forked from mirror/openmw-tes3mp
You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
944 lines
30 KiB
C++
944 lines
30 KiB
C++
/*
|
|
OpenMW - The completely unofficial reimplementation of Morrowind
|
|
Copyright (C) 2008-2010 Nicolay Korslund
|
|
Email: < korslund@gmail.com >
|
|
WWW: http://openmw.sourceforge.net/
|
|
|
|
This file (ogre_nif_loader.cpp) is part of the OpenMW package.
|
|
|
|
OpenMW is distributed as free software: you can redistribute it
|
|
and/or modify it under the terms of the GNU General Public License
|
|
version 3, as published by the Free Software Foundation.
|
|
|
|
This program is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
version 3 along with this program. If not, see
|
|
http://www.gnu.org/licenses/ .
|
|
|
|
*/
|
|
|
|
#include "ogre_nif_loader.hpp"
|
|
#include <Ogre.h>
|
|
#include <stdio.h>
|
|
|
|
#include <libs/mangle/vfs/servers/ogre_vfs.hpp>
|
|
#include "../nif/nif_file.hpp"
|
|
#include "../nif/node.hpp"
|
|
#include "../nif/data.hpp"
|
|
#include "../nif/property.hpp"
|
|
#include "../nif/controller.hpp"
|
|
#include "../nif/extra.hpp"
|
|
#include <libs/platform/strings.h>
|
|
|
|
#include <vector>
|
|
#include <list>
|
|
// For warning messages
|
|
#include <iostream>
|
|
|
|
// float infinity
|
|
#include <limits>
|
|
|
|
typedef unsigned char ubyte;
|
|
|
|
using namespace std;
|
|
using namespace Ogre;
|
|
using namespace Nif;
|
|
using namespace Mangle::VFS;
|
|
|
|
NIFLoader& NIFLoader::getSingleton()
|
|
{
|
|
static NIFLoader instance;
|
|
|
|
return instance;
|
|
}
|
|
|
|
NIFLoader* NIFLoader::getSingletonPtr()
|
|
{
|
|
return &getSingleton();
|
|
}
|
|
|
|
void NIFLoader::warn(string msg)
|
|
{
|
|
std::cerr << "NIFLoader: Warn:" << msg << "\n";
|
|
}
|
|
|
|
void NIFLoader::fail(string msg)
|
|
{
|
|
std::cerr << "NIFLoader: Fail: "<< msg << std::endl;
|
|
assert(1);
|
|
}
|
|
|
|
Vector3 NIFLoader::convertVector3(const Nif::Vector& vec)
|
|
{
|
|
return Ogre::Vector3(vec.array);
|
|
}
|
|
|
|
Quaternion NIFLoader::convertRotation(const Nif::Matrix& rot)
|
|
{
|
|
Real matrix[3][3];
|
|
|
|
for (int i=0; i<3; i++)
|
|
for (int j=0; j<3; j++)
|
|
matrix[i][j] = rot.v[i].array[j];
|
|
|
|
return Quaternion(Matrix3(matrix));
|
|
}
|
|
|
|
// Helper class that computes the bounding box and of a mesh
|
|
class BoundsFinder
|
|
{
|
|
struct MaxMinFinder
|
|
{
|
|
float max, min;
|
|
|
|
MaxMinFinder()
|
|
{
|
|
min = numeric_limits<float>::infinity();
|
|
max = -min;
|
|
}
|
|
|
|
void add(float f)
|
|
{
|
|
if (f > max) max = f;
|
|
if (f < min) min = f;
|
|
}
|
|
|
|
// Return Max(max**2, min**2)
|
|
float getMaxSquared()
|
|
{
|
|
float m1 = max*max;
|
|
float m2 = min*min;
|
|
if (m1 >= m2) return m1;
|
|
return m2;
|
|
}
|
|
};
|
|
|
|
MaxMinFinder X, Y, Z;
|
|
|
|
public:
|
|
// Add 'verts' vertices to the calculation. The 'data' pointer is
|
|
// expected to point to 3*verts floats representing x,y,z for each
|
|
// point.
|
|
void add(float *data, int verts)
|
|
{
|
|
for (int i=0;i<verts;i++)
|
|
{
|
|
X.add(*(data++));
|
|
Y.add(*(data++));
|
|
Z.add(*(data++));
|
|
}
|
|
}
|
|
|
|
// True if this structure has valid values
|
|
bool isValid()
|
|
{
|
|
return
|
|
minX() <= maxX() &&
|
|
minY() <= maxY() &&
|
|
minZ() <= maxZ();
|
|
}
|
|
|
|
// Compute radius
|
|
float getRadius()
|
|
{
|
|
assert(isValid());
|
|
|
|
// The radius is computed from the origin, not from the geometric
|
|
// center of the mesh.
|
|
return sqrt(X.getMaxSquared() + Y.getMaxSquared() + Z.getMaxSquared());
|
|
}
|
|
|
|
float minX() {
|
|
return X.min;
|
|
}
|
|
float maxX() {
|
|
return X.max;
|
|
}
|
|
float minY() {
|
|
return Y.min;
|
|
}
|
|
float maxY() {
|
|
return Y.max;
|
|
}
|
|
float minZ() {
|
|
return Z.min;
|
|
}
|
|
float maxZ() {
|
|
return Z.max;
|
|
}
|
|
};
|
|
|
|
// Conversion of blend / test mode from NIF -> OGRE.
|
|
// Not in use yet, so let's comment it out.
|
|
/*
|
|
static SceneBlendFactor getBlendFactor(int mode)
|
|
{
|
|
switch(mode)
|
|
{
|
|
case 0: return SBF_ONE;
|
|
case 1: return SBF_ZERO;
|
|
case 2: return SBF_SOURCE_COLOUR;
|
|
case 3: return SBF_ONE_MINUS_SOURCE_COLOUR;
|
|
case 4: return SBF_DEST_COLOUR;
|
|
case 5: return SBF_ONE_MINUS_DEST_COLOUR;
|
|
case 6: return SBF_SOURCE_ALPHA;
|
|
case 7: return SBF_ONE_MINUS_SOURCE_ALPHA;
|
|
case 8: return SBF_DEST_ALPHA;
|
|
case 9: return SBF_ONE_MINUS_DEST_ALPHA;
|
|
// [Comment from Chris Robinson:] Can't handle this mode? :/
|
|
// case 10: return SBF_SOURCE_ALPHA_SATURATE;
|
|
default:
|
|
return SBF_SOURCE_ALPHA;
|
|
}
|
|
}
|
|
|
|
|
|
// This is also unused
|
|
static CompareFunction getTestMode(int mode)
|
|
{
|
|
switch(mode)
|
|
{
|
|
case 0: return CMPF_ALWAYS_PASS;
|
|
case 1: return CMPF_LESS;
|
|
case 2: return CMPF_EQUAL;
|
|
case 3: return CMPF_LESS_EQUAL;
|
|
case 4: return CMPF_GREATER;
|
|
case 5: return CMPF_NOT_EQUAL;
|
|
case 6: return CMPF_GREATER_EQUAL;
|
|
case 7: return CMPF_ALWAYS_FAIL;
|
|
default:
|
|
return CMPF_ALWAYS_PASS;
|
|
}
|
|
}
|
|
*/
|
|
|
|
void NIFLoader::createMaterial(const String &name,
|
|
const Vector &ambient,
|
|
const Vector &diffuse,
|
|
const Vector &specular,
|
|
const Vector &emissive,
|
|
float glossiness, float alpha,
|
|
int alphaFlags, float alphaTest,
|
|
const String &texName)
|
|
{
|
|
MaterialPtr material = MaterialManager::getSingleton().create(name, resourceGroup);
|
|
|
|
// This assigns the texture to this material. If the texture name is
|
|
// a file name, and this file exists (in a resource directory), it
|
|
// will automatically be loaded when needed. If not (such as for
|
|
// internal NIF textures that we might support later), we should
|
|
// already have inserted a manual loader for the texture.
|
|
if (!texName.empty())
|
|
{
|
|
Pass *pass = material->getTechnique(0)->getPass(0);
|
|
/*TextureUnitState *txt =*/
|
|
pass->createTextureUnitState(texName);
|
|
|
|
// As of yet UNTESTED code from Chris:
|
|
/*pass->setTextureFiltering(Ogre::TFO_ANISOTROPIC);
|
|
pass->setDepthFunction(Ogre::CMPF_LESS_EQUAL);
|
|
pass->setDepthCheckEnabled(true);
|
|
|
|
// Add transparency if NiAlphaProperty was present
|
|
if (alphaFlags != -1)
|
|
{
|
|
std::cout << "Alpha flags set!" << endl;
|
|
if ((alphaFlags&1))
|
|
{
|
|
pass->setDepthWriteEnabled(false);
|
|
pass->setSceneBlending(getBlendFactor((alphaFlags>>1)&0xf),
|
|
getBlendFactor((alphaFlags>>5)&0xf));
|
|
}
|
|
else
|
|
pass->setDepthWriteEnabled(true);
|
|
|
|
if ((alphaFlags>>9)&1)
|
|
pass->setAlphaRejectSettings(getTestMode((alphaFlags>>10)&0x7),
|
|
alphaTest);
|
|
|
|
pass->setTransparentSortingEnabled(!((alphaFlags>>13)&1));
|
|
}
|
|
else
|
|
pass->setDepthWriteEnabled(true); */
|
|
|
|
|
|
// Add transparency if NiAlphaProperty was present
|
|
if (alphaFlags != -1)
|
|
{
|
|
// The 237 alpha flags are by far the most common. Check
|
|
// NiAlphaProperty in nif/property.h if you need to decode
|
|
// other values. 237 basically means normal transparencly.
|
|
if (alphaFlags == 237)
|
|
{
|
|
// Enable transparency
|
|
pass->setSceneBlending(SBT_TRANSPARENT_ALPHA);
|
|
|
|
//pass->setDepthCheckEnabled(false);
|
|
pass->setDepthWriteEnabled(false);
|
|
}
|
|
else
|
|
warn("Unhandled alpha setting for texture " + texName);
|
|
}
|
|
}
|
|
|
|
// Add material bells and whistles
|
|
material->setAmbient(ambient.array[0], ambient.array[1], ambient.array[2]);
|
|
material->setDiffuse(diffuse.array[0], diffuse.array[1], diffuse.array[2], alpha);
|
|
material->setSpecular(specular.array[0], specular.array[1], specular.array[2], alpha);
|
|
material->setSelfIllumination(emissive.array[0], emissive.array[1], emissive.array[2]);
|
|
material->setShininess(glossiness);
|
|
}
|
|
|
|
// Takes a name and adds a unique part to it. This is just used to
|
|
// make sure that all materials are given unique names.
|
|
String NIFLoader::getUniqueName(const String &input)
|
|
{
|
|
static int addon = 0;
|
|
static char buf[8];
|
|
snprintf(buf, 8, "_%d", addon++);
|
|
|
|
// Don't overflow the buffer
|
|
if (addon > 999999) addon = 0;
|
|
|
|
return input + buf;
|
|
}
|
|
|
|
// Check if the given texture name exists in the real world. If it
|
|
// does not, change the string IN PLACE to say .dds instead and try
|
|
// that. The texture may still not exist, but no information of value
|
|
// is lost in that case.
|
|
void NIFLoader::findRealTexture(String &texName)
|
|
{
|
|
assert(vfs);
|
|
if (vfs->isFile(texName)) return;
|
|
|
|
int len = texName.size();
|
|
if (len < 4) return;
|
|
|
|
// Change texture extension to .dds
|
|
texName[len-3] = 'd';
|
|
texName[len-2] = 'd';
|
|
texName[len-1] = 's';
|
|
}
|
|
|
|
// Convert Nif::NiTriShape to Ogre::SubMesh, attached to the given
|
|
// mesh.
|
|
void NIFLoader::createOgreSubMesh(NiTriShape *shape, const String &material, std::list<VertexBoneAssignment> &vertexBoneAssignments)
|
|
{
|
|
NiTriShapeData *data = shape->data.getPtr();
|
|
SubMesh *sub = mesh->createSubMesh(shape->name.toString());
|
|
|
|
int nextBuf = 0;
|
|
|
|
// This function is just one long stream of Ogre-barf, but it works
|
|
// great.
|
|
|
|
// Add vertices
|
|
int numVerts = data->vertices.length / 3;
|
|
sub->vertexData = new VertexData();
|
|
sub->vertexData->vertexCount = numVerts;
|
|
sub->useSharedVertices = false;
|
|
|
|
VertexDeclaration *decl = sub->vertexData->vertexDeclaration;
|
|
decl->addElement(nextBuf, 0, VET_FLOAT3, VES_POSITION);
|
|
|
|
HardwareVertexBufferSharedPtr vbuf =
|
|
HardwareBufferManager::getSingleton().createVertexBuffer(
|
|
VertexElement::getTypeSize(VET_FLOAT3),
|
|
numVerts, HardwareBuffer::HBU_STATIC_WRITE_ONLY);
|
|
vbuf->writeData(0, vbuf->getSizeInBytes(), data->vertices.ptr, true);
|
|
|
|
VertexBufferBinding* bind = sub->vertexData->vertexBufferBinding;
|
|
bind->setBinding(nextBuf++, vbuf);
|
|
|
|
// Vertex normals
|
|
if (data->normals.length)
|
|
{
|
|
decl->addElement(nextBuf, 0, VET_FLOAT3, VES_NORMAL);
|
|
vbuf = HardwareBufferManager::getSingleton().createVertexBuffer(
|
|
VertexElement::getTypeSize(VET_FLOAT3),
|
|
numVerts, HardwareBuffer::HBU_STATIC_WRITE_ONLY);
|
|
vbuf->writeData(0, vbuf->getSizeInBytes(), data->normals.ptr, true);
|
|
bind->setBinding(nextBuf++, vbuf);
|
|
}
|
|
|
|
// Vertex colors
|
|
if (data->colors.length)
|
|
{
|
|
const float *colors = data->colors.ptr;
|
|
RenderSystem* rs = Root::getSingleton().getRenderSystem();
|
|
std::vector<RGBA> colorsRGB(numVerts);
|
|
RGBA *pColour = &colorsRGB.front();
|
|
for (int i=0; i<numVerts; i++)
|
|
{
|
|
rs->convertColourValue(ColourValue(colors[0],colors[1],colors[2],
|
|
colors[3]),pColour++);
|
|
colors += 4;
|
|
}
|
|
decl->addElement(nextBuf, 0, VET_COLOUR, VES_DIFFUSE);
|
|
vbuf = HardwareBufferManager::getSingleton().createVertexBuffer(
|
|
VertexElement::getTypeSize(VET_COLOUR),
|
|
numVerts, HardwareBuffer::HBU_STATIC_WRITE_ONLY);
|
|
vbuf->writeData(0, vbuf->getSizeInBytes(), &colorsRGB.front(), true);
|
|
bind->setBinding(nextBuf++, vbuf);
|
|
}
|
|
|
|
// Texture UV coordinates
|
|
if (data->uvlist.length)
|
|
{
|
|
decl->addElement(nextBuf, 0, VET_FLOAT2, VES_TEXTURE_COORDINATES);
|
|
vbuf = HardwareBufferManager::getSingleton().createVertexBuffer(
|
|
VertexElement::getTypeSize(VET_FLOAT2),
|
|
numVerts, HardwareBuffer::HBU_STATIC_WRITE_ONLY);
|
|
|
|
vbuf->writeData(0, vbuf->getSizeInBytes(), data->uvlist.ptr, true);
|
|
bind->setBinding(nextBuf++, vbuf);
|
|
}
|
|
|
|
// Triangle faces
|
|
int numFaces = data->triangles.length;
|
|
if (numFaces)
|
|
{
|
|
HardwareIndexBufferSharedPtr ibuf = HardwareBufferManager::getSingleton().
|
|
createIndexBuffer(HardwareIndexBuffer::IT_16BIT,
|
|
numFaces,
|
|
HardwareBuffer::HBU_STATIC_WRITE_ONLY);
|
|
ibuf->writeData(0, ibuf->getSizeInBytes(), data->triangles.ptr, true);
|
|
sub->indexData->indexBuffer = ibuf;
|
|
sub->indexData->indexCount = numFaces;
|
|
sub->indexData->indexStart = 0;
|
|
}
|
|
|
|
// Set material if one was given
|
|
if (!material.empty()) sub->setMaterialName(material);
|
|
|
|
//add vertex bone assignments
|
|
|
|
for (std::list<VertexBoneAssignment>::iterator it = vertexBoneAssignments.begin();
|
|
it != vertexBoneAssignments.end(); it++)
|
|
{
|
|
sub->addBoneAssignment(*it);
|
|
}
|
|
}
|
|
|
|
// Helper math functions. Reinventing linear algebra for the win!
|
|
|
|
// Computes B = AxB (matrix*matrix)
|
|
static void matrixMul(const Matrix &A, Matrix &B)
|
|
{
|
|
for (int i=0;i<3;i++)
|
|
{
|
|
float a = B.v[0].array[i];
|
|
float b = B.v[1].array[i];
|
|
float c = B.v[2].array[i];
|
|
|
|
B.v[0].array[i] = a*A.v[0].array[0] + b*A.v[0].array[1] + c*A.v[0].array[2];
|
|
B.v[1].array[i] = a*A.v[1].array[0] + b*A.v[1].array[1] + c*A.v[1].array[2];
|
|
B.v[2].array[i] = a*A.v[2].array[0] + b*A.v[2].array[1] + c*A.v[2].array[2];
|
|
}
|
|
}
|
|
|
|
// Computes C = B + AxC*scale
|
|
static void vectorMulAdd(const Matrix &A, const Vector &B, float *C, float scale)
|
|
{
|
|
// Keep the original values
|
|
float a = C[0];
|
|
float b = C[1];
|
|
float c = C[2];
|
|
|
|
// Perform matrix multiplication, scaling and addition
|
|
for (int i=0;i<3;i++)
|
|
C[i] = B.array[i] + (a*A.v[i].array[0] + b*A.v[i].array[1] + c*A.v[i].array[2])*scale;
|
|
}
|
|
|
|
// Computes B = AxB (matrix*vector)
|
|
static void vectorMul(const Matrix &A, float *C)
|
|
{
|
|
// Keep the original values
|
|
float a = C[0];
|
|
float b = C[1];
|
|
float c = C[2];
|
|
|
|
// Perform matrix multiplication, scaling and addition
|
|
for (int i=0;i<3;i++)
|
|
C[i] = a*A.v[i].array[0] + b*A.v[i].array[1] + c*A.v[i].array[2];
|
|
}
|
|
|
|
void NIFLoader::handleNiTriShape(NiTriShape *shape, int flags, BoundsFinder &bounds)
|
|
{
|
|
assert(shape != NULL);
|
|
|
|
// Interpret flags
|
|
bool hidden = (flags & 0x01) != 0; // Not displayed
|
|
bool collide = (flags & 0x02) != 0; // Use mesh for collision
|
|
bool bbcollide = (flags & 0x04) != 0; // Use bounding box for collision
|
|
|
|
// Bounding box collision isn't implemented, always use mesh for now.
|
|
if (bbcollide)
|
|
{
|
|
collide = true;
|
|
bbcollide = false;
|
|
}
|
|
|
|
// If the object was marked "NCO" earlier, it shouldn't collide with
|
|
// anything.
|
|
if (flags & 0x800)
|
|
{
|
|
collide = false;
|
|
bbcollide = false;
|
|
}
|
|
|
|
if (!collide && !bbcollide && hidden)
|
|
// This mesh apparently isn't being used for anything, so don't
|
|
// bother setting it up.
|
|
return;
|
|
|
|
// Material name for this submesh, if any
|
|
String material;
|
|
|
|
// Skip the entire material phase for hidden nodes
|
|
if (!hidden)
|
|
{
|
|
// These are set below if present
|
|
NiTexturingProperty *t = NULL;
|
|
NiMaterialProperty *m = NULL;
|
|
NiAlphaProperty *a = NULL;
|
|
|
|
// Scan the property list for material information
|
|
PropertyList &list = shape->props;
|
|
int n = list.length();
|
|
for (int i=0; i<n; i++)
|
|
{
|
|
// Entries may be empty
|
|
if (!list.has(i)) continue;
|
|
|
|
Property *pr = &list[i];
|
|
|
|
if (pr->recType == RC_NiTexturingProperty)
|
|
t = (NiTexturingProperty*)pr;
|
|
else if (pr->recType == RC_NiMaterialProperty)
|
|
m = (NiMaterialProperty*)pr;
|
|
else if (pr->recType == RC_NiAlphaProperty)
|
|
a = (NiAlphaProperty*)pr;
|
|
}
|
|
|
|
// Texture
|
|
String texName;
|
|
if (t && t->textures[0].inUse)
|
|
{
|
|
NiSourceTexture *st = t->textures[0].texture.getPtr();
|
|
if (st->external)
|
|
{
|
|
SString tname = st->filename;
|
|
|
|
/* findRealTexture checks if the file actually
|
|
exists. If it doesn't, and the name ends in .tga, it
|
|
will try replacing the extension with .dds instead
|
|
and search for that. Bethesda at some at some point
|
|
converted all their BSA textures from tga to dds for
|
|
increased load speed, but all texture file name
|
|
references were kept as .tga.
|
|
|
|
The function replaces the name in place (that's why
|
|
we cast away the const modifier), but this is no
|
|
problem since all the nif data is stored in a local
|
|
throwaway buffer.
|
|
*/
|
|
texName = "textures\\" + tname.toString();
|
|
findRealTexture(texName);
|
|
}
|
|
else warn("Found internal texture, ignoring.");
|
|
}
|
|
|
|
// Alpha modifiers
|
|
int alphaFlags = -1;
|
|
ubyte alphaTest = 0;
|
|
if (a)
|
|
{
|
|
alphaFlags = a->flags;
|
|
alphaTest = a->data->threshold;
|
|
}
|
|
|
|
// Material
|
|
if (m || !texName.empty())
|
|
{
|
|
// If we're here, then this mesh has a material. Thus we
|
|
// need to calculate a snappy material name. It should
|
|
// contain the mesh name (mesh->getName()) but also has to
|
|
// be unique. One mesh may use many materials.
|
|
material = getUniqueName(mesh->getName());
|
|
|
|
if (m)
|
|
{
|
|
// Use NiMaterialProperty data to create the data
|
|
const S_MaterialProperty *d = m->data;
|
|
createMaterial(material, d->ambient, d->diffuse, d->specular, d->emissive,
|
|
d->glossiness, d->alpha, alphaFlags, alphaTest, texName);
|
|
}
|
|
else
|
|
{
|
|
// We only have a texture name. Create a default
|
|
// material for it.
|
|
Vector zero, one;
|
|
for (int i=0; i<3;i++)
|
|
{
|
|
zero.array[i] = 0.0;
|
|
one.array[i] = 1.0;
|
|
}
|
|
|
|
createMaterial(material, one, one, zero, zero, 0.0, 1.0,
|
|
alphaFlags, alphaTest, texName);
|
|
}
|
|
}
|
|
} // End of material block, if(!hidden) ...
|
|
|
|
/* Do in-place transformation of all the vertices and normals. This
|
|
is pretty messy stuff, but we need it to make the sub-meshes
|
|
appear in the correct place. Neither Ogre nor Bullet support
|
|
nested levels of sub-meshes with transformations applied to each
|
|
level.
|
|
*/
|
|
NiTriShapeData *data = shape->data.getPtr();
|
|
int numVerts = data->vertices.length / 3;
|
|
|
|
float *ptr = (float*)data->vertices.ptr;
|
|
float *optr = ptr;
|
|
|
|
std::list<VertexBoneAssignment> vertexBoneAssignments;
|
|
|
|
//use niskindata for the position of vertices.
|
|
if (!shape->skin.empty())
|
|
{
|
|
// vector that stores if the position if a vertex is absolute
|
|
std::vector<bool> vertexPosAbsolut(numVerts,false);
|
|
|
|
float *ptrNormals = (float*)data->normals.ptr;
|
|
//the bone from skin->bones[boneIndex] is linked to skin->data->bones[boneIndex]
|
|
//the first one contains a link to the bone, the second vertex transformation
|
|
//relative to the bone
|
|
int boneIndex = 0;
|
|
Bone *bonePtr;
|
|
Vector3 vecPos;
|
|
Quaternion vecRot;
|
|
|
|
std::vector<NiSkinData::BoneInfo> boneList = shape->skin->data->bones;
|
|
|
|
/*
|
|
Iterate through the boneList which contains what vertices are linked to
|
|
the bone (it->weights array) and at what position (it->trafo)
|
|
That position is added to every vertex.
|
|
*/
|
|
for (std::vector<NiSkinData::BoneInfo>::iterator it = boneList.begin();
|
|
it != boneList.end(); it++)
|
|
{
|
|
//get the bone from bones array of skindata
|
|
bonePtr = skel->getBone(shape->skin->bones[boneIndex].name.toString());
|
|
|
|
// final_vector = old_vector + old_rotation*new_vector*old_scale
|
|
vecPos = bonePtr->_getDerivedPosition() +
|
|
bonePtr->_getDerivedOrientation() * convertVector3(it->trafo->trans);
|
|
|
|
vecRot = bonePtr->_getDerivedOrientation() * convertRotation(it->trafo->rotation);
|
|
|
|
for (unsigned int i=0; i<it->weights.length; i++)
|
|
{
|
|
unsigned int verIndex = (it->weights.ptr + i)->vertex;
|
|
|
|
//Check if the vertex is relativ, FIXME: Is there a better solution?
|
|
if (vertexPosAbsolut[verIndex] == false)
|
|
{
|
|
//apply transformation to the vertices
|
|
Vector3 absVertPos = vecPos + vecRot * Vector3(ptr + verIndex *3);
|
|
|
|
//convert it back to float *
|
|
for (int j=0; j<3; j++)
|
|
(ptr + verIndex*3)[j] = absVertPos[j];
|
|
|
|
//apply rotation to the normals (not every vertex has a normal)
|
|
//FIXME: I guessed that vertex[i] = normal[i], is that true?
|
|
if (verIndex < data->normals.length)
|
|
{
|
|
Vector3 absNormalsPos = vecRot * Vector3(ptrNormals + verIndex *3);
|
|
|
|
for (int j=0; j<3; j++)
|
|
(ptrNormals + verIndex*3)[j] = absNormalsPos[j];
|
|
}
|
|
|
|
vertexPosAbsolut[verIndex] = true;
|
|
}
|
|
|
|
VertexBoneAssignment vba;
|
|
vba.boneIndex = bonePtr->getHandle();
|
|
vba.vertexIndex = verIndex;
|
|
vba.weight = (it->weights.ptr + i)->weight;
|
|
|
|
vertexBoneAssignments.push_back(vba);
|
|
}
|
|
|
|
boneIndex++;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Rotate, scale and translate all the vertices,
|
|
const Matrix &rot = shape->trafo->rotation;
|
|
const Vector &pos = shape->trafo->pos;
|
|
float scale = shape->trafo->scale;
|
|
for (int i=0; i<numVerts; i++)
|
|
{
|
|
vectorMulAdd(rot, pos, ptr, scale);
|
|
ptr += 3;
|
|
}
|
|
|
|
// Remember to rotate all the vertex normals as well
|
|
if (data->normals.length)
|
|
{
|
|
ptr = (float*)data->normals.ptr;
|
|
for (int i=0; i<numVerts; i++)
|
|
{
|
|
vectorMul(rot, ptr);
|
|
ptr += 3;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!hidden)
|
|
{
|
|
// Add this vertex set to the bounding box
|
|
bounds.add(optr, numVerts);
|
|
|
|
// Create the submesh
|
|
createOgreSubMesh(shape, material, vertexBoneAssignments);
|
|
}
|
|
}
|
|
|
|
void NIFLoader::handleNode(Nif::Node *node, int flags,
|
|
const Transformation *trafo, BoundsFinder &bounds, Bone *parentBone)
|
|
{
|
|
// Accumulate the flags from all the child nodes. This works for all
|
|
// the flags we currently use, at least.
|
|
flags |= node->flags;
|
|
|
|
// Check for extra data
|
|
Extra *e = node;
|
|
while (!e->extra.empty())
|
|
{
|
|
// Get the next extra data in the list
|
|
e = e->extra.getPtr();
|
|
assert(e != NULL);
|
|
|
|
if (e->recType == RC_NiStringExtraData)
|
|
{
|
|
// String markers may contain important information
|
|
// affecting the entire subtree of this node
|
|
NiStringExtraData *sd = (NiStringExtraData*)e;
|
|
|
|
if (sd->string == "NCO")
|
|
// No collision. Use an internal flag setting to mark this.
|
|
flags |= 0x800;
|
|
else if (sd->string == "MRK")
|
|
// Marker objects. These are only visible in the
|
|
// editor. Until and unless we add an editor component to
|
|
// the engine, just skip this entire node.
|
|
return;
|
|
}
|
|
}
|
|
|
|
Bone *bone = 0;
|
|
|
|
// create skeleton or add bones
|
|
if (node->recType == RC_NiNode)
|
|
{
|
|
//FIXME: "Bip01" isn't every time the root bone
|
|
if (node->name == "Bip01" || node->name == "Root Bone") //root node, create a skeleton
|
|
{
|
|
skel = SkeletonManager::getSingleton().create(getSkeletonName(), resourceGroup, true);
|
|
|
|
/*if (node->extra->recType == RC_NiTextKeyExtraData )
|
|
{
|
|
//TODO: Get animation names
|
|
std::cout << node->name.toString() << " is root bone and has textkeyextradata!\n";
|
|
}*/
|
|
}
|
|
|
|
if (!skel.isNull()) //if there is a skeleton
|
|
{
|
|
std::string name = node->name.toString();
|
|
// Quick-n-dirty workaround for the fact that several
|
|
// bones may have the same name.
|
|
if(!skel->hasBone(name))
|
|
{
|
|
bone = skel->createBone(name);
|
|
|
|
if (parentBone)
|
|
parentBone->addChild(bone);
|
|
|
|
bone->setInheritOrientation(true);
|
|
bone->setPosition(convertVector3(node->trafo->pos));
|
|
bone->setOrientation(convertRotation(node->trafo->rotation));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Apply the parent transformation to this node. We overwrite the
|
|
// existing data with the final transformation.
|
|
if (trafo)
|
|
{
|
|
// Get a non-const reference to the node's data, since we're
|
|
// overwriting it. TODO: Is this necessary?
|
|
Transformation &final = *((Transformation*)node->trafo);
|
|
|
|
// For both position and rotation we have that:
|
|
// final_vector = old_vector + old_rotation*new_vector*old_scale
|
|
vectorMulAdd(trafo->rotation, trafo->pos, final.pos.array, trafo->scale);
|
|
vectorMulAdd(trafo->rotation, trafo->velocity, final.velocity.array, trafo->scale);
|
|
|
|
// Merge the rotations together
|
|
matrixMul(trafo->rotation, final.rotation);
|
|
|
|
// Scalar values are so nice to deal with. Why can't everything
|
|
// just be scalar?
|
|
final.scale *= trafo->scale;
|
|
}
|
|
|
|
// For NiNodes, loop through children
|
|
if (node->recType == RC_NiNode)
|
|
{
|
|
NodeList &list = ((NiNode*)node)->children;
|
|
int n = list.length();
|
|
for (int i=0; i<n; i++)
|
|
{
|
|
if (list.has(i))
|
|
handleNode(&list[i], flags, node->trafo, bounds, bone);
|
|
}
|
|
}
|
|
else if (node->recType == RC_NiTriShape)
|
|
// For shapes
|
|
handleNiTriShape(dynamic_cast<NiTriShape*>(node), flags, bounds);
|
|
}
|
|
|
|
void NIFLoader::loadResource(Resource *resource)
|
|
{
|
|
resourceName = "";
|
|
mesh = 0;
|
|
skel.setNull();
|
|
|
|
// Set up the VFS if it hasn't been done already
|
|
if (!vfs) vfs = new OgreVFS(resourceGroup);
|
|
|
|
// Get the mesh
|
|
mesh = dynamic_cast<Mesh*>(resource);
|
|
assert(mesh);
|
|
|
|
// Look it up
|
|
resourceName = mesh->getName();
|
|
|
|
if (!vfs->isFile(resourceName))
|
|
{
|
|
warn("File not found.");
|
|
return;
|
|
}
|
|
|
|
// Helper that computes bounding boxes for us.
|
|
BoundsFinder bounds;
|
|
|
|
// Load the NIF. TODO: Wrap this in a try-catch block once we're out
|
|
// of the early stages of development. Right now we WANT to catch
|
|
// every error as early and intrusively as possible, as it's most
|
|
// likely a sign of incomplete code rather than faulty input.
|
|
NIFFile nif(vfs->open(resourceName), resourceName);
|
|
|
|
if (nif.numRecords() < 1)
|
|
{
|
|
warn("Found no records in NIF.");
|
|
return;
|
|
}
|
|
|
|
// The first record is assumed to be the root node
|
|
Record *r = nif.getRecord(0);
|
|
assert(r != NULL);
|
|
|
|
Nif::Node *node = dynamic_cast<Nif::Node*>(r);
|
|
|
|
if (node == NULL)
|
|
{
|
|
warn("First record in file was not a node, but a " +
|
|
r->recName.toString() + ". Skipping file.");
|
|
return;
|
|
}
|
|
|
|
// Handle the node
|
|
handleNode(node, 0, NULL, bounds, 0);
|
|
|
|
// set the bounding value.
|
|
if (bounds.isValid())
|
|
{
|
|
mesh->_setBounds(AxisAlignedBox(bounds.minX(), bounds.minY(), bounds.minZ(),
|
|
bounds.maxX(), bounds.maxY(), bounds.maxZ()));
|
|
mesh->_setBoundingSphereRadius(bounds.getRadius());
|
|
}
|
|
|
|
// set skeleton
|
|
// if (!skel.isNull())
|
|
// mesh->setSkeletonName(getSkeletonName());
|
|
}
|
|
|
|
MeshPtr NIFLoader::load(const std::string &name,
|
|
const std::string &group)
|
|
{
|
|
MeshManager *m = MeshManager::getSingletonPtr();
|
|
|
|
// Check if the resource already exists
|
|
ResourcePtr ptr = m->getByName(name, group);
|
|
if (!ptr.isNull())
|
|
return MeshPtr(ptr);
|
|
|
|
// Nope, create a new one.
|
|
return MeshManager::getSingleton().createManual(name, group, NIFLoader::getSingletonPtr());
|
|
}
|
|
|
|
/* More code currently not in use, from the old D source. This was
|
|
used in the first attempt at loading NIF meshes, where each submesh
|
|
in the file was given a separate bone in a skeleton. Unfortunately
|
|
the OGRE skeletons can't hold more than 256 bones, and some NIFs go
|
|
way beyond that. The code might be of use if we implement animated
|
|
submeshes like this (the part of the NIF that is animated is
|
|
usually much less than the entire file, but the method might still
|
|
not be water tight.)
|
|
|
|
// Insert a raw RGBA image into the texture system.
|
|
extern "C" void ogre_insertTexture(char* name, uint32_t width, uint32_t height, void *data)
|
|
{
|
|
TexturePtr texture = TextureManager::getSingleton().createManual(
|
|
name, // name
|
|
"General", // group
|
|
TEX_TYPE_2D, // type
|
|
width, height, // width & height
|
|
0, // number of mipmaps
|
|
PF_BYTE_RGBA, // pixel format
|
|
TU_DEFAULT); // usage; should be TU_DYNAMIC_WRITE_ONLY_DISCARDABLE for
|
|
// textures updated very often (e.g. each frame)
|
|
|
|
// Get the pixel buffer
|
|
HardwarePixelBufferSharedPtr pixelBuffer = texture->getBuffer();
|
|
|
|
// Lock the pixel buffer and get a pixel box
|
|
pixelBuffer->lock(HardwareBuffer::HBL_NORMAL); // for best performance use HBL_DISCARD!
|
|
const PixelBox& pixelBox = pixelBuffer->getCurrentLock();
|
|
|
|
void *dest = pixelBox.data;
|
|
|
|
// Copy the data
|
|
memcpy(dest, data, width*height*4);
|
|
|
|
// Unlock the pixel buffer
|
|
pixelBuffer->unlock();
|
|
}
|
|
|
|
|
|
*/
|