1
0
Fork 0
mirror of https://github.com/OpenMW/openmw.git synced 2025-01-22 06:53:53 +00:00
openmw/components/detournavigator/recastmeshbuilder.cpp
2021-11-15 19:01:52 +00:00

317 lines
14 KiB
C++

#include "recastmeshbuilder.hpp"
#include "debug.hpp"
#include "exceptions.hpp"
#include <components/bullethelpers/transformboundingbox.hpp>
#include <components/bullethelpers/processtrianglecallback.hpp>
#include <components/misc/convert.hpp>
#include <components/debug/debuglog.hpp>
#include <BulletCollision/CollisionShapes/btBoxShape.h>
#include <BulletCollision/CollisionShapes/btCompoundShape.h>
#include <BulletCollision/CollisionShapes/btConcaveShape.h>
#include <BulletCollision/CollisionShapes/btHeightfieldTerrainShape.h>
#include <LinearMath/btTransform.h>
#include <LinearMath/btAabbUtil2.h>
#include <algorithm>
#include <cassert>
#include <array>
#include <vector>
#include <sstream>
namespace DetourNavigator
{
using BulletHelpers::makeProcessTriangleCallback;
namespace
{
RecastMeshTriangle makeRecastMeshTriangle(const btVector3* vertices, const AreaType areaType)
{
RecastMeshTriangle result;
result.mAreaType = areaType;
for (std::size_t i = 0; i < 3; ++i)
result.mVertices[i] = Misc::Convert::toOsg(vertices[i]);
return result;
}
TileBounds maxCellTileBounds(int size, const osg::Vec3f& shift)
{
const float halfCellSize = static_cast<float>(size) / 2;
return TileBounds {
osg::Vec2f(shift.x() - halfCellSize, shift.y() - halfCellSize),
osg::Vec2f(shift.x() + halfCellSize, shift.y() + halfCellSize)
};
}
}
Mesh makeMesh(std::vector<RecastMeshTriangle>&& triangles, const osg::Vec3f& shift)
{
std::vector<osg::Vec3f> uniqueVertices;
uniqueVertices.reserve(3 * triangles.size());
for (const RecastMeshTriangle& triangle : triangles)
for (const osg::Vec3f& vertex : triangle.mVertices)
uniqueVertices.push_back(vertex);
std::sort(uniqueVertices.begin(), uniqueVertices.end());
uniqueVertices.erase(std::unique(uniqueVertices.begin(), uniqueVertices.end()), uniqueVertices.end());
std::vector<int> indices;
indices.reserve(3 * triangles.size());
std::vector<AreaType> areaTypes;
areaTypes.reserve(triangles.size());
for (const RecastMeshTriangle& triangle : triangles)
{
areaTypes.push_back(triangle.mAreaType);
for (const osg::Vec3f& vertex : triangle.mVertices)
{
const auto it = std::lower_bound(uniqueVertices.begin(), uniqueVertices.end(), vertex);
assert(it != uniqueVertices.end());
assert(*it == vertex);
indices.push_back(static_cast<int>(it - uniqueVertices.begin()));
}
}
triangles.clear();
std::vector<float> vertices;
vertices.reserve(3 * uniqueVertices.size());
for (const osg::Vec3f& vertex : uniqueVertices)
{
vertices.push_back(vertex.x() + shift.x());
vertices.push_back(vertex.y() + shift.y());
vertices.push_back(vertex.z() + shift.z());
}
return Mesh(std::move(indices), std::move(vertices), std::move(areaTypes));
}
Mesh makeMesh(const Heightfield& heightfield)
{
using BulletHelpers::makeProcessTriangleCallback;
using Misc::Convert::toOsg;
constexpr int upAxis = 2;
constexpr bool flipQuadEdges = false;
#if BT_BULLET_VERSION < 310
std::vector<btScalar> heights(heightfield.mHeights.begin(), heightfield.mHeights.end());
btHeightfieldTerrainShape shape(static_cast<int>(heightfield.mHeights.size() / heightfield.mLength),
static_cast<int>(heightfield.mLength), heights.data(), 1,
heightfield.mMinHeight, heightfield.mMaxHeight, upAxis, PHY_FLOAT, flipQuadEdges
);
#else
btHeightfieldTerrainShape shape(static_cast<int>(heightfield.mHeights.size() / heightfield.mLength),
static_cast<int>(heightfield.mLength), heightfield.mHeights.data(),
heightfield.mMinHeight, heightfield.mMaxHeight, upAxis, flipQuadEdges);
#endif
shape.setLocalScaling(btVector3(heightfield.mScale, heightfield.mScale, 1));
btVector3 aabbMin;
btVector3 aabbMax;
shape.getAabb(btTransform::getIdentity(), aabbMin, aabbMax);
std::vector<RecastMeshTriangle> triangles;
auto callback = makeProcessTriangleCallback([&] (btVector3* vertices, int, int)
{
triangles.emplace_back(makeRecastMeshTriangle(vertices, AreaType_ground));
});
shape.processAllTriangles(&callback, aabbMin, aabbMax);
const osg::Vec2f shift = (osg::Vec2f(aabbMax.x(), aabbMax.y()) - osg::Vec2f(aabbMin.x(), aabbMin.y())) * 0.5;
return makeMesh(std::move(triangles), heightfield.mShift + osg::Vec3f(shift.x(), shift.y(), 0));
}
RecastMeshBuilder::RecastMeshBuilder(const TileBounds& bounds) noexcept
: mBounds(bounds)
{
}
void RecastMeshBuilder::addObject(const btCollisionShape& shape, const btTransform& transform,
const AreaType areaType)
{
if (shape.isCompound())
return addObject(static_cast<const btCompoundShape&>(shape), transform, areaType);
else if (shape.getShapeType() == TERRAIN_SHAPE_PROXYTYPE)
return addObject(static_cast<const btHeightfieldTerrainShape&>(shape), transform, areaType);
else if (shape.isConcave())
return addObject(static_cast<const btConcaveShape&>(shape), transform, areaType);
else if (shape.getShapeType() == BOX_SHAPE_PROXYTYPE)
return addObject(static_cast<const btBoxShape&>(shape), transform, areaType);
std::ostringstream message;
message << "Unsupported shape type: " << BroadphaseNativeTypes(shape.getShapeType());
throw InvalidArgument(message.str());
}
void RecastMeshBuilder::addObject(const btCompoundShape& shape, const btTransform& transform,
const AreaType areaType)
{
for (int i = 0, num = shape.getNumChildShapes(); i < num; ++i)
addObject(*shape.getChildShape(i), transform * shape.getChildTransform(i), areaType);
}
void RecastMeshBuilder::addObject(const btConcaveShape& shape, const btTransform& transform,
const AreaType areaType)
{
return addObject(shape, transform, makeProcessTriangleCallback([&] (btVector3* vertices, int, int)
{
RecastMeshTriangle triangle = makeRecastMeshTriangle(vertices, areaType);
std::reverse(triangle.mVertices.begin(), triangle.mVertices.end());
mTriangles.emplace_back(triangle);
}));
}
void RecastMeshBuilder::addObject(const btHeightfieldTerrainShape& shape, const btTransform& transform,
const AreaType areaType)
{
addObject(shape, transform, makeProcessTriangleCallback([&] (btVector3* vertices, int, int)
{
mTriangles.emplace_back(makeRecastMeshTriangle(vertices, areaType));
}));
}
void RecastMeshBuilder::addObject(const btBoxShape& shape, const btTransform& transform, const AreaType areaType)
{
constexpr std::array<int, 36> indices {{
0, 2, 3,
3, 1, 0,
0, 4, 6,
6, 2, 0,
0, 1, 5,
5, 4, 0,
7, 5, 1,
1, 3, 7,
7, 3, 2,
2, 6, 7,
7, 6, 4,
4, 5, 7,
}};
for (std::size_t i = 0; i < indices.size(); i += 3)
{
std::array<btVector3, 3> vertices;
for (std::size_t j = 0; j < 3; ++j)
{
btVector3 position;
shape.getVertex(indices[i + j], position);
vertices[j] = transform(position);
}
mTriangles.emplace_back(makeRecastMeshTriangle(vertices.data(), areaType));
}
}
void RecastMeshBuilder::addWater(const int cellSize, const osg::Vec3f& shift)
{
mWater.push_back(Cell {cellSize, shift});
}
void RecastMeshBuilder::addHeightfield(int cellSize, const osg::Vec3f& shift, float height)
{
if (const auto intersection = getIntersection(mBounds, maxCellTileBounds(cellSize, shift)))
mFlatHeightfields.emplace_back(FlatHeightfield {*intersection, height + shift.z()});
}
void RecastMeshBuilder::addHeightfield(int cellSize, const osg::Vec3f& shift, const float* heights,
std::size_t size, float minHeight, float maxHeight)
{
const auto intersection = getIntersection(mBounds, maxCellTileBounds(cellSize, shift));
if (!intersection.has_value())
return;
const float stepSize = static_cast<float>(cellSize) / (size - 1);
const int halfCellSize = cellSize / 2;
const auto local = [&] (float v, float shift) { return (v - shift + halfCellSize) / stepSize; };
const auto index = [&] (float v, int add) { return std::clamp<int>(static_cast<int>(v) + add, 0, size); };
const std::size_t minX = index(std::round(local(intersection->mMin.x(), shift.x())), -1);
const std::size_t minY = index(std::round(local(intersection->mMin.y(), shift.y())), -1);
const std::size_t maxX = index(std::round(local(intersection->mMax.x(), shift.x())), 1);
const std::size_t maxY = index(std::round(local(intersection->mMax.y(), shift.y())), 1);
const std::size_t endX = std::min(maxX + 1, size);
const std::size_t endY = std::min(maxY + 1, size);
const std::size_t sliceSize = (endX - minX) * (endY - minY);
if (sliceSize == 0)
return;
std::vector<float> tileHeights;
tileHeights.reserve(sliceSize);
for (std::size_t y = minY; y < endY; ++y)
for (std::size_t x = minX; x < endX; ++x)
tileHeights.push_back(heights[x + y * size]);
Heightfield heightfield;
heightfield.mBounds = *intersection;
heightfield.mLength = static_cast<std::uint8_t>(endY - minY);
heightfield.mMinHeight = minHeight;
heightfield.mMaxHeight = maxHeight;
heightfield.mShift = shift + osg::Vec3f(minX, minY, 0) * stepSize - osg::Vec3f(halfCellSize, halfCellSize, 0);
heightfield.mScale = stepSize;
heightfield.mHeights = std::move(tileHeights);
mHeightfields.push_back(std::move(heightfield));
}
std::shared_ptr<RecastMesh> RecastMeshBuilder::create(std::size_t generation, std::size_t revision) &&
{
std::sort(mTriangles.begin(), mTriangles.end());
std::sort(mWater.begin(), mWater.end());
Mesh mesh = makeMesh(std::move(mTriangles));
return std::make_shared<RecastMesh>(generation, revision, std::move(mesh), std::move(mWater),
std::move(mHeightfields), std::move(mFlatHeightfields));
}
void RecastMeshBuilder::addObject(const btConcaveShape& shape, const btTransform& transform,
btTriangleCallback&& callback)
{
btVector3 aabbMin;
btVector3 aabbMax;
shape.getAabb(btTransform::getIdentity(), aabbMin, aabbMax);
const btVector3 boundsMin(mBounds.mMin.x(), mBounds.mMin.y(),
-std::numeric_limits<btScalar>::max() * std::numeric_limits<btScalar>::epsilon());
const btVector3 boundsMax(mBounds.mMax.x(), mBounds.mMax.y(),
std::numeric_limits<btScalar>::max() * std::numeric_limits<btScalar>::epsilon());
auto wrapper = makeProcessTriangleCallback([&] (btVector3* triangle, int partId, int triangleIndex)
{
std::array<btVector3, 3> transformed;
for (std::size_t i = 0; i < 3; ++i)
transformed[i] = transform(triangle[i]);
if (TestTriangleAgainstAabb2(transformed.data(), boundsMin, boundsMax))
callback.processTriangle(transformed.data(), partId, triangleIndex);
});
shape.processAllTriangles(&wrapper, aabbMin, aabbMax);
}
void RecastMeshBuilder::addObject(const btHeightfieldTerrainShape& shape, const btTransform& transform,
btTriangleCallback&& callback)
{
using BulletHelpers::transformBoundingBox;
btVector3 aabbMin;
btVector3 aabbMax;
shape.getAabb(btTransform::getIdentity(), aabbMin, aabbMax);
transformBoundingBox(transform, aabbMin, aabbMax);
aabbMin.setX(std::max(static_cast<btScalar>(mBounds.mMin.x()), aabbMin.x()));
aabbMin.setX(std::min(static_cast<btScalar>(mBounds.mMax.x()), aabbMin.x()));
aabbMin.setY(std::max(static_cast<btScalar>(mBounds.mMin.y()), aabbMin.y()));
aabbMin.setY(std::min(static_cast<btScalar>(mBounds.mMax.y()), aabbMin.y()));
aabbMax.setX(std::max(static_cast<btScalar>(mBounds.mMin.x()), aabbMax.x()));
aabbMax.setX(std::min(static_cast<btScalar>(mBounds.mMax.x()), aabbMax.x()));
aabbMax.setY(std::max(static_cast<btScalar>(mBounds.mMin.y()), aabbMax.y()));
aabbMax.setY(std::min(static_cast<btScalar>(mBounds.mMax.y()), aabbMax.y()));
transformBoundingBox(transform.inverse(), aabbMin, aabbMax);
auto wrapper = makeProcessTriangleCallback([&] (btVector3* triangle, int partId, int triangleIndex)
{
std::array<btVector3, 3> transformed;
for (std::size_t i = 0; i < 3; ++i)
transformed[i] = transform(triangle[i]);
callback.processTriangle(transformed.data(), partId, triangleIndex);
});
shape.processAllTriangles(&wrapper, aabbMin, aabbMax);
}
}