openmw-tes3coop/libs/openengine/bullet/physic.cpp
2012-09-03 20:32:20 -04:00

566 lines
18 KiB
C++

#include "physic.hpp"
#include <btBulletDynamicsCommon.h>
#include <btBulletCollisionCommon.h>
#include <BulletCollision/CollisionShapes/btHeightfieldTerrainShape.h>
#include <components/nifbullet/bullet_nif_loader.hpp>
#include "CMotionState.h"
#include "OgreRoot.h"
#include "btKinematicCharacterController.h"
#include "BtOgrePG.h"
#include "BtOgreGP.h"
#include "BtOgreExtras.h"
#include <boost/lexical_cast.hpp>
#include <boost/format.hpp>
#define BIT(x) (1<<(x))
namespace OEngine {
namespace Physic
{
enum collisiontypes {
COL_NOTHING = 0, //<Collide with nothing
COL_WORLD = BIT(0), //<Collide with world objects
COL_ACTOR_INTERNAL = BIT(1), //<Collide internal capsule
COL_ACTOR_EXTERNAL = BIT(2), //<collide with external capsule
COL_RAYCASTING = BIT(3)
};
PhysicActor::PhysicActor(std::string name, std::string mesh, PhysicEngine* engine, Ogre::Vector3 position, Ogre::Quaternion rotation, float scale):
mName(name), mEngine(engine), mMesh(mesh), mBoxTranslation(Ogre::Vector3::ZERO), mBoxRotation(Ogre::Quaternion::ZERO), mBody(0)
{
// The capsule is at the origin
btTransform transform;
transform.setIdentity();
}
PhysicActor::~PhysicActor()
{
if(mBody){
mEngine->dynamicsWorld->removeRigidBody(mBody);
delete mBody;
}
}
void PhysicActor::setGravity(float gravity)
{
}
void PhysicActor::enableCollisions(bool collision)
{
}
void PhysicActor::setVerticalVelocity(float z)
{
}
bool PhysicActor::getCollisionMode()
{
return false;
}
void PhysicActor::setWalkDirection(const btVector3& mvt)
{
}
void PhysicActor::setRotation(const btQuaternion& quat)
{
//externalGhostObject->getWorldTransform().setRotation( quat );
//internalGhostObject->getWorldTransform().setRotation( quat );
}
btVector3 PhysicActor::getPosition(void)
{
return btVector3(0,0,0);//return internalGhostObject->getWorldTransform().getOrigin() -mTranslation;
}
btQuaternion PhysicActor::getRotation(void)
{
return btQuaternion(0,0,0);//return btQuaternion::internalGhostObject->getWorldTransform().getRotation();
}
void PhysicActor::setPosition(const btVector3& pos)
{
//internalGhostObject->getWorldTransform().setOrigin(pos+mTranslation);
//externalGhostObject->getWorldTransform().setOrigin(pos+mTranslation);
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
RigidBody::RigidBody(btRigidBody::btRigidBodyConstructionInfo& CI,std::string name)
: btRigidBody(CI)
, mName(name)
{
}
RigidBody::~RigidBody()
{
delete getMotionState();
}
///////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////
PhysicEngine::PhysicEngine(BulletShapeLoader* shapeLoader) :
mDebugActive(0)
{
// Set up the collision configuration and dispatcher
collisionConfiguration = new btDefaultCollisionConfiguration();
dispatcher = new btCollisionDispatcher(collisionConfiguration);
// The actual physics solver
solver = new btSequentialImpulseConstraintSolver;
//btOverlappingPairCache* pairCache = new btSortedOverlappingPairCache();
pairCache = new btSortedOverlappingPairCache();
//pairCache->setInternalGhostPairCallback( new btGhostPairCallback() );
broadphase = new btDbvtBroadphase();
// The world.
dynamicsWorld = new btDiscreteDynamicsWorld(dispatcher,broadphase,solver,collisionConfiguration);
dynamicsWorld->setGravity(btVector3(0,0,-10));
if(BulletShapeManager::getSingletonPtr() == NULL)
{
new BulletShapeManager();
}
//TODO:singleton?
mShapeLoader = shapeLoader;
isDebugCreated = false;
mDebugDrawer = NULL;
}
void PhysicEngine::createDebugRendering()
{
if(!isDebugCreated)
{
Ogre::SceneManagerEnumerator::SceneManagerIterator iter = Ogre::Root::getSingleton().getSceneManagerIterator();
iter.begin();
Ogre::SceneManager* scn = iter.getNext();
Ogre::SceneNode* node = scn->getRootSceneNode()->createChildSceneNode();
node->pitch(Ogre::Degree(-90));
mDebugDrawer = new BtOgre::DebugDrawer(node, dynamicsWorld);
dynamicsWorld->setDebugDrawer(mDebugDrawer);
isDebugCreated = true;
dynamicsWorld->debugDrawWorld();
}
}
void PhysicEngine::setDebugRenderingMode(int mode)
{
if(!isDebugCreated)
{
createDebugRendering();
}
mDebugDrawer->setDebugMode(mode);
mDebugActive = mode;
}
bool PhysicEngine::toggleDebugRendering()
{
setDebugRenderingMode(!mDebugActive);
return mDebugActive;
}
PhysicEngine::~PhysicEngine()
{
HeightFieldContainer::iterator hf_it = mHeightFieldMap.begin();
for (; hf_it != mHeightFieldMap.end(); ++hf_it)
{
dynamicsWorld->removeRigidBody(hf_it->second.mBody);
delete hf_it->second.mShape;
delete hf_it->second.mBody;
}
RigidBodyContainer::iterator rb_it = RigidBodyMap.begin();
for (; rb_it != RigidBodyMap.end(); ++rb_it)
{
if (rb_it->second != NULL)
{
dynamicsWorld->removeRigidBody(rb_it->second);
delete rb_it->second;
rb_it->second = NULL;
}
}
PhysicActorContainer::iterator pa_it = PhysicActorMap.begin();
for (; pa_it != PhysicActorMap.end(); ++pa_it)
{
if (pa_it->second != NULL)
{
delete pa_it->second;
pa_it->second = NULL;
}
}
delete mDebugDrawer;
delete dynamicsWorld;
delete solver;
delete collisionConfiguration;
delete dispatcher;
delete broadphase;
delete pairCache;
delete mShapeLoader;
}
void PhysicEngine::addHeightField(float* heights,
int x, int y, float yoffset,
float triSize, float sqrtVerts)
{
const std::string name = "HeightField_"
+ boost::lexical_cast<std::string>(x) + "_"
+ boost::lexical_cast<std::string>(y);
// find the minimum and maximum heights (needed for bullet)
float minh;
float maxh;
for (int i=0; i<sqrtVerts*sqrtVerts; ++i)
{
float h = heights[i];
if (i==0)
{
minh = h;
maxh = h;
}
if (h>maxh) maxh = h;
if (h<minh) minh = h;
}
btHeightfieldTerrainShape* hfShape = new btHeightfieldTerrainShape(
sqrtVerts, sqrtVerts, heights, 1,
minh, maxh, 2,
PHY_FLOAT,true);
hfShape->setUseDiamondSubdivision(true);
btVector3 scl(triSize, triSize, 1);
hfShape->setLocalScaling(scl);
CMotionState* newMotionState = new CMotionState(this,name);
btRigidBody::btRigidBodyConstructionInfo CI = btRigidBody::btRigidBodyConstructionInfo(0,newMotionState,hfShape);
RigidBody* body = new RigidBody(CI,name);
body->collide = true;
body->getWorldTransform().setOrigin(btVector3( (x+0.5)*triSize*(sqrtVerts-1), (y+0.5)*triSize*(sqrtVerts-1), (maxh+minh)/2.f));
HeightField hf;
hf.mBody = body;
hf.mShape = hfShape;
mHeightFieldMap [name] = hf;
dynamicsWorld->addRigidBody(body,COL_WORLD,COL_WORLD|COL_ACTOR_INTERNAL|COL_ACTOR_EXTERNAL);
}
void PhysicEngine::removeHeightField(int x, int y)
{
const std::string name = "HeightField_"
+ boost::lexical_cast<std::string>(x) + "_"
+ boost::lexical_cast<std::string>(y);
HeightField hf = mHeightFieldMap [name];
dynamicsWorld->removeRigidBody(hf.mBody);
delete hf.mShape;
delete hf.mBody;
mHeightFieldMap.erase(name);
}
void PhysicEngine::adjustRigidBody(BulletShapePtr shape, RigidBody* body, float scale, Ogre::Vector3 position, Ogre::Quaternion rotation){
btTransform tr;
btBoxShape* box = dynamic_cast<btBoxShape*>(body->getCollisionShape());
if(box != NULL){
Ogre::Vector3 transrot = rotation * shape->boxRotation * (shape->boxTranslation * scale);
Ogre::Vector3 newPosition = transrot + position;
tr.setOrigin(btVector3(newPosition.x, newPosition.y, newPosition.z));
rotation = rotation * shape->boxRotation;
}
else
tr.setOrigin(btVector3(position.x,position.y,position.z));
tr.setRotation(btQuaternion(rotation.x,rotation.y,rotation.z,rotation.w));
body->setWorldTransform(tr);
}
void PhysicEngine::boxAdjustExternal(std::string mesh, RigidBody* body, float scale, Ogre::Vector3 position, Ogre::Quaternion rotation){
std::string sid = (boost::format("%07.3f") % scale).str();
std::string outputstring = mesh + sid;
//std::cout << "The string" << outputstring << "\n";
//get the shape from the .nif
mShapeLoader->load(outputstring,"General");
BulletShapeManager::getSingletonPtr()->load(outputstring,"General");
BulletShapePtr shape = BulletShapeManager::getSingleton().getByName(outputstring,"General");
adjustRigidBody(shape, body, scale, position, rotation);
}
RigidBody* PhysicEngine::createAndAdjustRigidBody(std::string mesh,std::string name,float scale, Ogre::Vector3 position, Ogre::Quaternion rotation)
{
std::string sid = (boost::format("%07.3f") % scale).str();
std::string outputstring = mesh + sid;
//std::cout << "The string" << outputstring << "\n";
//get the shape from the .nif
mShapeLoader->load(outputstring,"General");
BulletShapeManager::getSingletonPtr()->load(outputstring,"General");
BulletShapePtr shape = BulletShapeManager::getSingleton().getByName(outputstring,"General");
shape->Shape->setLocalScaling( btVector3(scale,scale,scale));
//
//create the motionState
CMotionState* newMotionState = new CMotionState(this,name);
//create the real body
btRigidBody::btRigidBodyConstructionInfo CI = btRigidBody::btRigidBodyConstructionInfo(0,newMotionState,shape->Shape);
RigidBody* body = new RigidBody(CI,name);
body->collide = shape->collide;
//Pass in BulletShape, RigidBody, scale, position, rotation
adjustRigidBody(shape, body, scale, position, rotation);
return body;
}
void PhysicEngine::addRigidBody(RigidBody* body)
{
if(body)
{
if(body->collide)
{
dynamicsWorld->addRigidBody(body,COL_WORLD,COL_WORLD|COL_ACTOR_INTERNAL|COL_ACTOR_EXTERNAL);
}
else
{
dynamicsWorld->addRigidBody(body,COL_RAYCASTING,COL_RAYCASTING|COL_WORLD);
}
body->setActivationState(DISABLE_DEACTIVATION);
RigidBody* oldBody = RigidBodyMap[body->mName];
if (oldBody != NULL)
{
dynamicsWorld->removeRigidBody(oldBody);
delete oldBody;
}
RigidBodyMap[body->mName] = body;
}
}
void PhysicEngine::removeRigidBody(std::string name)
{
RigidBodyContainer::iterator it = RigidBodyMap.find(name);
if (it != RigidBodyMap.end() )
{
RigidBody* body = it->second;
if(body != NULL)
{
// broadphase->getOverlappingPairCache()->removeOverlappingPairsContainingProxy(body->getBroadphaseProxy(),dispatcher);
/*PhysicActorContainer::iterator it2 = PhysicActorMap.begin();
for(;it2!=PhysicActorMap.end();it++)
{
it2->second->internalGhostObject->getOverlappingPairCache()->removeOverlappingPairsContainingProxy(body->getBroadphaseProxy(),dispatcher);
it2->second->externalGhostObject->getOverlappingPairCache()->removeOverlappingPairsContainingProxy(body->getBroadphaseProxy(),dispatcher);
}*/
dynamicsWorld->removeRigidBody(body);
}
}
}
void PhysicEngine::deleteRigidBody(std::string name)
{
RigidBodyContainer::iterator it = RigidBodyMap.find(name);
if (it != RigidBodyMap.end() )
{
RigidBody* body = it->second;
//btScaledBvhTriangleMeshShape* scaled = dynamic_cast<btScaledBvhTriangleMeshShape*> (body->getCollisionShape());
if(body != NULL)
{
delete body;
}
/*if(scaled != NULL)
{
delete scaled;
}*/
RigidBodyMap.erase(it);
}
}
RigidBody* PhysicEngine::getRigidBody(std::string name)
{
RigidBodyContainer::iterator it = RigidBodyMap.find(name);
if (it != RigidBodyMap.end() )
{
RigidBody* body = RigidBodyMap[name];
return body;
}
else
{
return 0;
}
}
void PhysicEngine::stepSimulation(double deltaT)
{
dynamicsWorld->stepSimulation(deltaT,10, 1/60.0);
if(isDebugCreated)
{
mDebugDrawer->step();
}
}
void PhysicEngine::addCharacter(std::string name, std::string mesh,
Ogre::Vector3 position, float scale, Ogre::Quaternion rotation)
{
// Remove character with given name, so we don't make memory
// leak when character would be added twice
removeCharacter(name);
PhysicActor* newActor = new PhysicActor(name, mesh, this, position, rotation, scale);
//dynamicsWorld->addAction( newActor->mCharacter );
PhysicActorMap[name] = newActor;
}
void PhysicEngine::removeCharacter(std::string name)
{
//std::cout << "remove";
PhysicActorContainer::iterator it = PhysicActorMap.find(name);
if (it != PhysicActorMap.end() )
{
PhysicActor* act = it->second;
if(act != NULL)
{
delete act;
}
PhysicActorMap.erase(it);
}
//std::cout << "ok";
}
PhysicActor* PhysicEngine::getCharacter(std::string name)
{
PhysicActorContainer::iterator it = PhysicActorMap.find(name);
if (it != PhysicActorMap.end() )
{
PhysicActor* act = PhysicActorMap[name];
return act;
}
else
{
return 0;
}
}
void PhysicEngine::emptyEventLists(void)
{
}
std::pair<std::string,float> PhysicEngine::rayTest(btVector3& from,btVector3& to)
{
std::string name = "";
float d = -1;
float d1 = 10000.;
btCollisionWorld::ClosestRayResultCallback resultCallback1(from, to);
resultCallback1.m_collisionFilterMask = COL_WORLD|COL_RAYCASTING;
dynamicsWorld->rayTest(from, to, resultCallback1);
if (resultCallback1.hasHit())
{
name = static_cast<const RigidBody&>(*resultCallback1.m_collisionObject).mName;
d1 = resultCallback1.m_closestHitFraction;
d = d1;
}
btCollisionWorld::ClosestRayResultCallback resultCallback2(from, to);
resultCallback2.m_collisionFilterMask = COL_ACTOR_INTERNAL|COL_ACTOR_EXTERNAL;
dynamicsWorld->rayTest(from, to, resultCallback2);
float d2 = 10000.;
if (resultCallback2.hasHit())
{
d2 = resultCallback1.m_closestHitFraction;
if(d2<=d1)
{
name = static_cast<const PairCachingGhostObject&>(*resultCallback2.m_collisionObject).mName;
d = d2;
}
}
return std::pair<std::string,float>(name,d);
}
std::vector< std::pair<float, std::string> > PhysicEngine::rayTest2(btVector3& from, btVector3& to)
{
MyRayResultCallback resultCallback1;
resultCallback1.m_collisionFilterMask = COL_WORLD|COL_RAYCASTING;
dynamicsWorld->rayTest(from, to, resultCallback1);
std::vector< std::pair<float, const btCollisionObject*> > results = resultCallback1.results;
MyRayResultCallback resultCallback2;
resultCallback2.m_collisionFilterMask = COL_ACTOR_INTERNAL|COL_ACTOR_EXTERNAL;
dynamicsWorld->rayTest(from, to, resultCallback2);
std::vector< std::pair<float, const btCollisionObject*> > actorResults = resultCallback2.results;
std::vector< std::pair<float, std::string> > results2;
for (std::vector< std::pair<float, const btCollisionObject*> >::iterator it=results.begin();
it != results.end(); ++it)
{
results2.push_back( std::make_pair( (*it).first, static_cast<const RigidBody&>(*(*it).second).mName ) );
}
for (std::vector< std::pair<float, const btCollisionObject*> >::iterator it=actorResults.begin();
it != actorResults.end(); ++it)
{
results2.push_back( std::make_pair( (*it).first, static_cast<const PairCachingGhostObject&>(*(*it).second).mName ) );
}
std::sort(results2.begin(), results2.end(), MyRayResultCallback::cmp);
return results2;
}
void PhysicEngine::getObjectAABB(const std::string &mesh, float scale, btVector3 &min, btVector3 &max)
{
std::string sid = (boost::format("%07.3f") % scale).str();
std::string outputstring = mesh + sid;
mShapeLoader->load(outputstring, "General");
BulletShapeManager::getSingletonPtr()->load(outputstring, "General");
BulletShapePtr shape =
BulletShapeManager::getSingleton().getByName(outputstring, "General");
btTransform trans;
trans.setIdentity();
shape->Shape->getAabb(trans, min, max);
}
}};