1
0
Fork 1
mirror of https://github.com/TES3MP/openmw-tes3mp.git synced 2025-01-25 00:53:52 +00:00
openmw-tes3mp/extern/recastnavigation/RecastDemo/Source/Sample_SoloMesh.cpp

756 lines
23 KiB
C++
Raw Normal View History

2018-10-31 21:20:10 +00:00
//
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#define _USE_MATH_DEFINES
#include <math.h>
#include <stdio.h>
#include <string.h>
#include "SDL.h"
#include "SDL_opengl.h"
#include "imgui.h"
#include "InputGeom.h"
#include "Sample.h"
#include "Sample_SoloMesh.h"
#include "Recast.h"
#include "RecastDebugDraw.h"
#include "RecastDump.h"
#include "DetourNavMesh.h"
#include "DetourNavMeshBuilder.h"
#include "DetourDebugDraw.h"
#include "NavMeshTesterTool.h"
#include "NavMeshPruneTool.h"
#include "OffMeshConnectionTool.h"
#include "ConvexVolumeTool.h"
#include "CrowdTool.h"
#ifdef WIN32
# define snprintf _snprintf
#endif
Sample_SoloMesh::Sample_SoloMesh() :
m_keepInterResults(true),
m_totalBuildTimeMs(0),
m_triareas(0),
m_solid(0),
m_chf(0),
m_cset(0),
m_pmesh(0),
m_dmesh(0),
m_drawMode(DRAWMODE_NAVMESH)
{
setTool(new NavMeshTesterTool);
}
Sample_SoloMesh::~Sample_SoloMesh()
{
cleanup();
}
void Sample_SoloMesh::cleanup()
{
delete [] m_triareas;
m_triareas = 0;
rcFreeHeightField(m_solid);
m_solid = 0;
rcFreeCompactHeightfield(m_chf);
m_chf = 0;
rcFreeContourSet(m_cset);
m_cset = 0;
rcFreePolyMesh(m_pmesh);
m_pmesh = 0;
rcFreePolyMeshDetail(m_dmesh);
m_dmesh = 0;
dtFreeNavMesh(m_navMesh);
m_navMesh = 0;
}
void Sample_SoloMesh::handleSettings()
{
Sample::handleCommonSettings();
if (imguiCheck("Keep Itermediate Results", m_keepInterResults))
m_keepInterResults = !m_keepInterResults;
imguiSeparator();
imguiIndent();
imguiIndent();
if (imguiButton("Save"))
{
Sample::saveAll("solo_navmesh.bin", m_navMesh);
}
if (imguiButton("Load"))
{
dtFreeNavMesh(m_navMesh);
m_navMesh = Sample::loadAll("solo_navmesh.bin");
m_navQuery->init(m_navMesh, 2048);
}
imguiUnindent();
imguiUnindent();
char msg[64];
snprintf(msg, 64, "Build Time: %.1fms", m_totalBuildTimeMs);
imguiLabel(msg);
imguiSeparator();
}
void Sample_SoloMesh::handleTools()
{
int type = !m_tool ? TOOL_NONE : m_tool->type();
if (imguiCheck("Test Navmesh", type == TOOL_NAVMESH_TESTER))
{
setTool(new NavMeshTesterTool);
}
if (imguiCheck("Prune Navmesh", type == TOOL_NAVMESH_PRUNE))
{
setTool(new NavMeshPruneTool);
}
if (imguiCheck("Create Off-Mesh Connections", type == TOOL_OFFMESH_CONNECTION))
{
setTool(new OffMeshConnectionTool);
}
if (imguiCheck("Create Convex Volumes", type == TOOL_CONVEX_VOLUME))
{
setTool(new ConvexVolumeTool);
}
if (imguiCheck("Create Crowds", type == TOOL_CROWD))
{
setTool(new CrowdTool);
}
imguiSeparatorLine();
imguiIndent();
if (m_tool)
m_tool->handleMenu();
imguiUnindent();
}
void Sample_SoloMesh::handleDebugMode()
{
// Check which modes are valid.
bool valid[MAX_DRAWMODE];
for (int i = 0; i < MAX_DRAWMODE; ++i)
valid[i] = false;
if (m_geom)
{
valid[DRAWMODE_NAVMESH] = m_navMesh != 0;
valid[DRAWMODE_NAVMESH_TRANS] = m_navMesh != 0;
valid[DRAWMODE_NAVMESH_BVTREE] = m_navMesh != 0;
valid[DRAWMODE_NAVMESH_NODES] = m_navQuery != 0;
valid[DRAWMODE_NAVMESH_INVIS] = m_navMesh != 0;
valid[DRAWMODE_MESH] = true;
valid[DRAWMODE_VOXELS] = m_solid != 0;
valid[DRAWMODE_VOXELS_WALKABLE] = m_solid != 0;
valid[DRAWMODE_COMPACT] = m_chf != 0;
valid[DRAWMODE_COMPACT_DISTANCE] = m_chf != 0;
valid[DRAWMODE_COMPACT_REGIONS] = m_chf != 0;
valid[DRAWMODE_REGION_CONNECTIONS] = m_cset != 0;
valid[DRAWMODE_RAW_CONTOURS] = m_cset != 0;
valid[DRAWMODE_BOTH_CONTOURS] = m_cset != 0;
valid[DRAWMODE_CONTOURS] = m_cset != 0;
valid[DRAWMODE_POLYMESH] = m_pmesh != 0;
valid[DRAWMODE_POLYMESH_DETAIL] = m_dmesh != 0;
}
int unavail = 0;
for (int i = 0; i < MAX_DRAWMODE; ++i)
if (!valid[i]) unavail++;
if (unavail == MAX_DRAWMODE)
return;
imguiLabel("Draw");
if (imguiCheck("Input Mesh", m_drawMode == DRAWMODE_MESH, valid[DRAWMODE_MESH]))
m_drawMode = DRAWMODE_MESH;
if (imguiCheck("Navmesh", m_drawMode == DRAWMODE_NAVMESH, valid[DRAWMODE_NAVMESH]))
m_drawMode = DRAWMODE_NAVMESH;
if (imguiCheck("Navmesh Invis", m_drawMode == DRAWMODE_NAVMESH_INVIS, valid[DRAWMODE_NAVMESH_INVIS]))
m_drawMode = DRAWMODE_NAVMESH_INVIS;
if (imguiCheck("Navmesh Trans", m_drawMode == DRAWMODE_NAVMESH_TRANS, valid[DRAWMODE_NAVMESH_TRANS]))
m_drawMode = DRAWMODE_NAVMESH_TRANS;
if (imguiCheck("Navmesh BVTree", m_drawMode == DRAWMODE_NAVMESH_BVTREE, valid[DRAWMODE_NAVMESH_BVTREE]))
m_drawMode = DRAWMODE_NAVMESH_BVTREE;
if (imguiCheck("Navmesh Nodes", m_drawMode == DRAWMODE_NAVMESH_NODES, valid[DRAWMODE_NAVMESH_NODES]))
m_drawMode = DRAWMODE_NAVMESH_NODES;
if (imguiCheck("Voxels", m_drawMode == DRAWMODE_VOXELS, valid[DRAWMODE_VOXELS]))
m_drawMode = DRAWMODE_VOXELS;
if (imguiCheck("Walkable Voxels", m_drawMode == DRAWMODE_VOXELS_WALKABLE, valid[DRAWMODE_VOXELS_WALKABLE]))
m_drawMode = DRAWMODE_VOXELS_WALKABLE;
if (imguiCheck("Compact", m_drawMode == DRAWMODE_COMPACT, valid[DRAWMODE_COMPACT]))
m_drawMode = DRAWMODE_COMPACT;
if (imguiCheck("Compact Distance", m_drawMode == DRAWMODE_COMPACT_DISTANCE, valid[DRAWMODE_COMPACT_DISTANCE]))
m_drawMode = DRAWMODE_COMPACT_DISTANCE;
if (imguiCheck("Compact Regions", m_drawMode == DRAWMODE_COMPACT_REGIONS, valid[DRAWMODE_COMPACT_REGIONS]))
m_drawMode = DRAWMODE_COMPACT_REGIONS;
if (imguiCheck("Region Connections", m_drawMode == DRAWMODE_REGION_CONNECTIONS, valid[DRAWMODE_REGION_CONNECTIONS]))
m_drawMode = DRAWMODE_REGION_CONNECTIONS;
if (imguiCheck("Raw Contours", m_drawMode == DRAWMODE_RAW_CONTOURS, valid[DRAWMODE_RAW_CONTOURS]))
m_drawMode = DRAWMODE_RAW_CONTOURS;
if (imguiCheck("Both Contours", m_drawMode == DRAWMODE_BOTH_CONTOURS, valid[DRAWMODE_BOTH_CONTOURS]))
m_drawMode = DRAWMODE_BOTH_CONTOURS;
if (imguiCheck("Contours", m_drawMode == DRAWMODE_CONTOURS, valid[DRAWMODE_CONTOURS]))
m_drawMode = DRAWMODE_CONTOURS;
if (imguiCheck("Poly Mesh", m_drawMode == DRAWMODE_POLYMESH, valid[DRAWMODE_POLYMESH]))
m_drawMode = DRAWMODE_POLYMESH;
if (imguiCheck("Poly Mesh Detail", m_drawMode == DRAWMODE_POLYMESH_DETAIL, valid[DRAWMODE_POLYMESH_DETAIL]))
m_drawMode = DRAWMODE_POLYMESH_DETAIL;
if (unavail)
{
imguiValue("Tick 'Keep Itermediate Results'");
imguiValue("to see more debug mode options.");
}
}
void Sample_SoloMesh::handleRender()
{
if (!m_geom || !m_geom->getMesh())
return;
glEnable(GL_FOG);
glDepthMask(GL_TRUE);
const float texScale = 1.0f / (m_cellSize * 10.0f);
if (m_drawMode != DRAWMODE_NAVMESH_TRANS)
{
// Draw mesh
duDebugDrawTriMeshSlope(&m_dd, m_geom->getMesh()->getVerts(), m_geom->getMesh()->getVertCount(),
m_geom->getMesh()->getTris(), m_geom->getMesh()->getNormals(), m_geom->getMesh()->getTriCount(),
m_agentMaxSlope, texScale);
m_geom->drawOffMeshConnections(&m_dd);
}
glDisable(GL_FOG);
glDepthMask(GL_FALSE);
// Draw bounds
const float* bmin = m_geom->getNavMeshBoundsMin();
const float* bmax = m_geom->getNavMeshBoundsMax();
duDebugDrawBoxWire(&m_dd, bmin[0],bmin[1],bmin[2], bmax[0],bmax[1],bmax[2], duRGBA(255,255,255,128), 1.0f);
m_dd.begin(DU_DRAW_POINTS, 5.0f);
m_dd.vertex(bmin[0],bmin[1],bmin[2],duRGBA(255,255,255,128));
m_dd.end();
if (m_navMesh && m_navQuery &&
(m_drawMode == DRAWMODE_NAVMESH ||
m_drawMode == DRAWMODE_NAVMESH_TRANS ||
m_drawMode == DRAWMODE_NAVMESH_BVTREE ||
m_drawMode == DRAWMODE_NAVMESH_NODES ||
m_drawMode == DRAWMODE_NAVMESH_INVIS))
{
if (m_drawMode != DRAWMODE_NAVMESH_INVIS)
duDebugDrawNavMeshWithClosedList(&m_dd, *m_navMesh, *m_navQuery, m_navMeshDrawFlags);
if (m_drawMode == DRAWMODE_NAVMESH_BVTREE)
duDebugDrawNavMeshBVTree(&m_dd, *m_navMesh);
if (m_drawMode == DRAWMODE_NAVMESH_NODES)
duDebugDrawNavMeshNodes(&m_dd, *m_navQuery);
duDebugDrawNavMeshPolysWithFlags(&m_dd, *m_navMesh, SAMPLE_POLYFLAGS_DISABLED, duRGBA(0,0,0,128));
}
glDepthMask(GL_TRUE);
if (m_chf && m_drawMode == DRAWMODE_COMPACT)
duDebugDrawCompactHeightfieldSolid(&m_dd, *m_chf);
if (m_chf && m_drawMode == DRAWMODE_COMPACT_DISTANCE)
duDebugDrawCompactHeightfieldDistance(&m_dd, *m_chf);
if (m_chf && m_drawMode == DRAWMODE_COMPACT_REGIONS)
duDebugDrawCompactHeightfieldRegions(&m_dd, *m_chf);
if (m_solid && m_drawMode == DRAWMODE_VOXELS)
{
glEnable(GL_FOG);
duDebugDrawHeightfieldSolid(&m_dd, *m_solid);
glDisable(GL_FOG);
}
if (m_solid && m_drawMode == DRAWMODE_VOXELS_WALKABLE)
{
glEnable(GL_FOG);
duDebugDrawHeightfieldWalkable(&m_dd, *m_solid);
glDisable(GL_FOG);
}
if (m_cset && m_drawMode == DRAWMODE_RAW_CONTOURS)
{
glDepthMask(GL_FALSE);
duDebugDrawRawContours(&m_dd, *m_cset);
glDepthMask(GL_TRUE);
}
if (m_cset && m_drawMode == DRAWMODE_BOTH_CONTOURS)
{
glDepthMask(GL_FALSE);
duDebugDrawRawContours(&m_dd, *m_cset, 0.5f);
duDebugDrawContours(&m_dd, *m_cset);
glDepthMask(GL_TRUE);
}
if (m_cset && m_drawMode == DRAWMODE_CONTOURS)
{
glDepthMask(GL_FALSE);
duDebugDrawContours(&m_dd, *m_cset);
glDepthMask(GL_TRUE);
}
if (m_chf && m_cset && m_drawMode == DRAWMODE_REGION_CONNECTIONS)
{
duDebugDrawCompactHeightfieldRegions(&m_dd, *m_chf);
glDepthMask(GL_FALSE);
duDebugDrawRegionConnections(&m_dd, *m_cset);
glDepthMask(GL_TRUE);
}
if (m_pmesh && m_drawMode == DRAWMODE_POLYMESH)
{
glDepthMask(GL_FALSE);
duDebugDrawPolyMesh(&m_dd, *m_pmesh);
glDepthMask(GL_TRUE);
}
if (m_dmesh && m_drawMode == DRAWMODE_POLYMESH_DETAIL)
{
glDepthMask(GL_FALSE);
duDebugDrawPolyMeshDetail(&m_dd, *m_dmesh);
glDepthMask(GL_TRUE);
}
m_geom->drawConvexVolumes(&m_dd);
if (m_tool)
m_tool->handleRender();
renderToolStates();
glDepthMask(GL_TRUE);
}
void Sample_SoloMesh::handleRenderOverlay(double* proj, double* model, int* view)
{
if (m_tool)
m_tool->handleRenderOverlay(proj, model, view);
renderOverlayToolStates(proj, model, view);
}
void Sample_SoloMesh::handleMeshChanged(class InputGeom* geom)
{
Sample::handleMeshChanged(geom);
dtFreeNavMesh(m_navMesh);
m_navMesh = 0;
if (m_tool)
{
m_tool->reset();
m_tool->init(this);
}
resetToolStates();
initToolStates(this);
}
bool Sample_SoloMesh::handleBuild()
{
if (!m_geom || !m_geom->getMesh())
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Input mesh is not specified.");
return false;
}
cleanup();
const float* bmin = m_geom->getNavMeshBoundsMin();
const float* bmax = m_geom->getNavMeshBoundsMax();
const float* verts = m_geom->getMesh()->getVerts();
const int nverts = m_geom->getMesh()->getVertCount();
const int* tris = m_geom->getMesh()->getTris();
const int ntris = m_geom->getMesh()->getTriCount();
//
// Step 1. Initialize build config.
//
// Init build configuration from GUI
memset(&m_cfg, 0, sizeof(m_cfg));
m_cfg.cs = m_cellSize;
m_cfg.ch = m_cellHeight;
m_cfg.walkableSlopeAngle = m_agentMaxSlope;
m_cfg.walkableHeight = (int)ceilf(m_agentHeight / m_cfg.ch);
m_cfg.walkableClimb = (int)floorf(m_agentMaxClimb / m_cfg.ch);
m_cfg.walkableRadius = (int)ceilf(m_agentRadius / m_cfg.cs);
m_cfg.maxEdgeLen = (int)(m_edgeMaxLen / m_cellSize);
m_cfg.maxSimplificationError = m_edgeMaxError;
m_cfg.minRegionArea = (int)rcSqr(m_regionMinSize); // Note: area = size*size
m_cfg.mergeRegionArea = (int)rcSqr(m_regionMergeSize); // Note: area = size*size
m_cfg.maxVertsPerPoly = (int)m_vertsPerPoly;
m_cfg.detailSampleDist = m_detailSampleDist < 0.9f ? 0 : m_cellSize * m_detailSampleDist;
m_cfg.detailSampleMaxError = m_cellHeight * m_detailSampleMaxError;
// Set the area where the navigation will be build.
// Here the bounds of the input mesh are used, but the
// area could be specified by an user defined box, etc.
rcVcopy(m_cfg.bmin, bmin);
rcVcopy(m_cfg.bmax, bmax);
rcCalcGridSize(m_cfg.bmin, m_cfg.bmax, m_cfg.cs, &m_cfg.width, &m_cfg.height);
// Reset build times gathering.
m_ctx->resetTimers();
// Start the build process.
m_ctx->startTimer(RC_TIMER_TOTAL);
m_ctx->log(RC_LOG_PROGRESS, "Building navigation:");
m_ctx->log(RC_LOG_PROGRESS, " - %d x %d cells", m_cfg.width, m_cfg.height);
m_ctx->log(RC_LOG_PROGRESS, " - %.1fK verts, %.1fK tris", nverts/1000.0f, ntris/1000.0f);
//
// Step 2. Rasterize input polygon soup.
//
// Allocate voxel heightfield where we rasterize our input data to.
m_solid = rcAllocHeightfield();
if (!m_solid)
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'solid'.");
return false;
}
if (!rcCreateHeightfield(m_ctx, *m_solid, m_cfg.width, m_cfg.height, m_cfg.bmin, m_cfg.bmax, m_cfg.cs, m_cfg.ch))
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not create solid heightfield.");
return false;
}
// Allocate array that can hold triangle area types.
// If you have multiple meshes you need to process, allocate
// and array which can hold the max number of triangles you need to process.
m_triareas = new unsigned char[ntris];
if (!m_triareas)
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'm_triareas' (%d).", ntris);
return false;
}
// Find triangles which are walkable based on their slope and rasterize them.
// If your input data is multiple meshes, you can transform them here, calculate
// the are type for each of the meshes and rasterize them.
memset(m_triareas, 0, ntris*sizeof(unsigned char));
rcMarkWalkableTriangles(m_ctx, m_cfg.walkableSlopeAngle, verts, nverts, tris, ntris, m_triareas);
if (!rcRasterizeTriangles(m_ctx, verts, nverts, tris, m_triareas, ntris, *m_solid, m_cfg.walkableClimb))
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not rasterize triangles.");
return false;
}
if (!m_keepInterResults)
{
delete [] m_triareas;
m_triareas = 0;
}
//
// Step 3. Filter walkables surfaces.
//
// Once all geoemtry is rasterized, we do initial pass of filtering to
// remove unwanted overhangs caused by the conservative rasterization
// as well as filter spans where the character cannot possibly stand.
if (m_filterLowHangingObstacles)
rcFilterLowHangingWalkableObstacles(m_ctx, m_cfg.walkableClimb, *m_solid);
if (m_filterLedgeSpans)
rcFilterLedgeSpans(m_ctx, m_cfg.walkableHeight, m_cfg.walkableClimb, *m_solid);
if (m_filterWalkableLowHeightSpans)
rcFilterWalkableLowHeightSpans(m_ctx, m_cfg.walkableHeight, *m_solid);
//
// Step 4. Partition walkable surface to simple regions.
//
// Compact the heightfield so that it is faster to handle from now on.
// This will result more cache coherent data as well as the neighbours
// between walkable cells will be calculated.
m_chf = rcAllocCompactHeightfield();
if (!m_chf)
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'chf'.");
return false;
}
if (!rcBuildCompactHeightfield(m_ctx, m_cfg.walkableHeight, m_cfg.walkableClimb, *m_solid, *m_chf))
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build compact data.");
return false;
}
if (!m_keepInterResults)
{
rcFreeHeightField(m_solid);
m_solid = 0;
}
// Erode the walkable area by agent radius.
if (!rcErodeWalkableArea(m_ctx, m_cfg.walkableRadius, *m_chf))
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not erode.");
return false;
}
// (Optional) Mark areas.
const ConvexVolume* vols = m_geom->getConvexVolumes();
for (int i = 0; i < m_geom->getConvexVolumeCount(); ++i)
rcMarkConvexPolyArea(m_ctx, vols[i].verts, vols[i].nverts, vols[i].hmin, vols[i].hmax, (unsigned char)vols[i].area, *m_chf);
// Partition the heightfield so that we can use simple algorithm later to triangulate the walkable areas.
// There are 3 martitioning methods, each with some pros and cons:
// 1) Watershed partitioning
// - the classic Recast partitioning
// - creates the nicest tessellation
// - usually slowest
// - partitions the heightfield into nice regions without holes or overlaps
// - the are some corner cases where this method creates produces holes and overlaps
// - holes may appear when a small obstacles is close to large open area (triangulation can handle this)
// - overlaps may occur if you have narrow spiral corridors (i.e stairs), this make triangulation to fail
// * generally the best choice if you precompute the nacmesh, use this if you have large open areas
// 2) Monotone partioning
// - fastest
// - partitions the heightfield into regions without holes and overlaps (guaranteed)
// - creates long thin polygons, which sometimes causes paths with detours
// * use this if you want fast navmesh generation
// 3) Layer partitoining
// - quite fast
// - partitions the heighfield into non-overlapping regions
// - relies on the triangulation code to cope with holes (thus slower than monotone partitioning)
// - produces better triangles than monotone partitioning
// - does not have the corner cases of watershed partitioning
// - can be slow and create a bit ugly tessellation (still better than monotone)
// if you have large open areas with small obstacles (not a problem if you use tiles)
// * good choice to use for tiled navmesh with medium and small sized tiles
if (m_partitionType == SAMPLE_PARTITION_WATERSHED)
{
// Prepare for region partitioning, by calculating distance field along the walkable surface.
if (!rcBuildDistanceField(m_ctx, *m_chf))
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build distance field.");
return false;
}
// Partition the walkable surface into simple regions without holes.
if (!rcBuildRegions(m_ctx, *m_chf, 0, m_cfg.minRegionArea, m_cfg.mergeRegionArea))
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build watershed regions.");
return false;
}
}
else if (m_partitionType == SAMPLE_PARTITION_MONOTONE)
{
// Partition the walkable surface into simple regions without holes.
// Monotone partitioning does not need distancefield.
if (!rcBuildRegionsMonotone(m_ctx, *m_chf, 0, m_cfg.minRegionArea, m_cfg.mergeRegionArea))
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build monotone regions.");
return false;
}
}
else // SAMPLE_PARTITION_LAYERS
{
// Partition the walkable surface into simple regions without holes.
if (!rcBuildLayerRegions(m_ctx, *m_chf, 0, m_cfg.minRegionArea))
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build layer regions.");
return false;
}
}
//
// Step 5. Trace and simplify region contours.
//
// Create contours.
m_cset = rcAllocContourSet();
if (!m_cset)
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'cset'.");
return false;
}
if (!rcBuildContours(m_ctx, *m_chf, m_cfg.maxSimplificationError, m_cfg.maxEdgeLen, *m_cset))
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not create contours.");
return false;
}
//
// Step 6. Build polygons mesh from contours.
//
// Build polygon navmesh from the contours.
m_pmesh = rcAllocPolyMesh();
if (!m_pmesh)
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'pmesh'.");
return false;
}
if (!rcBuildPolyMesh(m_ctx, *m_cset, m_cfg.maxVertsPerPoly, *m_pmesh))
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not triangulate contours.");
return false;
}
//
// Step 7. Create detail mesh which allows to access approximate height on each polygon.
//
m_dmesh = rcAllocPolyMeshDetail();
if (!m_dmesh)
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'pmdtl'.");
return false;
}
if (!rcBuildPolyMeshDetail(m_ctx, *m_pmesh, *m_chf, m_cfg.detailSampleDist, m_cfg.detailSampleMaxError, *m_dmesh))
{
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build detail mesh.");
return false;
}
if (!m_keepInterResults)
{
rcFreeCompactHeightfield(m_chf);
m_chf = 0;
rcFreeContourSet(m_cset);
m_cset = 0;
}
// At this point the navigation mesh data is ready, you can access it from m_pmesh.
// See duDebugDrawPolyMesh or dtCreateNavMeshData as examples how to access the data.
//
// (Optional) Step 8. Create Detour data from Recast poly mesh.
//
// The GUI may allow more max points per polygon than Detour can handle.
// Only build the detour navmesh if we do not exceed the limit.
if (m_cfg.maxVertsPerPoly <= DT_VERTS_PER_POLYGON)
{
unsigned char* navData = 0;
int navDataSize = 0;
// Update poly flags from areas.
for (int i = 0; i < m_pmesh->npolys; ++i)
{
if (m_pmesh->areas[i] == RC_WALKABLE_AREA)
m_pmesh->areas[i] = SAMPLE_POLYAREA_GROUND;
if (m_pmesh->areas[i] == SAMPLE_POLYAREA_GROUND ||
m_pmesh->areas[i] == SAMPLE_POLYAREA_GRASS ||
m_pmesh->areas[i] == SAMPLE_POLYAREA_ROAD)
{
m_pmesh->flags[i] = SAMPLE_POLYFLAGS_WALK;
}
else if (m_pmesh->areas[i] == SAMPLE_POLYAREA_WATER)
{
m_pmesh->flags[i] = SAMPLE_POLYFLAGS_SWIM;
}
else if (m_pmesh->areas[i] == SAMPLE_POLYAREA_DOOR)
{
m_pmesh->flags[i] = SAMPLE_POLYFLAGS_WALK | SAMPLE_POLYFLAGS_DOOR;
}
}
dtNavMeshCreateParams params;
memset(&params, 0, sizeof(params));
params.verts = m_pmesh->verts;
params.vertCount = m_pmesh->nverts;
params.polys = m_pmesh->polys;
params.polyAreas = m_pmesh->areas;
params.polyFlags = m_pmesh->flags;
params.polyCount = m_pmesh->npolys;
params.nvp = m_pmesh->nvp;
params.detailMeshes = m_dmesh->meshes;
params.detailVerts = m_dmesh->verts;
params.detailVertsCount = m_dmesh->nverts;
params.detailTris = m_dmesh->tris;
params.detailTriCount = m_dmesh->ntris;
params.offMeshConVerts = m_geom->getOffMeshConnectionVerts();
params.offMeshConRad = m_geom->getOffMeshConnectionRads();
params.offMeshConDir = m_geom->getOffMeshConnectionDirs();
params.offMeshConAreas = m_geom->getOffMeshConnectionAreas();
params.offMeshConFlags = m_geom->getOffMeshConnectionFlags();
params.offMeshConUserID = m_geom->getOffMeshConnectionId();
params.offMeshConCount = m_geom->getOffMeshConnectionCount();
params.walkableHeight = m_agentHeight;
params.walkableRadius = m_agentRadius;
params.walkableClimb = m_agentMaxClimb;
rcVcopy(params.bmin, m_pmesh->bmin);
rcVcopy(params.bmax, m_pmesh->bmax);
params.cs = m_cfg.cs;
params.ch = m_cfg.ch;
params.buildBvTree = true;
if (!dtCreateNavMeshData(&params, &navData, &navDataSize))
{
m_ctx->log(RC_LOG_ERROR, "Could not build Detour navmesh.");
return false;
}
m_navMesh = dtAllocNavMesh();
if (!m_navMesh)
{
dtFree(navData);
m_ctx->log(RC_LOG_ERROR, "Could not create Detour navmesh");
return false;
}
dtStatus status;
status = m_navMesh->init(navData, navDataSize, DT_TILE_FREE_DATA);
if (dtStatusFailed(status))
{
dtFree(navData);
m_ctx->log(RC_LOG_ERROR, "Could not init Detour navmesh");
return false;
}
status = m_navQuery->init(m_navMesh, 2048);
if (dtStatusFailed(status))
{
m_ctx->log(RC_LOG_ERROR, "Could not init Detour navmesh query");
return false;
}
}
m_ctx->stopTimer(RC_TIMER_TOTAL);
// Show performance stats.
duLogBuildTimes(*m_ctx, m_ctx->getAccumulatedTime(RC_TIMER_TOTAL));
m_ctx->log(RC_LOG_PROGRESS, ">> Polymesh: %d vertices %d polygons", m_pmesh->nverts, m_pmesh->npolys);
m_totalBuildTimeMs = m_ctx->getAccumulatedTime(RC_TIMER_TOTAL)/1000.0f;
if (m_tool)
m_tool->init(this);
initToolStates(this);
return true;
}