#include "sky.hpp" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../mwbase/environment.hpp" #include "../mwbase/world.hpp" #include "vismask.hpp" #include "renderbin.hpp" namespace { osg::ref_ptr createAlphaTrackingUnlitMaterial() { osg::ref_ptr mat = new osg::Material; mat->setDiffuse(osg::Material::FRONT_AND_BACK, osg::Vec4f(0.f, 0.f, 0.f, 1.f)); mat->setAmbient(osg::Material::FRONT_AND_BACK, osg::Vec4f(0.f, 0.f, 0.f, 1.f)); mat->setEmission(osg::Material::FRONT_AND_BACK, osg::Vec4f(1.f, 1.f, 1.f, 1.f)); mat->setSpecular(osg::Material::FRONT_AND_BACK, osg::Vec4f(0.f, 0.f, 0.f, 0.f)); mat->setColorMode(osg::Material::DIFFUSE); return mat; } osg::ref_ptr createUnlitMaterial() { osg::ref_ptr mat = new osg::Material; mat->setDiffuse(osg::Material::FRONT_AND_BACK, osg::Vec4f(0.f, 0.f, 0.f, 1.f)); mat->setAmbient(osg::Material::FRONT_AND_BACK, osg::Vec4f(0.f, 0.f, 0.f, 1.f)); mat->setEmission(osg::Material::FRONT_AND_BACK, osg::Vec4f(1.f, 1.f, 1.f, 1.f)); mat->setSpecular(osg::Material::FRONT_AND_BACK, osg::Vec4f(0.f, 0.f, 0.f, 0.f)); mat->setColorMode(osg::Material::OFF); return mat; } osg::ref_ptr createTexturedQuad(int numUvSets=1) { osg::ref_ptr geom = new osg::Geometry; osg::ref_ptr verts = new osg::Vec3Array; verts->push_back(osg::Vec3f(-0.5, -0.5, 0)); verts->push_back(osg::Vec3f(-0.5, 0.5, 0)); verts->push_back(osg::Vec3f(0.5, 0.5, 0)); verts->push_back(osg::Vec3f(0.5, -0.5, 0)); geom->setVertexArray(verts); osg::ref_ptr texcoords = new osg::Vec2Array; texcoords->push_back(osg::Vec2f(0, 0)); texcoords->push_back(osg::Vec2f(0, 1)); texcoords->push_back(osg::Vec2f(1, 1)); texcoords->push_back(osg::Vec2f(1, 0)); osg::ref_ptr colors = new osg::Vec4Array; colors->push_back(osg::Vec4(1.f, 1.f, 1.f, 1.f)); geom->setColorArray(colors, osg::Array::BIND_OVERALL); for (int i=0; isetTexCoordArray(i, texcoords, osg::Array::BIND_PER_VERTEX); geom->addPrimitiveSet(new osg::DrawArrays(osg::PrimitiveSet::QUADS,0,4)); return geom; } } namespace MWRender { class AtmosphereUpdater : public SceneUtil::StateSetUpdater { public: void setEmissionColor(const osg::Vec4f& emissionColor) { mEmissionColor = emissionColor; } protected: virtual void setDefaults(osg::StateSet* stateset) { stateset->setAttributeAndModes(createAlphaTrackingUnlitMaterial(), osg::StateAttribute::ON|osg::StateAttribute::OVERRIDE); } virtual void apply(osg::StateSet* stateset, osg::NodeVisitor* /*nv*/) { osg::Material* mat = static_cast(stateset->getAttribute(osg::StateAttribute::MATERIAL)); mat->setEmission(osg::Material::FRONT_AND_BACK, mEmissionColor); } private: osg::Vec4f mEmissionColor; }; class AtmosphereNightUpdater : public SceneUtil::StateSetUpdater { public: AtmosphereNightUpdater(Resource::ImageManager* imageManager) { // we just need a texture, its contents don't really matter mTexture = new osg::Texture2D(imageManager->getWarningImage()); } void setFade(const float fade) { mColor.a() = fade; } protected: virtual void setDefaults(osg::StateSet* stateset) { osg::ref_ptr texEnv (new osg::TexEnvCombine); texEnv->setCombine_Alpha(osg::TexEnvCombine::MODULATE); texEnv->setSource0_Alpha(osg::TexEnvCombine::PREVIOUS); texEnv->setSource1_Alpha(osg::TexEnvCombine::CONSTANT); texEnv->setCombine_RGB(osg::TexEnvCombine::REPLACE); texEnv->setSource0_RGB(osg::TexEnvCombine::PREVIOUS); stateset->setTextureAttributeAndModes(1, mTexture, osg::StateAttribute::ON|osg::StateAttribute::OVERRIDE); stateset->setTextureAttributeAndModes(1, texEnv, osg::StateAttribute::ON|osg::StateAttribute::OVERRIDE); } virtual void apply(osg::StateSet* stateset, osg::NodeVisitor* /*nv*/) { osg::TexEnvCombine* texEnv = static_cast(stateset->getTextureAttribute(1, osg::StateAttribute::TEXENV)); texEnv->setConstantColor(mColor); } osg::ref_ptr mTexture; osg::Vec4f mColor; }; class CloudUpdater : public SceneUtil::StateSetUpdater { public: CloudUpdater() : mAnimationTimer(0.f) , mOpacity(0.f) { } void setAnimationTimer(float timer) { mAnimationTimer = timer; } void setTexture(osg::ref_ptr texture) { mTexture = texture; } void setEmissionColor(const osg::Vec4f& emissionColor) { mEmissionColor = emissionColor; } void setOpacity(float opacity) { mOpacity = opacity; } protected: virtual void setDefaults(osg::StateSet *stateset) { osg::ref_ptr texmat (new osg::TexMat); stateset->setTextureAttributeAndModes(0, texmat, osg::StateAttribute::ON); stateset->setTextureAttributeAndModes(1, texmat, osg::StateAttribute::ON); stateset->setAttribute(createAlphaTrackingUnlitMaterial(), osg::StateAttribute::ON|osg::StateAttribute::OVERRIDE); // need to set opacity on a separate texture unit, diffuse alpha is used by the vertex colors already osg::ref_ptr texEnvCombine (new osg::TexEnvCombine); texEnvCombine->setSource0_RGB(osg::TexEnvCombine::PREVIOUS); texEnvCombine->setSource0_Alpha(osg::TexEnvCombine::PREVIOUS); texEnvCombine->setSource1_Alpha(osg::TexEnvCombine::CONSTANT); texEnvCombine->setConstantColor(osg::Vec4f(1,1,1,1)); texEnvCombine->setCombine_Alpha(osg::TexEnvCombine::MODULATE); texEnvCombine->setCombine_RGB(osg::TexEnvCombine::REPLACE); stateset->setTextureAttributeAndModes(1, texEnvCombine, osg::StateAttribute::ON); stateset->setTextureMode(0, GL_TEXTURE_2D, osg::StateAttribute::ON|osg::StateAttribute::OVERRIDE); stateset->setTextureMode(1, GL_TEXTURE_2D, osg::StateAttribute::ON|osg::StateAttribute::OVERRIDE); } virtual void apply(osg::StateSet *stateset, osg::NodeVisitor *nv) { osg::TexMat* texMat = static_cast(stateset->getTextureAttribute(0, osg::StateAttribute::TEXMAT)); texMat->setMatrix(osg::Matrix::translate(osg::Vec3f(0, mAnimationTimer, 0.f))); stateset->setTextureAttribute(0, mTexture, osg::StateAttribute::ON|osg::StateAttribute::OVERRIDE); stateset->setTextureAttribute(1, mTexture, osg::StateAttribute::ON|osg::StateAttribute::OVERRIDE); osg::Material* mat = static_cast(stateset->getAttribute(osg::StateAttribute::MATERIAL)); mat->setEmission(osg::Material::FRONT_AND_BACK, mEmissionColor); osg::TexEnvCombine* texEnvCombine = static_cast(stateset->getTextureAttribute(1, osg::StateAttribute::TEXENV)); texEnvCombine->setConstantColor(osg::Vec4f(1,1,1,mOpacity)); } private: float mAnimationTimer; osg::ref_ptr mTexture; osg::Vec4f mEmissionColor; float mOpacity; }; /// Transform that removes the eyepoint of the modelview matrix, /// i.e. its children are positioned relative to the camera. class CameraRelativeTransform : public osg::Transform { public: CameraRelativeTransform() { // Culling works in node-local space, not in camera space, so we can't cull this node correctly // That's not a problem though, children of this node can be culled just fine // Just make sure you do not place a CameraRelativeTransform deep in the scene graph setCullingActive(false); addCullCallback(new CullCallback); } CameraRelativeTransform(const CameraRelativeTransform& copy, const osg::CopyOp& copyop) : osg::Transform(copy, copyop) { } META_Node(MWRender, CameraRelativeTransform) const osg::Vec3f& getLastEyePoint() const { return mEyePoint; } virtual bool computeLocalToWorldMatrix(osg::Matrix& matrix, osg::NodeVisitor* nv) const { if (nv->getVisitorType() == osg::NodeVisitor::CULL_VISITOR) { mEyePoint = static_cast(nv)->getEyePoint(); } if (_referenceFrame==RELATIVE_RF) { matrix.setTrans(osg::Vec3f(0.f,0.f,0.f)); return false; } else // absolute { matrix.makeIdentity(); return true; } } osg::BoundingSphere computeBound() const { return osg::BoundingSphere(osg::Vec3f(0,0,0), 0); } class CullCallback : public osg::NodeCallback { public: virtual void operator() (osg::Node* node, osg::NodeVisitor* nv) { osgUtil::CullVisitor* cv = static_cast(nv); // XXX have to remove unwanted culling plane of the water reflection camera // Remove all planes that aren't from the standard frustum unsigned int numPlanes = 4; if (cv->getCullingMode() & osg::CullSettings::NEAR_PLANE_CULLING) ++numPlanes; if (cv->getCullingMode() & osg::CullSettings::FAR_PLANE_CULLING) ++numPlanes; int mask = 0x1; int resultMask = cv->getProjectionCullingStack().back().getFrustum().getResultMask(); for (unsigned int i=0; igetProjectionCullingStack().back().getFrustum().getPlaneList().size(); ++i) { if (i >= numPlanes) { // turn off this culling plane resultMask &= (~mask); } mask <<= 1; } cv->getProjectionCullingStack().back().getFrustum().setResultMask(resultMask); cv->getCurrentCullingSet().getFrustum().setResultMask(resultMask); cv->getProjectionCullingStack().back().pushCurrentMask(); cv->getCurrentCullingSet().pushCurrentMask(); traverse(node, nv); cv->getProjectionCullingStack().back().popCurrentMask(); cv->getCurrentCullingSet().popCurrentMask(); } }; private: // eyePoint for the current frame mutable osg::Vec3f mEyePoint; }; class ModVertexAlphaVisitor : public osg::NodeVisitor { public: ModVertexAlphaVisitor(int meshType) : osg::NodeVisitor(TRAVERSE_ALL_CHILDREN) , mMeshType(meshType) { } void apply(osg::Drawable& drw) { osg::Geometry* geom = drw.asGeometry(); if (!geom) return; osg::ref_ptr colors = new osg::Vec4Array(geom->getVertexArray()->getNumElements()); for (unsigned int i=0; isize(); ++i) { float alpha = 1.f; if (mMeshType == 0) alpha = (i%2) ? 0.f : 1.f; // this is a cylinder, so every second vertex belongs to the bottom-most row else if (mMeshType == 1) { if (i>= 49 && i <= 64) alpha = 0.f; // bottom-most row else if (i>= 33 && i <= 48) alpha = 0.25098; // second row else alpha = 1.f; } else if (mMeshType == 2) { if (geom->getColorArray()) { osg::Vec4Array* origColors = static_cast(geom->getColorArray()); alpha = ((*origColors)[i].x() == 1.f) ? 1.f : 0.f; } else alpha = 1.f; } (*colors)[i] = osg::Vec4f(0.f, 0.f, 0.f, alpha); } geom->setColorArray(colors, osg::Array::BIND_PER_VERTEX); } private: int mMeshType; }; /// @brief Hides the node subgraph if the eye point is below water. /// @note Must be added as cull callback. /// @note Meant to be used on a node that is child of a CameraRelativeTransform. /// The current eye point must be retrieved by the CameraRelativeTransform since we can't get it anymore once we are in camera-relative space. class UnderwaterSwitchCallback : public osg::NodeCallback { public: UnderwaterSwitchCallback(CameraRelativeTransform* cameraRelativeTransform) : mCameraRelativeTransform(cameraRelativeTransform) , mEnabled(true) , mWaterLevel(0.f) { } virtual void operator()(osg::Node* node, osg::NodeVisitor* nv) { osg::Vec3f eyePoint = mCameraRelativeTransform->getLastEyePoint(); if (mEnabled && eyePoint.z() < mWaterLevel) return; traverse(node, nv); } void setEnabled(bool enabled) { mEnabled = enabled; } void setWaterLevel(float waterLevel) { mWaterLevel = waterLevel; } private: osg::ref_ptr mCameraRelativeTransform; bool mEnabled; float mWaterLevel; }; /// A base class for the sun and moons. class CelestialBody { public: CelestialBody(osg::Group* parentNode, float scaleFactor, int numUvSets, unsigned int visibleMask=~0) : mVisibleMask(visibleMask) { mGeom = createTexturedQuad(numUvSets); mTransform = new osg::PositionAttitudeTransform; mTransform->setNodeMask(mVisibleMask); mTransform->setScale(osg::Vec3f(450,450,450) * scaleFactor); mTransform->addChild(mGeom); parentNode->addChild(mTransform); } virtual ~CelestialBody() {} virtual void adjustTransparency(const float ratio) = 0; void setVisible(bool visible) { mTransform->setNodeMask(visible ? mVisibleMask : 0); } protected: unsigned int mVisibleMask; static const float mDistance; osg::ref_ptr mTransform; osg::ref_ptr mGeom; }; const float CelestialBody::mDistance = 1000.0f; class Sun : public CelestialBody { public: Sun(osg::Group* parentNode, Resource::ImageManager& imageManager) : CelestialBody(parentNode, 1.0f, 1, Mask_Sun) , mUpdater(new Updater) { mTransform->addUpdateCallback(mUpdater); osg::ref_ptr sunTex (new osg::Texture2D(imageManager.getImage("textures/tx_sun_05.dds"))); sunTex->setWrap(osg::Texture::WRAP_S, osg::Texture::CLAMP_TO_EDGE); sunTex->setWrap(osg::Texture::WRAP_T, osg::Texture::CLAMP_TO_EDGE); mGeom->getOrCreateStateSet()->setTextureAttributeAndModes(0, sunTex, osg::StateAttribute::ON); osg::ref_ptr queryNode (new osg::Group); // Need to render after the world geometry so we can correctly test for occlusions osg::StateSet* stateset = queryNode->getOrCreateStateSet(); stateset->setRenderBinDetails(RenderBin_OcclusionQuery, "RenderBin"); stateset->setNestRenderBins(false); // Set up alpha testing on the occlusion testing subgraph, that way we can get the occlusion tested fragments to match the circular shape of the sun osg::ref_ptr alphaFunc (new osg::AlphaFunc); alphaFunc->setFunction(osg::AlphaFunc::GREATER, 0.8); stateset->setAttributeAndModes(alphaFunc, osg::StateAttribute::ON); stateset->setTextureAttributeAndModes(0, sunTex, osg::StateAttribute::ON); stateset->setAttributeAndModes(createUnlitMaterial(), osg::StateAttribute::ON); // Disable writing to the color buffer. We are using this geometry for visibility tests only. osg::ref_ptr colormask (new osg::ColorMask(0, 0, 0, 0)); stateset->setAttributeAndModes(colormask, osg::StateAttribute::ON); osg::ref_ptr po (new osg::PolygonOffset( -1., -1. )); stateset->setAttributeAndModes(po, osg::StateAttribute::ON); mTransform->addChild(queryNode); mOcclusionQueryVisiblePixels = createOcclusionQueryNode(queryNode, true); mOcclusionQueryTotalPixels = createOcclusionQueryNode(queryNode, false); createSunFlash(imageManager); createSunGlare(); } ~Sun() { mTransform->removeUpdateCallback(mUpdater); destroySunFlash(); destroySunGlare(); } void setColor(const osg::Vec4f& color) { mUpdater->mColor.r() = color.r(); mUpdater->mColor.g() = color.g(); mUpdater->mColor.b() = color.b(); } virtual void adjustTransparency(const float ratio) { mUpdater->mColor.a() = ratio; if (mSunGlareCallback) mSunGlareCallback->setGlareView(ratio); if (mSunFlashCallback) mSunFlashCallback->setGlareView(ratio); } void setDirection(const osg::Vec3f& direction) { osg::Vec3f normalizedDirection = direction / direction.length(); mTransform->setPosition(normalizedDirection * mDistance); osg::Quat quat; quat.makeRotate(osg::Vec3f(0.0f, 0.0f, 1.0f), normalizedDirection); mTransform->setAttitude(quat); } void setGlareTimeOfDayFade(float val) { if (mSunGlareCallback) mSunGlareCallback->setTimeOfDayFade(val); } private: class DummyComputeBoundCallback : public osg::Node::ComputeBoundingSphereCallback { public: virtual osg::BoundingSphere computeBound(const osg::Node& node) const { return osg::BoundingSphere(); } }; /// @param queryVisible If true, queries the amount of visible pixels. If false, queries the total amount of pixels. osg::ref_ptr createOcclusionQueryNode(osg::Group* parent, bool queryVisible) { osg::ref_ptr oqn = new osg::OcclusionQueryNode; oqn->setQueriesEnabled(true); // Make it fast! A DYNAMIC query geometry means we can't break frame until the flare is rendered (which is rendered after all the other geometry, // so that would be pretty bad). STATIC should be safe, since our node's local bounds are static, thus computeBounds() which modifies the queryGeometry // is only called once. // Note the debug geometry setDebugDisplay(true) is always DYNAMIC and that can't be changed, not a big deal. oqn->getQueryGeometry()->setDataVariance(osg::Object::STATIC); // Set up the query geometry to match the actual sun's rendering shape. osg::OcclusionQueryNode wasn't originally intended to allow this, // normally it would automatically adjust the query geometry to match the sub graph's bounding box. The below hack is needed to // circumvent this. osg::Geometry* queryGeom = oqn->getQueryGeometry(); queryGeom->setVertexArray(mGeom->getVertexArray()); queryGeom->setTexCoordArray(0, mGeom->getTexCoordArray(0), osg::Array::BIND_PER_VERTEX); queryGeom->removePrimitiveSet(0, oqn->getQueryGeometry()->getNumPrimitiveSets()); queryGeom->addPrimitiveSet(mGeom->getPrimitiveSet(0)); // Hack to disable unwanted awful code inside OcclusionQueryNode::computeBound. oqn->setComputeBoundingSphereCallback(new DummyComputeBoundCallback); // Still need a proper bounding sphere. oqn->setInitialBound(queryGeom->getBound()); osg::StateSet* queryStateSet = new osg::StateSet; if (queryVisible) { osg::ref_ptr depth (new osg::Depth); depth->setFunction(osg::Depth::LESS); // This is a trick to make fragments written by the query always use the maximum depth value, // without having to retrieve the current far clipping distance. // We want the sun glare to be "infinitely" far away. depth->setZNear(1.0); depth->setZFar(1.0); depth->setWriteMask(false); queryStateSet->setAttributeAndModes(depth, osg::StateAttribute::ON); } else { queryStateSet->setMode(GL_DEPTH_TEST, osg::StateAttribute::OFF); } oqn->setQueryStateSet(queryStateSet); parent->addChild(oqn); return oqn; } void createSunFlash(Resource::ImageManager& imageManager) { osg::ref_ptr tex (new osg::Texture2D(imageManager.getImage("textures/tx_sun_flash_grey_05.dds"))); tex->setWrap(osg::Texture::WRAP_S, osg::Texture::CLAMP_TO_EDGE); tex->setWrap(osg::Texture::WRAP_T, osg::Texture::CLAMP_TO_EDGE); osg::ref_ptr transform (new osg::PositionAttitudeTransform); const float scale = 2.6f; transform->setScale(osg::Vec3f(scale,scale,scale)); mTransform->addChild(transform); osg::ref_ptr geom = createTexturedQuad(); transform->addChild(geom); osg::StateSet* stateset = geom->getOrCreateStateSet(); stateset->setTextureAttributeAndModes(0, tex, osg::StateAttribute::ON); stateset->setMode(GL_DEPTH_TEST, osg::StateAttribute::OFF); stateset->setRenderBinDetails(RenderBin_SunGlare, "RenderBin"); stateset->setNestRenderBins(false); mSunFlashNode = transform; mSunFlashCallback = new SunFlashCallback(mOcclusionQueryVisiblePixels, mOcclusionQueryTotalPixels); mSunFlashNode->addCullCallback(mSunFlashCallback); } void destroySunFlash() { if (mSunFlashNode) { mSunFlashNode->removeCullCallback(mSunFlashCallback); mSunFlashCallback = NULL; } } void createSunGlare() { osg::ref_ptr camera (new osg::Camera); camera->setProjectionMatrix(osg::Matrix::identity()); camera->setReferenceFrame(osg::Transform::ABSOLUTE_RF); // add to skyRoot instead? camera->setViewMatrix(osg::Matrix::identity()); camera->setClearMask(0); camera->setRenderOrder(osg::Camera::NESTED_RENDER); camera->setAllowEventFocus(false); osg::ref_ptr geom = osg::createTexturedQuadGeometry(osg::Vec3f(-1,-1,0), osg::Vec3f(2,0,0), osg::Vec3f(0,2,0)); camera->addChild(geom); osg::StateSet* stateset = geom->getOrCreateStateSet(); stateset->setRenderBinDetails(RenderBin_SunGlare, "RenderBin"); stateset->setNestRenderBins(false); stateset->setMode(GL_DEPTH_TEST, osg::StateAttribute::OFF); // set up additive blending osg::ref_ptr blendFunc (new osg::BlendFunc); blendFunc->setSource(osg::BlendFunc::SRC_ALPHA); blendFunc->setDestination(osg::BlendFunc::ONE); stateset->setAttributeAndModes(blendFunc, osg::StateAttribute::ON); mSunGlareCallback = new SunGlareCallback(mOcclusionQueryVisiblePixels, mOcclusionQueryTotalPixels, mTransform); mSunGlareNode = camera; mSunGlareNode->addCullCallback(mSunGlareCallback); mTransform->addChild(camera); } void destroySunGlare() { if (mSunGlareNode) { mSunGlareNode->removeCullCallback(mSunGlareCallback); mSunGlareCallback = NULL; } } class Updater : public SceneUtil::StateSetUpdater { public: osg::Vec4f mColor; Updater() : mColor(1.f, 1.f, 1.f, 1.f) { } virtual void setDefaults(osg::StateSet* stateset) { stateset->setAttributeAndModes(createUnlitMaterial(), osg::StateAttribute::ON); } virtual void apply(osg::StateSet* stateset, osg::NodeVisitor*) { osg::Material* mat = static_cast(stateset->getAttribute(osg::StateAttribute::MATERIAL)); mat->setDiffuse(osg::Material::FRONT_AND_BACK, osg::Vec4f(0,0,0,mColor.a())); mat->setEmission(osg::Material::FRONT_AND_BACK, osg::Vec4f(mColor.r(), mColor.g(), mColor.b(), 1)); } }; class OcclusionCallback : public osg::NodeCallback { public: OcclusionCallback(osg::ref_ptr oqnVisible, osg::ref_ptr oqnTotal) : mOcclusionQueryVisiblePixels(oqnVisible) , mOcclusionQueryTotalPixels(oqnTotal) { } protected: float getVisibleRatio (osg::Camera* camera) { int visible = mOcclusionQueryVisiblePixels->getQueryGeometry()->getNumPixels(camera); int total = mOcclusionQueryTotalPixels->getQueryGeometry()->getNumPixels(camera); float visibleRatio = 0.f; if (total > 0) visibleRatio = static_cast(visible) / static_cast(total); float dt = MWBase::Environment::get().getFrameDuration(); float lastRatio = mLastRatio[osg::observer_ptr(camera)]; float change = dt*10; if (visibleRatio > lastRatio) visibleRatio = std::min(visibleRatio, lastRatio + change); else visibleRatio = std::max(visibleRatio, lastRatio - change); mLastRatio[osg::observer_ptr(camera)] = visibleRatio; return visibleRatio; } private: osg::ref_ptr mOcclusionQueryVisiblePixels; osg::ref_ptr mOcclusionQueryTotalPixels; std::map, float> mLastRatio; }; /// SunFlashCallback handles fading/scaling of a node depending on occlusion query result. Must be attached as a cull callback. class SunFlashCallback : public OcclusionCallback { public: SunFlashCallback(osg::ref_ptr oqnVisible, osg::ref_ptr oqnTotal) : OcclusionCallback(oqnVisible, oqnTotal) , mGlareView(1.f) { } virtual void operator()(osg::Node* node, osg::NodeVisitor* nv) { osgUtil::CullVisitor* cv = static_cast(nv); float visibleRatio = getVisibleRatio(cv->getCurrentCamera()); osg::ref_ptr stateset; if (visibleRatio > 0.f) { const float fadeThreshold = 0.1; if (visibleRatio < fadeThreshold) { float fade = 1.f - (fadeThreshold - visibleRatio) / fadeThreshold; osg::ref_ptr mat (createUnlitMaterial()); mat->setDiffuse(osg::Material::FRONT_AND_BACK, osg::Vec4f(0,0,0,fade*mGlareView)); stateset = new osg::StateSet; stateset->setAttributeAndModes(mat, osg::StateAttribute::ON|osg::StateAttribute::OVERRIDE); } const float threshold = 0.6; visibleRatio = visibleRatio * (1.f - threshold) + threshold; } float scale = visibleRatio; if (scale == 0.f) { // no traverse return; } else { osg::Matrix modelView = *cv->getModelViewMatrix(); modelView.preMultScale(osg::Vec3f(visibleRatio, visibleRatio, visibleRatio)); if (stateset) cv->pushStateSet(stateset); cv->pushModelViewMatrix(new osg::RefMatrix(modelView), osg::Transform::RELATIVE_RF); traverse(node, nv); cv->popModelViewMatrix(); if (stateset) cv->popStateSet(); } } void setGlareView(float value) { mGlareView = value; } private: float mGlareView; }; /// SunGlareCallback controls a full-screen glare effect depending on occlusion query result and the angle between sun and camera. /// Must be attached as a cull callback to the node above the glare node. class SunGlareCallback : public OcclusionCallback { public: SunGlareCallback(osg::ref_ptr oqnVisible, osg::ref_ptr oqnTotal, osg::ref_ptr sunTransform) : OcclusionCallback(oqnVisible, oqnTotal) , mSunTransform(sunTransform) , mTimeOfDayFade(1.f) , mGlareView(1.f) { const Fallback::Map* fallback = MWBase::Environment::get().getWorld()->getFallback(); mColor = fallback->getFallbackColour("Weather_Sun_Glare_Fader_Color"); mSunGlareFaderMax = fallback->getFallbackFloat("Weather_Sun_Glare_Fader_Max"); mSunGlareFaderAngleMax = fallback->getFallbackFloat("Weather_Sun_Glare_Fader_Angle_Max"); // Replicating a design flaw in MW. The color was being set on both ambient and emissive properties, which multiplies the result by two, // then finally gets clamped by the fixed function pipeline. With the default INI settings, only the red component gets clamped, // so the resulting color looks more orange than red. mColor *= 2; for (int i=0; i<3; ++i) mColor[i] = std::min(1.f, mColor[i]); } virtual void operator ()(osg::Node* node, osg::NodeVisitor* nv) { osgUtil::CullVisitor* cv = static_cast(nv); float angleRadians = getAngleToSunInRadians(*cv->getCurrentRenderStage()->getInitialViewMatrix()); float visibleRatio = getVisibleRatio(cv->getCurrentCamera()); const float angleMaxRadians = osg::DegreesToRadians(mSunGlareFaderAngleMax); float value = 1.f - std::min(1.f, angleRadians / angleMaxRadians); float fade = value * mSunGlareFaderMax; fade *= mTimeOfDayFade * mGlareView * visibleRatio; if (fade == 0.f) { // no traverse return; } else { osg::ref_ptr stateset (new osg::StateSet); osg::ref_ptr mat (createUnlitMaterial()); mat->setDiffuse(osg::Material::FRONT_AND_BACK, osg::Vec4f(0,0,0,fade)); mat->setEmission(osg::Material::FRONT_AND_BACK, mColor); stateset->setAttributeAndModes(mat, osg::StateAttribute::ON); cv->pushStateSet(stateset); traverse(node, nv); cv->popStateSet(); } } void setTimeOfDayFade(float val) { mTimeOfDayFade = val; } void setGlareView(float glareView) { mGlareView = glareView; } private: float getAngleToSunInRadians(const osg::Matrix& viewMatrix) const { osg::Vec3d eye, center, up; viewMatrix.getLookAt(eye, center, up); osg::Vec3d forward = center - eye; osg::Vec3d sun = mSunTransform->getPosition(); forward.normalize(); sun.normalize(); float angleRadians = std::acos(forward * sun); return angleRadians; } osg::ref_ptr mSunTransform; float mTimeOfDayFade; float mGlareView; osg::Vec4f mColor; float mSunGlareFaderMax; float mSunGlareFaderAngleMax; }; osg::ref_ptr mUpdater; osg::ref_ptr mSunFlashCallback; osg::ref_ptr mSunFlashNode; osg::ref_ptr mSunGlareCallback; osg::ref_ptr mSunGlareNode; osg::ref_ptr mOcclusionQueryVisiblePixels; osg::ref_ptr mOcclusionQueryTotalPixels; }; class Moon : public CelestialBody { public: enum Type { Type_Masser = 0, Type_Secunda }; Moon(osg::Group* parentNode, Resource::ImageManager& imageManager, float scaleFactor, Type type) : CelestialBody(parentNode, scaleFactor, 2) , mType(type) , mPhase(MoonState::Phase_Unspecified) , mUpdater(new Updater(imageManager)) { setPhase(MoonState::Phase_Full); setVisible(true); mGeom->addUpdateCallback(mUpdater); } ~Moon() { mGeom->removeUpdateCallback(mUpdater); } virtual void adjustTransparency(const float ratio) { mUpdater->mTransparency *= ratio; } void setState(const MoonState& state) { float radsX = ((state.mRotationFromHorizon) * static_cast(osg::PI)) / 180.0f; float radsZ = ((state.mRotationFromNorth) * static_cast(osg::PI)) / 180.0f; osg::Quat rotX(radsX, osg::Vec3f(1.0f, 0.0f, 0.0f)); osg::Quat rotZ(radsZ, osg::Vec3f(0.0f, 0.0f, 1.0f)); osg::Vec3f direction = rotX * rotZ * osg::Vec3f(0.0f, 1.0f, 0.0f); mTransform->setPosition(direction * mDistance); // The moon quad is initially oriented facing down, so we need to offset its X-axis // rotation to rotate it to face the camera when sitting at the horizon. osg::Quat attX((-static_cast(osg::PI) / 2.0f) + radsX, osg::Vec3f(1.0f, 0.0f, 0.0f)); mTransform->setAttitude(attX * rotZ); setPhase(state.mPhase); mUpdater->mTransparency = state.mMoonAlpha; mUpdater->mShadowBlend = state.mShadowBlend; } void setAtmosphereColor(const osg::Vec4f& color) { mUpdater->mAtmosphereColor = color; } void setColor(const osg::Vec4f& color) { mUpdater->mMoonColor = color; } unsigned int getPhaseInt() const { if (mPhase == MoonState::Phase_New) return 0; else if (mPhase == MoonState::Phase_WaxingCrescent) return 1; else if (mPhase == MoonState::Phase_WaningCrescent) return 1; else if (mPhase == MoonState::Phase_FirstQuarter) return 2; else if (mPhase == MoonState::Phase_ThirdQuarter) return 2; else if (mPhase == MoonState::Phase_WaxingGibbous) return 3; else if (mPhase == MoonState::Phase_WaningGibbous) return 3; else if (mPhase == MoonState::Phase_Full) return 4; return 0; } private: struct Updater : public SceneUtil::StateSetUpdater { Resource::ImageManager& mImageManager; osg::ref_ptr mPhaseTex; osg::ref_ptr mCircleTex; float mTransparency; float mShadowBlend; osg::Vec4f mAtmosphereColor; osg::Vec4f mMoonColor; Updater(Resource::ImageManager& imageManager) : mImageManager(imageManager) , mPhaseTex() , mCircleTex() , mTransparency(1.0f) , mShadowBlend(1.0f) , mAtmosphereColor(1.0f, 1.0f, 1.0f, 1.0f) , mMoonColor(1.0f, 1.0f, 1.0f, 1.0f) { } virtual void setDefaults(osg::StateSet* stateset) { stateset->setTextureAttributeAndModes(0, mPhaseTex, osg::StateAttribute::ON); osg::ref_ptr texEnv = new osg::TexEnvCombine; texEnv->setCombine_RGB(osg::TexEnvCombine::MODULATE); texEnv->setSource0_RGB(osg::TexEnvCombine::CONSTANT); texEnv->setSource1_RGB(osg::TexEnvCombine::TEXTURE); texEnv->setConstantColor(osg::Vec4f(1.f, 0.f, 0.f, 1.f)); // mShadowBlend * mMoonColor stateset->setTextureAttributeAndModes(0, texEnv, osg::StateAttribute::ON); stateset->setTextureAttributeAndModes(1, mCircleTex, osg::StateAttribute::ON); osg::ref_ptr texEnv2 = new osg::TexEnvCombine; texEnv2->setCombine_RGB(osg::TexEnvCombine::ADD); texEnv2->setCombine_Alpha(osg::TexEnvCombine::MODULATE); texEnv2->setSource0_Alpha(osg::TexEnvCombine::TEXTURE); texEnv2->setSource1_Alpha(osg::TexEnvCombine::CONSTANT); texEnv2->setSource0_RGB(osg::TexEnvCombine::PREVIOUS); texEnv2->setSource1_RGB(osg::TexEnvCombine::CONSTANT); texEnv2->setConstantColor(osg::Vec4f(0.f, 0.f, 0.f, 1.f)); // mAtmosphereColor.rgb, mTransparency stateset->setTextureAttributeAndModes(1, texEnv2, osg::StateAttribute::ON); stateset->setAttributeAndModes(createUnlitMaterial(), osg::StateAttribute::ON|osg::StateAttribute::OVERRIDE); } virtual void apply(osg::StateSet* stateset, osg::NodeVisitor*) { osg::TexEnvCombine* texEnv = static_cast(stateset->getTextureAttribute(0, osg::StateAttribute::TEXENV)); texEnv->setConstantColor(mMoonColor * mShadowBlend); osg::TexEnvCombine* texEnv2 = static_cast(stateset->getTextureAttribute(1, osg::StateAttribute::TEXENV)); texEnv2->setConstantColor(osg::Vec4f(mAtmosphereColor.x(), mAtmosphereColor.y(), mAtmosphereColor.z(), mTransparency)); } void setTextures(const std::string& phaseTex, const std::string& circleTex) { mPhaseTex = new osg::Texture2D(mImageManager.getImage(phaseTex)); mPhaseTex->setWrap(osg::Texture::WRAP_S, osg::Texture::CLAMP_TO_EDGE); mPhaseTex->setWrap(osg::Texture::WRAP_T, osg::Texture::CLAMP_TO_EDGE); mCircleTex = new osg::Texture2D(mImageManager.getImage(circleTex)); mCircleTex->setWrap(osg::Texture::WRAP_S, osg::Texture::CLAMP_TO_EDGE); mCircleTex->setWrap(osg::Texture::WRAP_T, osg::Texture::CLAMP_TO_EDGE); reset(); } }; Type mType; MoonState::Phase mPhase; osg::ref_ptr mUpdater; void setPhase(const MoonState::Phase& phase) { if(mPhase == phase) return; mPhase = phase; std::string textureName = "textures/tx_"; if (mType == Moon::Type_Secunda) textureName += "secunda_"; else textureName += "masser_"; if (phase == MoonState::Phase_New) textureName += "new"; else if(phase == MoonState::Phase_WaxingCrescent) textureName += "one_wax"; else if(phase == MoonState::Phase_FirstQuarter) textureName += "half_wax"; else if(phase == MoonState::Phase_WaxingGibbous) textureName += "three_wax"; else if(phase == MoonState::Phase_WaningCrescent) textureName += "one_wan"; else if(phase == MoonState::Phase_ThirdQuarter) textureName += "half_wan"; else if(phase == MoonState::Phase_WaningGibbous) textureName += "three_wan"; else if(phase == MoonState::Phase_Full) textureName += "full"; textureName += ".dds"; if (mType == Moon::Type_Secunda) mUpdater->setTextures(textureName, "textures/tx_mooncircle_full_s.dds"); else mUpdater->setTextures(textureName, "textures/tx_mooncircle_full_m.dds"); } }; SkyManager::SkyManager(osg::Group* parentNode, Resource::SceneManager* sceneManager) : mSceneManager(sceneManager) , mCamera(NULL) , mRainIntensityUniform(NULL) , mAtmosphereNightRoll(0.f) , mCreated(false) , mIsStorm(false) , mDay(0) , mMonth(0) , mCloudAnimationTimer(0.f) , mRainTimer(0.f) , mStormDirection(0,-1,0) , mClouds() , mNextClouds() , mCloudBlendFactor(0.0f) , mCloudSpeed(0.0f) , mStarsOpacity(0.0f) , mRemainingTransitionTime(0.0f) , mRainEnabled(false) , mRainSpeed(0) , mRainFrequency(1) , mWindSpeed(0.f) , mEnabled(true) , mSunEnabled(true) , mWeatherAlpha(0.f) { osg::ref_ptr skyroot (new CameraRelativeTransform); skyroot->setName("Sky Root"); // Assign empty program to specify we don't want shaders // The shaders generated by the SceneManager can't handle everything we need skyroot->getOrCreateStateSet()->setAttributeAndModes(new osg::Program(), osg::StateAttribute::OVERRIDE); skyroot->setNodeMask(Mask_Sky); parentNode->addChild(skyroot); mRootNode = skyroot; mEarlyRenderBinRoot = new osg::Group; // render before the world is rendered mEarlyRenderBinRoot->getOrCreateStateSet()->setRenderBinDetails(RenderBin_Sky, "RenderBin"); // Prevent unwanted clipping by water reflection camera's clipping plane mEarlyRenderBinRoot->getOrCreateStateSet()->setMode(GL_CLIP_PLANE0, osg::StateAttribute::OFF); mRootNode->addChild(mEarlyRenderBinRoot); mUnderwaterSwitch = new UnderwaterSwitchCallback(skyroot); } void SkyManager::setRainIntensityUniform(osg::Uniform *uniform) { mRainIntensityUniform = uniform; } void SkyManager::create() { assert(!mCreated); mAtmosphereDay = mSceneManager->getInstance("meshes/sky_atmosphere.nif", mEarlyRenderBinRoot); ModVertexAlphaVisitor modAtmosphere(0); mAtmosphereDay->accept(modAtmosphere); mAtmosphereUpdater = new AtmosphereUpdater; mAtmosphereDay->addUpdateCallback(mAtmosphereUpdater); mAtmosphereNightNode = new osg::PositionAttitudeTransform; mAtmosphereNightNode->setNodeMask(0); mEarlyRenderBinRoot->addChild(mAtmosphereNightNode); osg::ref_ptr atmosphereNight; if (mSceneManager->getVFS()->exists("meshes/sky_night_02.nif")) atmosphereNight = mSceneManager->getInstance("meshes/sky_night_02.nif", mAtmosphereNightNode); else atmosphereNight = mSceneManager->getInstance("meshes/sky_night_01.nif", mAtmosphereNightNode); atmosphereNight->getOrCreateStateSet()->setAttributeAndModes(createAlphaTrackingUnlitMaterial(), osg::StateAttribute::ON|osg::StateAttribute::OVERRIDE); ModVertexAlphaVisitor modStars(2); atmosphereNight->accept(modStars); mAtmosphereNightUpdater = new AtmosphereNightUpdater(mSceneManager->getImageManager()); atmosphereNight->addUpdateCallback(mAtmosphereNightUpdater); mSun.reset(new Sun(mEarlyRenderBinRoot, *mSceneManager->getImageManager())); const Fallback::Map* fallback=MWBase::Environment::get().getWorld()->getFallback(); mMasser.reset(new Moon(mEarlyRenderBinRoot, *mSceneManager->getImageManager(), fallback->getFallbackFloat("Moons_Masser_Size")/125, Moon::Type_Masser)); mSecunda.reset(new Moon(mEarlyRenderBinRoot, *mSceneManager->getImageManager(), fallback->getFallbackFloat("Moons_Secunda_Size")/125, Moon::Type_Secunda)); mCloudNode = new osg::PositionAttitudeTransform; mEarlyRenderBinRoot->addChild(mCloudNode); mCloudMesh = mSceneManager->getInstance("meshes/sky_clouds_01.nif", mCloudNode); ModVertexAlphaVisitor modClouds(1); mCloudMesh->accept(modClouds); mCloudUpdater = new CloudUpdater; mCloudUpdater->setOpacity(1.f); mCloudMesh->addUpdateCallback(mCloudUpdater); mCloudMesh2 = mSceneManager->getInstance("meshes/sky_clouds_01.nif", mCloudNode); mCloudMesh2->accept(modClouds); mCloudUpdater2 = new CloudUpdater; mCloudUpdater2->setOpacity(0.f); mCloudMesh2->addUpdateCallback(mCloudUpdater2); mCloudMesh2->setNodeMask(0); osg::ref_ptr depth = new osg::Depth; depth->setWriteMask(false); mEarlyRenderBinRoot->getOrCreateStateSet()->setAttributeAndModes(depth, osg::StateAttribute::ON); mEarlyRenderBinRoot->getOrCreateStateSet()->setMode(GL_BLEND, osg::StateAttribute::ON); mEarlyRenderBinRoot->getOrCreateStateSet()->setMode(GL_FOG, osg::StateAttribute::OFF); mMoonScriptColor = fallback->getFallbackColour("Moons_Script_Color"); mCreated = true; } class RainCounter : public osgParticle::ConstantRateCounter { public: virtual int numParticlesToCreate(double dt) const { // limit dt to avoid large particle emissions if there are jumps in the simulation time // 0.2 seconds is the same cap as used in Engine's frame loop dt = std::min(dt, 0.2); return ConstantRateCounter::numParticlesToCreate(dt); } }; class RainShooter : public osgParticle::Shooter { public: RainShooter() : mAngle(0.f) { } virtual void shoot(osgParticle::Particle* particle) const { particle->setVelocity(mVelocity); particle->setAngle(osg::Vec3f(-mAngle, 0, (Misc::Rng::rollProbability() * 2 - 1) * osg::PI)); } void setVelocity(const osg::Vec3f& velocity) { mVelocity = velocity; } void setAngle(float angle) { mAngle = angle; } virtual osg::Object* cloneType() const { return new RainShooter; } virtual osg::Object* clone(const osg::CopyOp &) const { return new RainShooter(*this); } private: osg::Vec3f mVelocity; float mAngle; }; // Updater for alpha value on a node's StateSet. Assumes the node has an existing Material StateAttribute. class AlphaFader : public SceneUtil::StateSetUpdater { public: /// @param alphaUpdate variable which to update with alpha value AlphaFader(float *alphaUpdate) : mAlpha(1.f) { mAlphaUpdate = alphaUpdate; } void setAlpha(float alpha) { mAlpha = alpha; } virtual void setDefaults(osg::StateSet* stateset) { // need to create a deep copy of StateAttributes we will modify osg::Material* mat = static_cast(stateset->getAttribute(osg::StateAttribute::MATERIAL)); stateset->setAttribute(osg::clone(mat, osg::CopyOp::DEEP_COPY_ALL), osg::StateAttribute::ON); } virtual void apply(osg::StateSet* stateset, osg::NodeVisitor* nv) { osg::Material* mat = static_cast(stateset->getAttribute(osg::StateAttribute::MATERIAL)); mat->setDiffuse(osg::Material::FRONT_AND_BACK, osg::Vec4f(0,0,0,mAlpha)); if (mAlphaUpdate) *mAlphaUpdate = mAlpha; } // Helper for adding AlphaFaders to a subgraph class SetupVisitor : public osg::NodeVisitor { public: SetupVisitor(float *alphaUpdate) : osg::NodeVisitor(TRAVERSE_ALL_CHILDREN) { mAlphaUpdate = alphaUpdate; } virtual void apply(osg::Node &node) { if (osg::StateSet* stateset = node.getStateSet()) { if (stateset->getAttribute(osg::StateAttribute::MATERIAL)) { SceneUtil::CompositeStateSetUpdater* composite = NULL; osg::Callback* callback = node.getUpdateCallback(); while (callback) { if ((composite = dynamic_cast(callback))) break; callback = callback->getNestedCallback(); } osg::ref_ptr alphaFader (new AlphaFader(mAlphaUpdate)); if (composite) composite->addController(alphaFader); else node.addUpdateCallback(alphaFader); mAlphaFaders.push_back(alphaFader); } } traverse(node); } std::vector > getAlphaFaders() { return mAlphaFaders; } private: std::vector > mAlphaFaders; float *mAlphaUpdate; }; protected: float mAlpha; float *mAlphaUpdate; }; class RainFader : public AlphaFader { public: RainFader(float *alphaUpdate): AlphaFader(alphaUpdate) { } virtual void setDefaults(osg::StateSet* stateset) { osg::ref_ptr mat (new osg::Material); mat->setEmission(osg::Material::FRONT_AND_BACK, osg::Vec4f(1,1,1,1)); mat->setAmbient(osg::Material::FRONT_AND_BACK, osg::Vec4f(0,0,0,1)); mat->setColorMode(osg::Material::OFF); stateset->setAttributeAndModes(mat, osg::StateAttribute::ON); } virtual void apply(osg::StateSet *stateset, osg::NodeVisitor *nv) { AlphaFader::apply(stateset,nv); *mAlphaUpdate = mAlpha * 2.0; // mAlpha is limited to 0.6 so multiply by 2 to reach full intensity } }; void SkyManager::setCamera(osg::Camera *camera) { mCamera = camera; } class WrapAroundOperator : public osgParticle::Operator { public: WrapAroundOperator(osg::Camera *camera, const osg::Vec3 &wrapRange): osgParticle::Operator() { mCamera = camera; mWrapRange = wrapRange; mHalfWrapRange = mWrapRange / 2.0; mPreviousCameraPosition = getCameraPosition(); } virtual osg::Object *cloneType() const override { return NULL; } virtual osg::Object *clone(const osg::CopyOp &op) const override { return NULL; } virtual void operate(osgParticle::Particle *P, double dt) override { } virtual void operateParticles(osgParticle::ParticleSystem *ps, double dt) override { osg::Vec3 position = getCameraPosition(); osg::Vec3 positionDifference = position - mPreviousCameraPosition; osg::Matrix toWorld, toLocal; std::vector worldMatrices = ps->getWorldMatrices(); if (!worldMatrices.empty()) { toWorld = worldMatrices[0]; toLocal.invert(toWorld); } for (int i = 0; i < ps->numParticles(); ++i) { osgParticle::Particle *p = ps->getParticle(i); p->setPosition(toWorld.preMult(p->getPosition())); p->setPosition(p->getPosition() - positionDifference); for (int j = 0; j < 3; ++j) // wrap-around in all 3 dimensions { osg::Vec3 pos = p->getPosition(); if (pos[j] < -mHalfWrapRange[j]) pos[j] = mHalfWrapRange[j] + fmod(pos[j] - mHalfWrapRange[j],mWrapRange[j]); else if (pos[j] > mHalfWrapRange[j]) pos[j] = fmod(pos[j] + mHalfWrapRange[j],mWrapRange[j]) - mHalfWrapRange[j]; p->setPosition(pos); } p->setPosition(toLocal.preMult(p->getPosition())); } mPreviousCameraPosition = position; } protected: osg::Camera *mCamera; osg::Vec3 mPreviousCameraPosition; osg::Vec3 mWrapRange; osg::Vec3 mHalfWrapRange; osg::Vec3 getCameraPosition() { return mCamera->getInverseViewMatrix().getTrans(); } }; void SkyManager::createRain() { if (mRainNode) return; mRainNode = new osg::Group; mRainParticleSystem = new osgParticle::ParticleSystem; osg::Vec3 rainRange = osg::Vec3(600,600,600); mRainParticleSystem->setParticleAlignment(osgParticle::ParticleSystem::FIXED); mRainParticleSystem->setAlignVectorX(osg::Vec3f(0.1,0,0)); mRainParticleSystem->setAlignVectorY(osg::Vec3f(0,0,1)); osg::ref_ptr stateset (mRainParticleSystem->getOrCreateStateSet()); osg::ref_ptr raindropTex (new osg::Texture2D(mSceneManager->getImageManager()->getImage("textures/tx_raindrop_01.dds"))); raindropTex->setWrap(osg::Texture::WRAP_S, osg::Texture::CLAMP_TO_EDGE); raindropTex->setWrap(osg::Texture::WRAP_T, osg::Texture::CLAMP_TO_EDGE); stateset->setTextureAttributeAndModes(0, raindropTex, osg::StateAttribute::ON); stateset->setNestRenderBins(false); stateset->setRenderingHint(osg::StateSet::TRANSPARENT_BIN); stateset->setMode(GL_CULL_FACE, osg::StateAttribute::OFF); stateset->setMode(GL_BLEND, osg::StateAttribute::ON); osgParticle::Particle& particleTemplate = mRainParticleSystem->getDefaultParticleTemplate(); particleTemplate.setSizeRange(osgParticle::rangef(5.f, 15.f)); particleTemplate.setAlphaRange(osgParticle::rangef(1.f, 1.f)); particleTemplate.setLifeTime(1); osg::ref_ptr emitter (new osgParticle::ModularEmitter); emitter->setParticleSystem(mRainParticleSystem); osg::ref_ptr placer (new osgParticle::BoxPlacer); placer->setXRange(-rainRange.x() / 2, rainRange.x() / 2); // Rain_Diameter placer->setYRange(-rainRange.y() / 2, rainRange.y() / 2); placer->setZRange(300, 300); emitter->setPlacer(placer); osg::ref_ptr counter (new RainCounter); counter->setNumberOfParticlesPerSecondToCreate(600.0); emitter->setCounter(counter); osg::ref_ptr shooter (new RainShooter); mRainShooter = shooter; emitter->setShooter(shooter); osg::ref_ptr updater (new osgParticle::ParticleSystemUpdater); updater->addParticleSystem(mRainParticleSystem); osg::ref_ptr program (new osgParticle::ModularProgram); program->addOperator(new WrapAroundOperator(mCamera,rainRange)); program->setParticleSystem(mRainParticleSystem); mRainNode->addChild(program); mRainNode->addChild(emitter); mRainNode->addChild(mRainParticleSystem); mRainNode->addChild(updater); mRainFader = new RainFader(&mWeatherAlpha); mRainNode->addUpdateCallback(mRainFader); mRainNode->addCullCallback(mUnderwaterSwitch); mRainNode->setNodeMask(Mask_WeatherParticles); mRootNode->addChild(mRainNode); } void SkyManager::destroyRain() { if (!mRainNode) return; mRootNode->removeChild(mRainNode); mRainNode = NULL; mRainParticleSystem = NULL; mRainShooter = NULL; mRainFader = NULL; } SkyManager::~SkyManager() { if (mRootNode) { mRootNode->getParent(0)->removeChild(mRootNode); mRootNode = NULL; } } int SkyManager::getMasserPhase() const { if (!mCreated) return 0; return mMasser->getPhaseInt(); } int SkyManager::getSecundaPhase() const { if (!mCreated) return 0; return mSecunda->getPhaseInt(); } bool SkyManager::isEnabled() { return mEnabled; } bool SkyManager::hasRain() { return mRainNode != NULL; } void SkyManager::update(float duration) { if (!mEnabled) { if (mRainIntensityUniform) mRainIntensityUniform->set((float) 0.0); return; } if (mRainIntensityUniform) { if (mIsStorm || (!hasRain() && !mParticleNode)) mRainIntensityUniform->set((float) 0.0); else mRainIntensityUniform->set((float) mWeatherAlpha); } if (mIsStorm) { osg::Quat quat; quat.makeRotate(osg::Vec3f(0,1,0), mStormDirection); if (mParticleNode) mParticleNode->setAttitude(quat); mCloudNode->setAttitude(quat); } else mCloudNode->setAttitude(osg::Quat()); // UV Scroll the clouds mCloudAnimationTimer += duration * mCloudSpeed * 0.003; mCloudUpdater->setAnimationTimer(mCloudAnimationTimer); mCloudUpdater2->setAnimationTimer(mCloudAnimationTimer); // rotate the stars by 360 degrees every 4 days mAtmosphereNightRoll += MWBase::Environment::get().getWorld()->getTimeScaleFactor()*duration*osg::DegreesToRadians(360.f) / (3600*96.f); if (mAtmosphereNightNode->getNodeMask() != 0) mAtmosphereNightNode->setAttitude(osg::Quat(mAtmosphereNightRoll, osg::Vec3f(0,0,1))); } void SkyManager::setEnabled(bool enabled) { if (enabled && !mCreated) create(); mRootNode->setNodeMask(enabled ? Mask_Sky : 0); mEnabled = enabled; } void SkyManager::setMoonColour (bool red) { if (!mCreated) return; mSecunda->setColor(red ? mMoonScriptColor : osg::Vec4f(1,1,1,1)); } void SkyManager::updateRainParameters() { if (mRainShooter) { float windFactor = mWindSpeed/3.f; float angle = windFactor * osg::PI/4; mRainShooter->setVelocity(osg::Vec3f(0, mRainSpeed * windFactor, -mRainSpeed)); mRainShooter->setAngle(angle); } } void SkyManager::setWeather(const WeatherResult& weather) { if (!mCreated) return; if (mRainEffect != weather.mRainEffect) { mRainEffect = weather.mRainEffect; if (!mRainEffect.empty()) { createRain(); } else { destroyRain(); } } mRainFrequency = weather.mRainFrequency; mRainSpeed = weather.mRainSpeed; mWindSpeed = weather.mWindSpeed; updateRainParameters(); mIsStorm = weather.mIsStorm; if (mCurrentParticleEffect != weather.mParticleEffect) { mCurrentParticleEffect = weather.mParticleEffect; // cleanup old particles if (mParticleEffect) { mParticleNode->removeChild(mParticleEffect); mParticleEffect = NULL; mParticleFaders.clear(); } if (mCurrentParticleEffect.empty()) { if (mParticleNode) { mRootNode->removeChild(mParticleNode); mParticleNode = NULL; } } else { if (!mParticleNode) { mParticleNode = new osg::PositionAttitudeTransform; mParticleNode->addCullCallback(mUnderwaterSwitch); mParticleNode->setNodeMask(Mask_WeatherParticles); mRootNode->addChild(mParticleNode); } mParticleEffect = mSceneManager->getInstance(mCurrentParticleEffect, mParticleNode); SceneUtil::AssignControllerSourcesVisitor assignVisitor(std::shared_ptr(new SceneUtil::FrameTimeSource)); mParticleEffect->accept(assignVisitor); AlphaFader::SetupVisitor alphaFaderSetupVisitor(&mWeatherAlpha); mParticleEffect->accept(alphaFaderSetupVisitor); mParticleFaders = alphaFaderSetupVisitor.getAlphaFaders(); SceneUtil::DisableFreezeOnCullVisitor disableFreezeOnCullVisitor; mParticleEffect->accept(disableFreezeOnCullVisitor); if (!weather.mIsStorm) { SceneUtil::FindByClassVisitor findPSVisitor(std::string("ParticleSystem")); mParticleEffect->accept(findPSVisitor); for (unsigned int i = 0; i < findPSVisitor.mFoundNodes.size(); ++i) { osgParticle::ParticleSystem *ps = static_cast(findPSVisitor.mFoundNodes[i]); osg::ref_ptr program (new osgParticle::ModularProgram); program->addOperator(new WrapAroundOperator(mCamera,osg::Vec3(1024,1024,800))); program->setParticleSystem(ps); mParticleNode->addChild(program); } } } } if (mClouds != weather.mCloudTexture) { mClouds = weather.mCloudTexture; std::string texture = Misc::ResourceHelpers::correctTexturePath(mClouds, mSceneManager->getVFS()); osg::ref_ptr cloudTex (new osg::Texture2D(mSceneManager->getImageManager()->getImage(texture))); cloudTex->setWrap(osg::Texture::WRAP_S, osg::Texture::REPEAT); cloudTex->setWrap(osg::Texture::WRAP_T, osg::Texture::REPEAT); mCloudUpdater->setTexture(cloudTex); } if (mNextClouds != weather.mNextCloudTexture) { mNextClouds = weather.mNextCloudTexture; if (!mNextClouds.empty()) { std::string texture = Misc::ResourceHelpers::correctTexturePath(mNextClouds, mSceneManager->getVFS()); osg::ref_ptr cloudTex (new osg::Texture2D(mSceneManager->getImageManager()->getImage(texture))); cloudTex->setWrap(osg::Texture::WRAP_S, osg::Texture::REPEAT); cloudTex->setWrap(osg::Texture::WRAP_T, osg::Texture::REPEAT); mCloudUpdater2->setTexture(cloudTex); } } if (mCloudBlendFactor != weather.mCloudBlendFactor) { mCloudBlendFactor = weather.mCloudBlendFactor; mCloudUpdater->setOpacity((1.f-mCloudBlendFactor)); mCloudUpdater2->setOpacity(mCloudBlendFactor); mCloudMesh2->setNodeMask(mCloudBlendFactor > 0.f ? ~0 : 0); } if (mCloudColour != weather.mFogColor) { osg::Vec4f clr (weather.mFogColor); clr += osg::Vec4f(0.13f, 0.13f, 0.13f, 0.f); mCloudUpdater->setEmissionColor(clr); mCloudUpdater2->setEmissionColor(clr); mCloudColour = weather.mFogColor; } if (mSkyColour != weather.mSkyColor) { mSkyColour = weather.mSkyColor; mAtmosphereUpdater->setEmissionColor(mSkyColour); mMasser->setAtmosphereColor(mSkyColour); mSecunda->setAtmosphereColor(mSkyColour); } if (mFogColour != weather.mFogColor) { mFogColour = weather.mFogColor; } mCloudSpeed = weather.mCloudSpeed; mMasser->adjustTransparency(weather.mGlareView); mSecunda->adjustTransparency(weather.mGlareView); mSun->setColor(weather.mSunDiscColor); mSun->adjustTransparency(weather.mGlareView * weather.mSunDiscColor.a()); float nextStarsOpacity = weather.mNightFade * weather.mGlareView; if (weather.mNight && mStarsOpacity != nextStarsOpacity) { mStarsOpacity = nextStarsOpacity; mAtmosphereNightUpdater->setFade(mStarsOpacity); } mAtmosphereNightNode->setNodeMask(weather.mNight ? ~0 : 0); if (mRainFader) mRainFader->setAlpha(weather.mEffectFade * 0.6); // * Rain_Threshold? for (std::vector >::const_iterator it = mParticleFaders.begin(); it != mParticleFaders.end(); ++it) (*it)->setAlpha(weather.mEffectFade); } void SkyManager::sunEnable() { if (!mCreated) return; mSun->setVisible(true); } void SkyManager::sunDisable() { if (!mCreated) return; mSun->setVisible(false); } void SkyManager::setStormDirection(const osg::Vec3f &direction) { mStormDirection = direction; } void SkyManager::setSunDirection(const osg::Vec3f& direction) { if (!mCreated) return; mSun->setDirection(direction); } void SkyManager::setMasserState(const MoonState& state) { if(!mCreated) return; mMasser->setState(state); } void SkyManager::setSecundaState(const MoonState& state) { if(!mCreated) return; mSecunda->setState(state); } void SkyManager::setDate(int day, int month) { mDay = day; mMonth = month; } void SkyManager::setGlareTimeOfDayFade(float val) { mSun->setGlareTimeOfDayFade(val); } void SkyManager::setWaterHeight(float height) { mUnderwaterSwitch->setWaterLevel(height); } void SkyManager::listAssetsToPreload(std::vector& models, std::vector& textures) { models.push_back("meshes/sky_atmosphere.nif"); if (mSceneManager->getVFS()->exists("meshes/sky_night_02.nif")) models.push_back("meshes/sky_night_02.nif"); models.push_back("meshes/sky_night_01.nif"); models.push_back("meshes/sky_clouds_01.nif"); models.push_back("meshes\\ashcloud.nif"); models.push_back("meshes\\blightcloud.nif"); models.push_back("meshes\\snow.nif"); models.push_back("meshes\\blizzard.nif"); textures.push_back("textures/tx_mooncircle_full_s.dds"); textures.push_back("textures/tx_mooncircle_full_m.dds"); textures.push_back("textures/tx_masser_new.dds"); textures.push_back("textures/tx_masser_one_wax.dds"); textures.push_back("textures/tx_masser_half_wax.dds"); textures.push_back("textures/tx_masser_three_wax.dds"); textures.push_back("textures/tx_masser_one_wan.dds"); textures.push_back("textures/tx_masser_half_wan.dds"); textures.push_back("textures/tx_masser_three_wan.dds"); textures.push_back("textures/tx_masser_full.dds"); textures.push_back("textures/tx_secunda_new.dds"); textures.push_back("textures/tx_secunda_one_wax.dds"); textures.push_back("textures/tx_secunda_half_wax.dds"); textures.push_back("textures/tx_secunda_three_wax.dds"); textures.push_back("textures/tx_secunda_one_wan.dds"); textures.push_back("textures/tx_secunda_half_wan.dds"); textures.push_back("textures/tx_secunda_three_wan.dds"); textures.push_back("textures/tx_secunda_full.dds"); textures.push_back("textures/tx_sun_05.dds"); textures.push_back("textures/tx_sun_flash_grey_05.dds"); textures.push_back("textures/tx_raindrop_01.dds"); } void SkyManager::setWaterEnabled(bool enabled) { mUnderwaterSwitch->setEnabled(enabled); } }