mirror of
				https://github.com/OpenMW/openmw.git
				synced 2025-10-29 10:26:38 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			99 lines
		
	
	
	
		
			2.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			99 lines
		
	
	
	
		
			2.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #ifndef MISC_MATHUTIL_H
 | |
| #define MISC_MATHUTIL_H
 | |
| 
 | |
| #include <osg/Math>
 | |
| #include <osg/Matrixf>
 | |
| #include <osg/Quat>
 | |
| #include <osg/Vec2f>
 | |
| #include <osg/Vec3f>
 | |
| 
 | |
| #include <cmath>
 | |
| #include <type_traits>
 | |
| 
 | |
| namespace Misc
 | |
| {
 | |
|     /// Normalizes given angle to the range [-PI, PI]. E.g. PI*3/2 -> -PI/2.
 | |
|     inline double normalizeAngle(double angle)
 | |
|     {
 | |
|         double fullTurns = angle / (2 * osg::PI) + 0.5;
 | |
|         return (fullTurns - floor(fullTurns) - 0.5) * (2 * osg::PI);
 | |
|     }
 | |
| 
 | |
|     /// Rotates given 2d vector counterclockwise. Angle is in radians.
 | |
|     inline osg::Vec2f rotateVec2f(osg::Vec2f vec, float angle)
 | |
|     {
 | |
|         float s = std::sin(angle);
 | |
|         float c = std::cos(angle);
 | |
|         return osg::Vec2f(vec.x() * c + vec.y() * -s, vec.x() * s + vec.y() * c);
 | |
|     }
 | |
| 
 | |
|     inline osg::Vec3f toEulerAnglesXZ(osg::Vec3f forward)
 | |
|     {
 | |
|         float x = -std::asin(forward.z());
 | |
|         float z = std::atan2(forward.x(), forward.y());
 | |
|         return osg::Vec3f(x, 0, z);
 | |
|     }
 | |
| 
 | |
|     inline osg::Vec3f toEulerAnglesXZ(const osg::Quat& quat)
 | |
|     {
 | |
|         osg::Vec3f forward = quat * osg::Vec3f(0, 1, 0);
 | |
|         forward.normalize();
 | |
|         return toEulerAnglesXZ(forward);
 | |
|     }
 | |
| 
 | |
|     inline osg::Vec3f toEulerAnglesXZ(const osg::Matrixf& m)
 | |
|     {
 | |
|         osg::Vec3f forward(m(1, 0), m(1, 1), m(1, 2));
 | |
|         forward.normalize();
 | |
|         return toEulerAnglesXZ(forward);
 | |
|     }
 | |
| 
 | |
|     inline osg::Vec3f toEulerAnglesZYX(osg::Vec3f forward, osg::Vec3f up)
 | |
|     {
 | |
|         float y = -std::asin(up.x());
 | |
|         float x = std::atan2(up.y(), up.z());
 | |
|         osg::Vec3f forwardZ = (osg::Quat(x, osg::Vec3f(1, 0, 0)) * osg::Quat(y, osg::Vec3f(0, 1, 0))) * forward;
 | |
|         float z = std::atan2(forwardZ.x(), forwardZ.y());
 | |
|         return osg::Vec3f(x, y, z);
 | |
|     }
 | |
| 
 | |
|     inline osg::Vec3f toEulerAnglesZYX(const osg::Quat& quat)
 | |
|     {
 | |
|         osg::Vec3f forward = quat * osg::Vec3f(0, 1, 0);
 | |
|         forward.normalize();
 | |
|         osg::Vec3f up = quat * osg::Vec3f(0, 0, 1);
 | |
|         up.normalize();
 | |
|         return toEulerAnglesZYX(forward, up);
 | |
|     }
 | |
| 
 | |
|     inline osg::Vec3f toEulerAnglesZYX(const osg::Matrixf& m)
 | |
|     {
 | |
|         osg::Vec3f forward(m(1, 0), m(1, 1), m(1, 2));
 | |
|         osg::Vec3f up(m(2, 0), m(2, 1), m(2, 2));
 | |
|         forward.normalize();
 | |
|         up.normalize();
 | |
|         return toEulerAnglesZYX(forward, up);
 | |
|     }
 | |
| 
 | |
|     template <class T>
 | |
|     bool isPowerOfTwo(T x)
 | |
|     {
 | |
|         static_assert(std::is_integral_v<T>);
 | |
|         return ((x > 0) && ((x & (x - 1)) == 0));
 | |
|     }
 | |
| 
 | |
|     inline int nextPowerOfTwo(int v)
 | |
|     {
 | |
|         if (isPowerOfTwo(v))
 | |
|             return v;
 | |
|         int depth = 0;
 | |
|         while (v)
 | |
|         {
 | |
|             v >>= 1;
 | |
|             depth++;
 | |
|         }
 | |
|         return 1 << depth;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #endif
 |