mirror of
https://github.com/TES3MP/openmw-tes3mp.git
synced 2025-01-24 20:23:51 +00:00
755 lines
23 KiB
C++
755 lines
23 KiB
C++
//
|
|
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
|
|
//
|
|
// This software is provided 'as-is', without any express or implied
|
|
// warranty. In no event will the authors be held liable for any damages
|
|
// arising from the use of this software.
|
|
// Permission is granted to anyone to use this software for any purpose,
|
|
// including commercial applications, and to alter it and redistribute it
|
|
// freely, subject to the following restrictions:
|
|
// 1. The origin of this software must not be misrepresented; you must not
|
|
// claim that you wrote the original software. If you use this software
|
|
// in a product, an acknowledgment in the product documentation would be
|
|
// appreciated but is not required.
|
|
// 2. Altered source versions must be plainly marked as such, and must not be
|
|
// misrepresented as being the original software.
|
|
// 3. This notice may not be removed or altered from any source distribution.
|
|
//
|
|
|
|
#define _USE_MATH_DEFINES
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include "SDL.h"
|
|
#include "SDL_opengl.h"
|
|
#include "imgui.h"
|
|
#include "InputGeom.h"
|
|
#include "Sample.h"
|
|
#include "Sample_SoloMesh.h"
|
|
#include "Recast.h"
|
|
#include "RecastDebugDraw.h"
|
|
#include "RecastDump.h"
|
|
#include "DetourNavMesh.h"
|
|
#include "DetourNavMeshBuilder.h"
|
|
#include "DetourDebugDraw.h"
|
|
#include "NavMeshTesterTool.h"
|
|
#include "NavMeshPruneTool.h"
|
|
#include "OffMeshConnectionTool.h"
|
|
#include "ConvexVolumeTool.h"
|
|
#include "CrowdTool.h"
|
|
|
|
#ifdef WIN32
|
|
# define snprintf _snprintf
|
|
#endif
|
|
|
|
|
|
Sample_SoloMesh::Sample_SoloMesh() :
|
|
m_keepInterResults(true),
|
|
m_totalBuildTimeMs(0),
|
|
m_triareas(0),
|
|
m_solid(0),
|
|
m_chf(0),
|
|
m_cset(0),
|
|
m_pmesh(0),
|
|
m_dmesh(0),
|
|
m_drawMode(DRAWMODE_NAVMESH)
|
|
{
|
|
setTool(new NavMeshTesterTool);
|
|
}
|
|
|
|
Sample_SoloMesh::~Sample_SoloMesh()
|
|
{
|
|
cleanup();
|
|
}
|
|
|
|
void Sample_SoloMesh::cleanup()
|
|
{
|
|
delete [] m_triareas;
|
|
m_triareas = 0;
|
|
rcFreeHeightField(m_solid);
|
|
m_solid = 0;
|
|
rcFreeCompactHeightfield(m_chf);
|
|
m_chf = 0;
|
|
rcFreeContourSet(m_cset);
|
|
m_cset = 0;
|
|
rcFreePolyMesh(m_pmesh);
|
|
m_pmesh = 0;
|
|
rcFreePolyMeshDetail(m_dmesh);
|
|
m_dmesh = 0;
|
|
dtFreeNavMesh(m_navMesh);
|
|
m_navMesh = 0;
|
|
}
|
|
|
|
void Sample_SoloMesh::handleSettings()
|
|
{
|
|
Sample::handleCommonSettings();
|
|
|
|
if (imguiCheck("Keep Itermediate Results", m_keepInterResults))
|
|
m_keepInterResults = !m_keepInterResults;
|
|
|
|
imguiSeparator();
|
|
|
|
imguiIndent();
|
|
imguiIndent();
|
|
|
|
if (imguiButton("Save"))
|
|
{
|
|
Sample::saveAll("solo_navmesh.bin", m_navMesh);
|
|
}
|
|
|
|
if (imguiButton("Load"))
|
|
{
|
|
dtFreeNavMesh(m_navMesh);
|
|
m_navMesh = Sample::loadAll("solo_navmesh.bin");
|
|
m_navQuery->init(m_navMesh, 2048);
|
|
}
|
|
|
|
imguiUnindent();
|
|
imguiUnindent();
|
|
|
|
char msg[64];
|
|
snprintf(msg, 64, "Build Time: %.1fms", m_totalBuildTimeMs);
|
|
imguiLabel(msg);
|
|
|
|
imguiSeparator();
|
|
}
|
|
|
|
void Sample_SoloMesh::handleTools()
|
|
{
|
|
int type = !m_tool ? TOOL_NONE : m_tool->type();
|
|
|
|
if (imguiCheck("Test Navmesh", type == TOOL_NAVMESH_TESTER))
|
|
{
|
|
setTool(new NavMeshTesterTool);
|
|
}
|
|
if (imguiCheck("Prune Navmesh", type == TOOL_NAVMESH_PRUNE))
|
|
{
|
|
setTool(new NavMeshPruneTool);
|
|
}
|
|
if (imguiCheck("Create Off-Mesh Connections", type == TOOL_OFFMESH_CONNECTION))
|
|
{
|
|
setTool(new OffMeshConnectionTool);
|
|
}
|
|
if (imguiCheck("Create Convex Volumes", type == TOOL_CONVEX_VOLUME))
|
|
{
|
|
setTool(new ConvexVolumeTool);
|
|
}
|
|
if (imguiCheck("Create Crowds", type == TOOL_CROWD))
|
|
{
|
|
setTool(new CrowdTool);
|
|
}
|
|
|
|
imguiSeparatorLine();
|
|
|
|
imguiIndent();
|
|
|
|
if (m_tool)
|
|
m_tool->handleMenu();
|
|
|
|
imguiUnindent();
|
|
|
|
}
|
|
|
|
void Sample_SoloMesh::handleDebugMode()
|
|
{
|
|
// Check which modes are valid.
|
|
bool valid[MAX_DRAWMODE];
|
|
for (int i = 0; i < MAX_DRAWMODE; ++i)
|
|
valid[i] = false;
|
|
|
|
if (m_geom)
|
|
{
|
|
valid[DRAWMODE_NAVMESH] = m_navMesh != 0;
|
|
valid[DRAWMODE_NAVMESH_TRANS] = m_navMesh != 0;
|
|
valid[DRAWMODE_NAVMESH_BVTREE] = m_navMesh != 0;
|
|
valid[DRAWMODE_NAVMESH_NODES] = m_navQuery != 0;
|
|
valid[DRAWMODE_NAVMESH_INVIS] = m_navMesh != 0;
|
|
valid[DRAWMODE_MESH] = true;
|
|
valid[DRAWMODE_VOXELS] = m_solid != 0;
|
|
valid[DRAWMODE_VOXELS_WALKABLE] = m_solid != 0;
|
|
valid[DRAWMODE_COMPACT] = m_chf != 0;
|
|
valid[DRAWMODE_COMPACT_DISTANCE] = m_chf != 0;
|
|
valid[DRAWMODE_COMPACT_REGIONS] = m_chf != 0;
|
|
valid[DRAWMODE_REGION_CONNECTIONS] = m_cset != 0;
|
|
valid[DRAWMODE_RAW_CONTOURS] = m_cset != 0;
|
|
valid[DRAWMODE_BOTH_CONTOURS] = m_cset != 0;
|
|
valid[DRAWMODE_CONTOURS] = m_cset != 0;
|
|
valid[DRAWMODE_POLYMESH] = m_pmesh != 0;
|
|
valid[DRAWMODE_POLYMESH_DETAIL] = m_dmesh != 0;
|
|
}
|
|
|
|
int unavail = 0;
|
|
for (int i = 0; i < MAX_DRAWMODE; ++i)
|
|
if (!valid[i]) unavail++;
|
|
|
|
if (unavail == MAX_DRAWMODE)
|
|
return;
|
|
|
|
imguiLabel("Draw");
|
|
if (imguiCheck("Input Mesh", m_drawMode == DRAWMODE_MESH, valid[DRAWMODE_MESH]))
|
|
m_drawMode = DRAWMODE_MESH;
|
|
if (imguiCheck("Navmesh", m_drawMode == DRAWMODE_NAVMESH, valid[DRAWMODE_NAVMESH]))
|
|
m_drawMode = DRAWMODE_NAVMESH;
|
|
if (imguiCheck("Navmesh Invis", m_drawMode == DRAWMODE_NAVMESH_INVIS, valid[DRAWMODE_NAVMESH_INVIS]))
|
|
m_drawMode = DRAWMODE_NAVMESH_INVIS;
|
|
if (imguiCheck("Navmesh Trans", m_drawMode == DRAWMODE_NAVMESH_TRANS, valid[DRAWMODE_NAVMESH_TRANS]))
|
|
m_drawMode = DRAWMODE_NAVMESH_TRANS;
|
|
if (imguiCheck("Navmesh BVTree", m_drawMode == DRAWMODE_NAVMESH_BVTREE, valid[DRAWMODE_NAVMESH_BVTREE]))
|
|
m_drawMode = DRAWMODE_NAVMESH_BVTREE;
|
|
if (imguiCheck("Navmesh Nodes", m_drawMode == DRAWMODE_NAVMESH_NODES, valid[DRAWMODE_NAVMESH_NODES]))
|
|
m_drawMode = DRAWMODE_NAVMESH_NODES;
|
|
if (imguiCheck("Voxels", m_drawMode == DRAWMODE_VOXELS, valid[DRAWMODE_VOXELS]))
|
|
m_drawMode = DRAWMODE_VOXELS;
|
|
if (imguiCheck("Walkable Voxels", m_drawMode == DRAWMODE_VOXELS_WALKABLE, valid[DRAWMODE_VOXELS_WALKABLE]))
|
|
m_drawMode = DRAWMODE_VOXELS_WALKABLE;
|
|
if (imguiCheck("Compact", m_drawMode == DRAWMODE_COMPACT, valid[DRAWMODE_COMPACT]))
|
|
m_drawMode = DRAWMODE_COMPACT;
|
|
if (imguiCheck("Compact Distance", m_drawMode == DRAWMODE_COMPACT_DISTANCE, valid[DRAWMODE_COMPACT_DISTANCE]))
|
|
m_drawMode = DRAWMODE_COMPACT_DISTANCE;
|
|
if (imguiCheck("Compact Regions", m_drawMode == DRAWMODE_COMPACT_REGIONS, valid[DRAWMODE_COMPACT_REGIONS]))
|
|
m_drawMode = DRAWMODE_COMPACT_REGIONS;
|
|
if (imguiCheck("Region Connections", m_drawMode == DRAWMODE_REGION_CONNECTIONS, valid[DRAWMODE_REGION_CONNECTIONS]))
|
|
m_drawMode = DRAWMODE_REGION_CONNECTIONS;
|
|
if (imguiCheck("Raw Contours", m_drawMode == DRAWMODE_RAW_CONTOURS, valid[DRAWMODE_RAW_CONTOURS]))
|
|
m_drawMode = DRAWMODE_RAW_CONTOURS;
|
|
if (imguiCheck("Both Contours", m_drawMode == DRAWMODE_BOTH_CONTOURS, valid[DRAWMODE_BOTH_CONTOURS]))
|
|
m_drawMode = DRAWMODE_BOTH_CONTOURS;
|
|
if (imguiCheck("Contours", m_drawMode == DRAWMODE_CONTOURS, valid[DRAWMODE_CONTOURS]))
|
|
m_drawMode = DRAWMODE_CONTOURS;
|
|
if (imguiCheck("Poly Mesh", m_drawMode == DRAWMODE_POLYMESH, valid[DRAWMODE_POLYMESH]))
|
|
m_drawMode = DRAWMODE_POLYMESH;
|
|
if (imguiCheck("Poly Mesh Detail", m_drawMode == DRAWMODE_POLYMESH_DETAIL, valid[DRAWMODE_POLYMESH_DETAIL]))
|
|
m_drawMode = DRAWMODE_POLYMESH_DETAIL;
|
|
|
|
if (unavail)
|
|
{
|
|
imguiValue("Tick 'Keep Itermediate Results'");
|
|
imguiValue("to see more debug mode options.");
|
|
}
|
|
}
|
|
|
|
void Sample_SoloMesh::handleRender()
|
|
{
|
|
if (!m_geom || !m_geom->getMesh())
|
|
return;
|
|
|
|
glEnable(GL_FOG);
|
|
glDepthMask(GL_TRUE);
|
|
|
|
const float texScale = 1.0f / (m_cellSize * 10.0f);
|
|
|
|
if (m_drawMode != DRAWMODE_NAVMESH_TRANS)
|
|
{
|
|
// Draw mesh
|
|
duDebugDrawTriMeshSlope(&m_dd, m_geom->getMesh()->getVerts(), m_geom->getMesh()->getVertCount(),
|
|
m_geom->getMesh()->getTris(), m_geom->getMesh()->getNormals(), m_geom->getMesh()->getTriCount(),
|
|
m_agentMaxSlope, texScale);
|
|
m_geom->drawOffMeshConnections(&m_dd);
|
|
}
|
|
|
|
glDisable(GL_FOG);
|
|
glDepthMask(GL_FALSE);
|
|
|
|
// Draw bounds
|
|
const float* bmin = m_geom->getNavMeshBoundsMin();
|
|
const float* bmax = m_geom->getNavMeshBoundsMax();
|
|
duDebugDrawBoxWire(&m_dd, bmin[0],bmin[1],bmin[2], bmax[0],bmax[1],bmax[2], duRGBA(255,255,255,128), 1.0f);
|
|
m_dd.begin(DU_DRAW_POINTS, 5.0f);
|
|
m_dd.vertex(bmin[0],bmin[1],bmin[2],duRGBA(255,255,255,128));
|
|
m_dd.end();
|
|
|
|
if (m_navMesh && m_navQuery &&
|
|
(m_drawMode == DRAWMODE_NAVMESH ||
|
|
m_drawMode == DRAWMODE_NAVMESH_TRANS ||
|
|
m_drawMode == DRAWMODE_NAVMESH_BVTREE ||
|
|
m_drawMode == DRAWMODE_NAVMESH_NODES ||
|
|
m_drawMode == DRAWMODE_NAVMESH_INVIS))
|
|
{
|
|
if (m_drawMode != DRAWMODE_NAVMESH_INVIS)
|
|
duDebugDrawNavMeshWithClosedList(&m_dd, *m_navMesh, *m_navQuery, m_navMeshDrawFlags);
|
|
if (m_drawMode == DRAWMODE_NAVMESH_BVTREE)
|
|
duDebugDrawNavMeshBVTree(&m_dd, *m_navMesh);
|
|
if (m_drawMode == DRAWMODE_NAVMESH_NODES)
|
|
duDebugDrawNavMeshNodes(&m_dd, *m_navQuery);
|
|
duDebugDrawNavMeshPolysWithFlags(&m_dd, *m_navMesh, SAMPLE_POLYFLAGS_DISABLED, duRGBA(0,0,0,128));
|
|
}
|
|
|
|
glDepthMask(GL_TRUE);
|
|
|
|
if (m_chf && m_drawMode == DRAWMODE_COMPACT)
|
|
duDebugDrawCompactHeightfieldSolid(&m_dd, *m_chf);
|
|
|
|
if (m_chf && m_drawMode == DRAWMODE_COMPACT_DISTANCE)
|
|
duDebugDrawCompactHeightfieldDistance(&m_dd, *m_chf);
|
|
if (m_chf && m_drawMode == DRAWMODE_COMPACT_REGIONS)
|
|
duDebugDrawCompactHeightfieldRegions(&m_dd, *m_chf);
|
|
if (m_solid && m_drawMode == DRAWMODE_VOXELS)
|
|
{
|
|
glEnable(GL_FOG);
|
|
duDebugDrawHeightfieldSolid(&m_dd, *m_solid);
|
|
glDisable(GL_FOG);
|
|
}
|
|
if (m_solid && m_drawMode == DRAWMODE_VOXELS_WALKABLE)
|
|
{
|
|
glEnable(GL_FOG);
|
|
duDebugDrawHeightfieldWalkable(&m_dd, *m_solid);
|
|
glDisable(GL_FOG);
|
|
}
|
|
if (m_cset && m_drawMode == DRAWMODE_RAW_CONTOURS)
|
|
{
|
|
glDepthMask(GL_FALSE);
|
|
duDebugDrawRawContours(&m_dd, *m_cset);
|
|
glDepthMask(GL_TRUE);
|
|
}
|
|
if (m_cset && m_drawMode == DRAWMODE_BOTH_CONTOURS)
|
|
{
|
|
glDepthMask(GL_FALSE);
|
|
duDebugDrawRawContours(&m_dd, *m_cset, 0.5f);
|
|
duDebugDrawContours(&m_dd, *m_cset);
|
|
glDepthMask(GL_TRUE);
|
|
}
|
|
if (m_cset && m_drawMode == DRAWMODE_CONTOURS)
|
|
{
|
|
glDepthMask(GL_FALSE);
|
|
duDebugDrawContours(&m_dd, *m_cset);
|
|
glDepthMask(GL_TRUE);
|
|
}
|
|
if (m_chf && m_cset && m_drawMode == DRAWMODE_REGION_CONNECTIONS)
|
|
{
|
|
duDebugDrawCompactHeightfieldRegions(&m_dd, *m_chf);
|
|
|
|
glDepthMask(GL_FALSE);
|
|
duDebugDrawRegionConnections(&m_dd, *m_cset);
|
|
glDepthMask(GL_TRUE);
|
|
}
|
|
if (m_pmesh && m_drawMode == DRAWMODE_POLYMESH)
|
|
{
|
|
glDepthMask(GL_FALSE);
|
|
duDebugDrawPolyMesh(&m_dd, *m_pmesh);
|
|
glDepthMask(GL_TRUE);
|
|
}
|
|
if (m_dmesh && m_drawMode == DRAWMODE_POLYMESH_DETAIL)
|
|
{
|
|
glDepthMask(GL_FALSE);
|
|
duDebugDrawPolyMeshDetail(&m_dd, *m_dmesh);
|
|
glDepthMask(GL_TRUE);
|
|
}
|
|
|
|
m_geom->drawConvexVolumes(&m_dd);
|
|
|
|
if (m_tool)
|
|
m_tool->handleRender();
|
|
renderToolStates();
|
|
|
|
glDepthMask(GL_TRUE);
|
|
}
|
|
|
|
void Sample_SoloMesh::handleRenderOverlay(double* proj, double* model, int* view)
|
|
{
|
|
if (m_tool)
|
|
m_tool->handleRenderOverlay(proj, model, view);
|
|
renderOverlayToolStates(proj, model, view);
|
|
}
|
|
|
|
void Sample_SoloMesh::handleMeshChanged(class InputGeom* geom)
|
|
{
|
|
Sample::handleMeshChanged(geom);
|
|
|
|
dtFreeNavMesh(m_navMesh);
|
|
m_navMesh = 0;
|
|
|
|
if (m_tool)
|
|
{
|
|
m_tool->reset();
|
|
m_tool->init(this);
|
|
}
|
|
resetToolStates();
|
|
initToolStates(this);
|
|
}
|
|
|
|
|
|
bool Sample_SoloMesh::handleBuild()
|
|
{
|
|
if (!m_geom || !m_geom->getMesh())
|
|
{
|
|
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Input mesh is not specified.");
|
|
return false;
|
|
}
|
|
|
|
cleanup();
|
|
|
|
const float* bmin = m_geom->getNavMeshBoundsMin();
|
|
const float* bmax = m_geom->getNavMeshBoundsMax();
|
|
const float* verts = m_geom->getMesh()->getVerts();
|
|
const int nverts = m_geom->getMesh()->getVertCount();
|
|
const int* tris = m_geom->getMesh()->getTris();
|
|
const int ntris = m_geom->getMesh()->getTriCount();
|
|
|
|
//
|
|
// Step 1. Initialize build config.
|
|
//
|
|
|
|
// Init build configuration from GUI
|
|
memset(&m_cfg, 0, sizeof(m_cfg));
|
|
m_cfg.cs = m_cellSize;
|
|
m_cfg.ch = m_cellHeight;
|
|
m_cfg.walkableSlopeAngle = m_agentMaxSlope;
|
|
m_cfg.walkableHeight = (int)ceilf(m_agentHeight / m_cfg.ch);
|
|
m_cfg.walkableClimb = (int)floorf(m_agentMaxClimb / m_cfg.ch);
|
|
m_cfg.walkableRadius = (int)ceilf(m_agentRadius / m_cfg.cs);
|
|
m_cfg.maxEdgeLen = (int)(m_edgeMaxLen / m_cellSize);
|
|
m_cfg.maxSimplificationError = m_edgeMaxError;
|
|
m_cfg.minRegionArea = (int)rcSqr(m_regionMinSize); // Note: area = size*size
|
|
m_cfg.mergeRegionArea = (int)rcSqr(m_regionMergeSize); // Note: area = size*size
|
|
m_cfg.maxVertsPerPoly = (int)m_vertsPerPoly;
|
|
m_cfg.detailSampleDist = m_detailSampleDist < 0.9f ? 0 : m_cellSize * m_detailSampleDist;
|
|
m_cfg.detailSampleMaxError = m_cellHeight * m_detailSampleMaxError;
|
|
|
|
// Set the area where the navigation will be build.
|
|
// Here the bounds of the input mesh are used, but the
|
|
// area could be specified by an user defined box, etc.
|
|
rcVcopy(m_cfg.bmin, bmin);
|
|
rcVcopy(m_cfg.bmax, bmax);
|
|
rcCalcGridSize(m_cfg.bmin, m_cfg.bmax, m_cfg.cs, &m_cfg.width, &m_cfg.height);
|
|
|
|
// Reset build times gathering.
|
|
m_ctx->resetTimers();
|
|
|
|
// Start the build process.
|
|
m_ctx->startTimer(RC_TIMER_TOTAL);
|
|
|
|
m_ctx->log(RC_LOG_PROGRESS, "Building navigation:");
|
|
m_ctx->log(RC_LOG_PROGRESS, " - %d x %d cells", m_cfg.width, m_cfg.height);
|
|
m_ctx->log(RC_LOG_PROGRESS, " - %.1fK verts, %.1fK tris", nverts/1000.0f, ntris/1000.0f);
|
|
|
|
//
|
|
// Step 2. Rasterize input polygon soup.
|
|
//
|
|
|
|
// Allocate voxel heightfield where we rasterize our input data to.
|
|
m_solid = rcAllocHeightfield();
|
|
if (!m_solid)
|
|
{
|
|
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'solid'.");
|
|
return false;
|
|
}
|
|
if (!rcCreateHeightfield(m_ctx, *m_solid, m_cfg.width, m_cfg.height, m_cfg.bmin, m_cfg.bmax, m_cfg.cs, m_cfg.ch))
|
|
{
|
|
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not create solid heightfield.");
|
|
return false;
|
|
}
|
|
|
|
// Allocate array that can hold triangle area types.
|
|
// If you have multiple meshes you need to process, allocate
|
|
// and array which can hold the max number of triangles you need to process.
|
|
m_triareas = new unsigned char[ntris];
|
|
if (!m_triareas)
|
|
{
|
|
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'm_triareas' (%d).", ntris);
|
|
return false;
|
|
}
|
|
|
|
// Find triangles which are walkable based on their slope and rasterize them.
|
|
// If your input data is multiple meshes, you can transform them here, calculate
|
|
// the are type for each of the meshes and rasterize them.
|
|
memset(m_triareas, 0, ntris*sizeof(unsigned char));
|
|
rcMarkWalkableTriangles(m_ctx, m_cfg.walkableSlopeAngle, verts, nverts, tris, ntris, m_triareas);
|
|
if (!rcRasterizeTriangles(m_ctx, verts, nverts, tris, m_triareas, ntris, *m_solid, m_cfg.walkableClimb))
|
|
{
|
|
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not rasterize triangles.");
|
|
return false;
|
|
}
|
|
|
|
if (!m_keepInterResults)
|
|
{
|
|
delete [] m_triareas;
|
|
m_triareas = 0;
|
|
}
|
|
|
|
//
|
|
// Step 3. Filter walkables surfaces.
|
|
//
|
|
|
|
// Once all geoemtry is rasterized, we do initial pass of filtering to
|
|
// remove unwanted overhangs caused by the conservative rasterization
|
|
// as well as filter spans where the character cannot possibly stand.
|
|
if (m_filterLowHangingObstacles)
|
|
rcFilterLowHangingWalkableObstacles(m_ctx, m_cfg.walkableClimb, *m_solid);
|
|
if (m_filterLedgeSpans)
|
|
rcFilterLedgeSpans(m_ctx, m_cfg.walkableHeight, m_cfg.walkableClimb, *m_solid);
|
|
if (m_filterWalkableLowHeightSpans)
|
|
rcFilterWalkableLowHeightSpans(m_ctx, m_cfg.walkableHeight, *m_solid);
|
|
|
|
|
|
//
|
|
// Step 4. Partition walkable surface to simple regions.
|
|
//
|
|
|
|
// Compact the heightfield so that it is faster to handle from now on.
|
|
// This will result more cache coherent data as well as the neighbours
|
|
// between walkable cells will be calculated.
|
|
m_chf = rcAllocCompactHeightfield();
|
|
if (!m_chf)
|
|
{
|
|
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'chf'.");
|
|
return false;
|
|
}
|
|
if (!rcBuildCompactHeightfield(m_ctx, m_cfg.walkableHeight, m_cfg.walkableClimb, *m_solid, *m_chf))
|
|
{
|
|
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build compact data.");
|
|
return false;
|
|
}
|
|
|
|
if (!m_keepInterResults)
|
|
{
|
|
rcFreeHeightField(m_solid);
|
|
m_solid = 0;
|
|
}
|
|
|
|
// Erode the walkable area by agent radius.
|
|
if (!rcErodeWalkableArea(m_ctx, m_cfg.walkableRadius, *m_chf))
|
|
{
|
|
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not erode.");
|
|
return false;
|
|
}
|
|
|
|
// (Optional) Mark areas.
|
|
const ConvexVolume* vols = m_geom->getConvexVolumes();
|
|
for (int i = 0; i < m_geom->getConvexVolumeCount(); ++i)
|
|
rcMarkConvexPolyArea(m_ctx, vols[i].verts, vols[i].nverts, vols[i].hmin, vols[i].hmax, (unsigned char)vols[i].area, *m_chf);
|
|
|
|
|
|
// Partition the heightfield so that we can use simple algorithm later to triangulate the walkable areas.
|
|
// There are 3 martitioning methods, each with some pros and cons:
|
|
// 1) Watershed partitioning
|
|
// - the classic Recast partitioning
|
|
// - creates the nicest tessellation
|
|
// - usually slowest
|
|
// - partitions the heightfield into nice regions without holes or overlaps
|
|
// - the are some corner cases where this method creates produces holes and overlaps
|
|
// - holes may appear when a small obstacles is close to large open area (triangulation can handle this)
|
|
// - overlaps may occur if you have narrow spiral corridors (i.e stairs), this make triangulation to fail
|
|
// * generally the best choice if you precompute the nacmesh, use this if you have large open areas
|
|
// 2) Monotone partioning
|
|
// - fastest
|
|
// - partitions the heightfield into regions without holes and overlaps (guaranteed)
|
|
// - creates long thin polygons, which sometimes causes paths with detours
|
|
// * use this if you want fast navmesh generation
|
|
// 3) Layer partitoining
|
|
// - quite fast
|
|
// - partitions the heighfield into non-overlapping regions
|
|
// - relies on the triangulation code to cope with holes (thus slower than monotone partitioning)
|
|
// - produces better triangles than monotone partitioning
|
|
// - does not have the corner cases of watershed partitioning
|
|
// - can be slow and create a bit ugly tessellation (still better than monotone)
|
|
// if you have large open areas with small obstacles (not a problem if you use tiles)
|
|
// * good choice to use for tiled navmesh with medium and small sized tiles
|
|
|
|
if (m_partitionType == SAMPLE_PARTITION_WATERSHED)
|
|
{
|
|
// Prepare for region partitioning, by calculating distance field along the walkable surface.
|
|
if (!rcBuildDistanceField(m_ctx, *m_chf))
|
|
{
|
|
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build distance field.");
|
|
return false;
|
|
}
|
|
|
|
// Partition the walkable surface into simple regions without holes.
|
|
if (!rcBuildRegions(m_ctx, *m_chf, 0, m_cfg.minRegionArea, m_cfg.mergeRegionArea))
|
|
{
|
|
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build watershed regions.");
|
|
return false;
|
|
}
|
|
}
|
|
else if (m_partitionType == SAMPLE_PARTITION_MONOTONE)
|
|
{
|
|
// Partition the walkable surface into simple regions without holes.
|
|
// Monotone partitioning does not need distancefield.
|
|
if (!rcBuildRegionsMonotone(m_ctx, *m_chf, 0, m_cfg.minRegionArea, m_cfg.mergeRegionArea))
|
|
{
|
|
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build monotone regions.");
|
|
return false;
|
|
}
|
|
}
|
|
else // SAMPLE_PARTITION_LAYERS
|
|
{
|
|
// Partition the walkable surface into simple regions without holes.
|
|
if (!rcBuildLayerRegions(m_ctx, *m_chf, 0, m_cfg.minRegionArea))
|
|
{
|
|
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build layer regions.");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Step 5. Trace and simplify region contours.
|
|
//
|
|
|
|
// Create contours.
|
|
m_cset = rcAllocContourSet();
|
|
if (!m_cset)
|
|
{
|
|
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'cset'.");
|
|
return false;
|
|
}
|
|
if (!rcBuildContours(m_ctx, *m_chf, m_cfg.maxSimplificationError, m_cfg.maxEdgeLen, *m_cset))
|
|
{
|
|
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not create contours.");
|
|
return false;
|
|
}
|
|
|
|
//
|
|
// Step 6. Build polygons mesh from contours.
|
|
//
|
|
|
|
// Build polygon navmesh from the contours.
|
|
m_pmesh = rcAllocPolyMesh();
|
|
if (!m_pmesh)
|
|
{
|
|
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'pmesh'.");
|
|
return false;
|
|
}
|
|
if (!rcBuildPolyMesh(m_ctx, *m_cset, m_cfg.maxVertsPerPoly, *m_pmesh))
|
|
{
|
|
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not triangulate contours.");
|
|
return false;
|
|
}
|
|
|
|
//
|
|
// Step 7. Create detail mesh which allows to access approximate height on each polygon.
|
|
//
|
|
|
|
m_dmesh = rcAllocPolyMeshDetail();
|
|
if (!m_dmesh)
|
|
{
|
|
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'pmdtl'.");
|
|
return false;
|
|
}
|
|
|
|
if (!rcBuildPolyMeshDetail(m_ctx, *m_pmesh, *m_chf, m_cfg.detailSampleDist, m_cfg.detailSampleMaxError, *m_dmesh))
|
|
{
|
|
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build detail mesh.");
|
|
return false;
|
|
}
|
|
|
|
if (!m_keepInterResults)
|
|
{
|
|
rcFreeCompactHeightfield(m_chf);
|
|
m_chf = 0;
|
|
rcFreeContourSet(m_cset);
|
|
m_cset = 0;
|
|
}
|
|
|
|
// At this point the navigation mesh data is ready, you can access it from m_pmesh.
|
|
// See duDebugDrawPolyMesh or dtCreateNavMeshData as examples how to access the data.
|
|
|
|
//
|
|
// (Optional) Step 8. Create Detour data from Recast poly mesh.
|
|
//
|
|
|
|
// The GUI may allow more max points per polygon than Detour can handle.
|
|
// Only build the detour navmesh if we do not exceed the limit.
|
|
if (m_cfg.maxVertsPerPoly <= DT_VERTS_PER_POLYGON)
|
|
{
|
|
unsigned char* navData = 0;
|
|
int navDataSize = 0;
|
|
|
|
// Update poly flags from areas.
|
|
for (int i = 0; i < m_pmesh->npolys; ++i)
|
|
{
|
|
if (m_pmesh->areas[i] == RC_WALKABLE_AREA)
|
|
m_pmesh->areas[i] = SAMPLE_POLYAREA_GROUND;
|
|
|
|
if (m_pmesh->areas[i] == SAMPLE_POLYAREA_GROUND ||
|
|
m_pmesh->areas[i] == SAMPLE_POLYAREA_GRASS ||
|
|
m_pmesh->areas[i] == SAMPLE_POLYAREA_ROAD)
|
|
{
|
|
m_pmesh->flags[i] = SAMPLE_POLYFLAGS_WALK;
|
|
}
|
|
else if (m_pmesh->areas[i] == SAMPLE_POLYAREA_WATER)
|
|
{
|
|
m_pmesh->flags[i] = SAMPLE_POLYFLAGS_SWIM;
|
|
}
|
|
else if (m_pmesh->areas[i] == SAMPLE_POLYAREA_DOOR)
|
|
{
|
|
m_pmesh->flags[i] = SAMPLE_POLYFLAGS_WALK | SAMPLE_POLYFLAGS_DOOR;
|
|
}
|
|
}
|
|
|
|
|
|
dtNavMeshCreateParams params;
|
|
memset(¶ms, 0, sizeof(params));
|
|
params.verts = m_pmesh->verts;
|
|
params.vertCount = m_pmesh->nverts;
|
|
params.polys = m_pmesh->polys;
|
|
params.polyAreas = m_pmesh->areas;
|
|
params.polyFlags = m_pmesh->flags;
|
|
params.polyCount = m_pmesh->npolys;
|
|
params.nvp = m_pmesh->nvp;
|
|
params.detailMeshes = m_dmesh->meshes;
|
|
params.detailVerts = m_dmesh->verts;
|
|
params.detailVertsCount = m_dmesh->nverts;
|
|
params.detailTris = m_dmesh->tris;
|
|
params.detailTriCount = m_dmesh->ntris;
|
|
params.offMeshConVerts = m_geom->getOffMeshConnectionVerts();
|
|
params.offMeshConRad = m_geom->getOffMeshConnectionRads();
|
|
params.offMeshConDir = m_geom->getOffMeshConnectionDirs();
|
|
params.offMeshConAreas = m_geom->getOffMeshConnectionAreas();
|
|
params.offMeshConFlags = m_geom->getOffMeshConnectionFlags();
|
|
params.offMeshConUserID = m_geom->getOffMeshConnectionId();
|
|
params.offMeshConCount = m_geom->getOffMeshConnectionCount();
|
|
params.walkableHeight = m_agentHeight;
|
|
params.walkableRadius = m_agentRadius;
|
|
params.walkableClimb = m_agentMaxClimb;
|
|
rcVcopy(params.bmin, m_pmesh->bmin);
|
|
rcVcopy(params.bmax, m_pmesh->bmax);
|
|
params.cs = m_cfg.cs;
|
|
params.ch = m_cfg.ch;
|
|
params.buildBvTree = true;
|
|
|
|
if (!dtCreateNavMeshData(¶ms, &navData, &navDataSize))
|
|
{
|
|
m_ctx->log(RC_LOG_ERROR, "Could not build Detour navmesh.");
|
|
return false;
|
|
}
|
|
|
|
m_navMesh = dtAllocNavMesh();
|
|
if (!m_navMesh)
|
|
{
|
|
dtFree(navData);
|
|
m_ctx->log(RC_LOG_ERROR, "Could not create Detour navmesh");
|
|
return false;
|
|
}
|
|
|
|
dtStatus status;
|
|
|
|
status = m_navMesh->init(navData, navDataSize, DT_TILE_FREE_DATA);
|
|
if (dtStatusFailed(status))
|
|
{
|
|
dtFree(navData);
|
|
m_ctx->log(RC_LOG_ERROR, "Could not init Detour navmesh");
|
|
return false;
|
|
}
|
|
|
|
status = m_navQuery->init(m_navMesh, 2048);
|
|
if (dtStatusFailed(status))
|
|
{
|
|
m_ctx->log(RC_LOG_ERROR, "Could not init Detour navmesh query");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
m_ctx->stopTimer(RC_TIMER_TOTAL);
|
|
|
|
// Show performance stats.
|
|
duLogBuildTimes(*m_ctx, m_ctx->getAccumulatedTime(RC_TIMER_TOTAL));
|
|
m_ctx->log(RC_LOG_PROGRESS, ">> Polymesh: %d vertices %d polygons", m_pmesh->nverts, m_pmesh->npolys);
|
|
|
|
m_totalBuildTimeMs = m_ctx->getAccumulatedTime(RC_TIMER_TOTAL)/1000.0f;
|
|
|
|
if (m_tool)
|
|
m_tool->init(this);
|
|
initToolStates(this);
|
|
|
|
return true;
|
|
}
|