(image));
layerList.push_back(std::move(info));
}
}
const unsigned int layerIndex = found->second;
unsigned char* const data = blendmaps[layerIndex]->data();
const std::size_t realY = (blendmapSize - y - 1) * imageScaleFactor;
const std::size_t realX = x * imageScaleFactor;
data[((realY + 0) * blendmapImageSize + realX + 0)] = 255;
data[((realY + 1) * blendmapImageSize + realX + 0)] = 255;
data[((realY + 0) * blendmapImageSize + realX + 1)] = 255;
data[((realY + 1) * blendmapImageSize + realX + 1)] = 255;
}
}
if (blendmaps.size() == 1)
blendmaps.clear(); // If a single texture fills the whole terrain, there is no need to blend
}
float Storage::getHeightAt(const osg::Vec3f& worldPos, ESM::RefId worldspace)
{
const float cellSize = ESM::getCellSize(worldspace);
int cellX = static_cast<int>(std::floor(worldPos.x() / cellSize));
int cellY = static_cast<int>(std::floor(worldPos.y() / cellSize));
osg::ref_ptr<const LandObject> land = getLand(ESM::ExteriorCellLocation(cellX, cellY, worldspace));
if (!land)
return ESM::isEsm4Ext(worldspace) ? std::numeric_limits<float>::lowest() : defaultHeight;
const ESM::LandData* data = land->getData(ESM::Land::DATA_VHGT);
if (!data)
return defaultHeight;
const int landSize = data->getLandSize();
// Mostly lifted from Ogre::Terrain::getHeightAtTerrainPosition
// Normalized position in the cell
float nX = (worldPos.x() - (cellX * cellSize)) / cellSize;
float nY = (worldPos.y() - (cellY * cellSize)) / cellSize;
// get left / bottom points (rounded down)
float factor = landSize - 1.0f;
float invFactor = 1.0f / factor;
int startX = static_cast<int>(nX * factor);
int startY = static_cast<int>(nY * factor);
int endX = startX + 1;
int endY = startY + 1;
endX = std::min(endX, landSize - 1);
endY = std::min(endY, landSize - 1);
// now get points in terrain space (effectively rounding them to boundaries)
float startXTS = startX * invFactor;
float startYTS = startY * invFactor;
float endXTS = endX * invFactor;
float endYTS = endY * invFactor;
// get parametric from start coord to next point
float xParam = (nX - startXTS) * factor;
float yParam = (nY - startYTS) * factor;
/* For even / odd tri strip rows, triangles are this shape:
even odd
3---2 3---2
| / | | \ |
0---1 0---1
*/
// Build all 4 positions in normalized cell space, using point-sampled height
osg::Vec3f v0(startXTS, startYTS, getVertexHeight(data, startX, startY) / cellSize);
osg::Vec3f v1(endXTS, startYTS, getVertexHeight(data, endX, startY) / cellSize);
osg::Vec3f v2(endXTS, endYTS, getVertexHeight(data, endX, endY) / cellSize);
osg::Vec3f v3(startXTS, endYTS, getVertexHeight(data, startX, endY) / cellSize);
// define this plane in terrain space
osg::Plane plane;
// FIXME: deal with differing triangle alignment
if (true)
{
// odd row
bool secondTri = ((1.0 - yParam) > xParam);
if (secondTri)
plane = osg::Plane(v0, v1, v3);
else
plane = osg::Plane(v1, v2, v3);
}
/*
else
{
// even row
bool secondTri = (yParam > xParam);
if (secondTri)
plane.redefine(v0, v2, v3);
else
plane.redefine(v0, v1, v2);
}
*/
// Solve plane equation for z
return (-plane.getNormal().x() * nX - plane.getNormal().y() * nY - plane[3]) / plane.getNormal().z() * cellSize;
}
const LandObject* Storage::getLand(ESM::ExteriorCellLocation cellLocation, LandCache& cache)
{
if (const auto land = cache.find(cellLocation.mX, cellLocation.mY))
return *land;
osg::ref_ptr<const LandObject> land = getLand(cellLocation);
const LandObject* result = land.get();
cache.insert(cellLocation.mX, cellLocation.mY, std::move(land));
return result;
}
void Storage::adjustColor(int col, int row, const ESM::LandData* heightData, osg::Vec4ub& color) const {}
float Storage::getAlteredHeight(int col, int row) const
{
return 0;
}
Terrain::LayerInfo Storage::getLayerInfo(const std::string& texture)
{
std::lock_guard<std::mutex> lock(mLayerInfoMutex);
// Already have this cached?
std::map<std::string, Terrain::LayerInfo>::iterator found = mLayerInfoMap.find(texture);
if (found != mLayerInfoMap.end())
return found->second;
Terrain::LayerInfo info;
info.mParallax = false;
info.mSpecular = false;
info.mDiffuseMap = texture;
if (mAutoUseNormalMaps)
{
std::string texture_ = texture;
Misc::StringUtils::replaceLast(texture_, ".", mNormalHeightMapPattern + ".");
if (mVFS->exists(texture_))
{
info.mNormalMap = texture_;
info.mParallax = true;
}
else
{
texture_ = texture;
Misc::StringUtils::replaceLast(texture_, ".", mNormalMapPattern + ".");
if (mVFS->exists(texture_))
info.mNormalMap = texture_;
}
}
if (mAutoUseSpecularMaps)
{
std::string texture_ = texture;
Misc::StringUtils::replaceLast(texture_, ".", mSpecularMapPattern + ".");
if (mVFS->exists(texture_))
{
info.mDiffuseMap = texture_;
info.mSpecular = true;
}
}
mLayerInfoMap[texture] = info;
return info;
}
float Storage::getCellWorldSize(ESM::RefId worldspace)
{
return static_cast<float>(ESM::getCellSize(worldspace));
}
int Storage::getCellVertices(ESM::RefId worldspace)
{
return ESM::getLandSize(worldspace);
}
int Storage::getBlendmapScale(float chunkSize)
{
return ESM::Land::LAND_TEXTURE_SIZE * chunkSize;
}
}