1
0
Fork 1
mirror of https://github.com/TES3MP/openmw-tes3mp.git synced 2025-01-22 00:53:50 +00:00
openmw-tes3mp/components/nifosg/controller.cpp

463 lines
13 KiB
C++
Raw Normal View History

#include "controller.hpp"
#include <osg/MatrixTransform>
#include <osg/TexMat>
#include <osg/Material>
2015-02-23 23:02:10 +00:00
#include <osg/Texture2D>
#include <osg/UserDataContainer>
#include <osgAnimation/MorphGeometry>
#include <osgParticle/Emitter>
#include <components/nif/data.hpp>
#include "userdata.hpp"
namespace NifOsg
{
ControllerFunction::ControllerFunction(const Nif::Controller *ctrl)
: mFrequency(ctrl->frequency)
, mPhase(ctrl->phase)
, mStartTime(ctrl->timeStart)
, mStopTime(ctrl->timeStop)
, mExtrapolationMode(static_cast<ExtrapolationMode>((ctrl->flags&0x6) >> 1))
{
}
float ControllerFunction::calculate(float value) const
{
float time = mFrequency * value + mPhase;
if (time >= mStartTime && time <= mStopTime)
return time;
switch (mExtrapolationMode)
{
case Cycle:
{
float delta = mStopTime - mStartTime;
if ( delta <= 0 )
return mStartTime;
float cycles = ( time - mStartTime ) / delta;
float remainder = ( cycles - std::floor( cycles ) ) * delta;
return mStartTime + remainder;
}
case Reverse:
{
float delta = mStopTime - mStartTime;
if ( delta <= 0 )
return mStartTime;
float cycles = ( time - mStartTime ) / delta;
float remainder = ( cycles - std::floor( cycles ) ) * delta;
// Even number of cycles?
if ( ( static_cast<int>(std::fabs( std::floor( cycles ) )) % 2 ) == 0 )
return mStartTime + remainder;
return mStopTime - remainder;
}
case Constant:
default:
return std::min(mStopTime, std::max(mStartTime, time));
}
}
2015-04-18 23:57:52 +00:00
float ControllerFunction::getMaximum() const
{
return mStopTime;
}
KeyframeController::KeyframeController()
{
}
KeyframeController::KeyframeController(const KeyframeController &copy, const osg::CopyOp &copyop)
: osg::NodeCallback(copy, copyop)
, Controller(copy)
, mRotations(copy.mRotations)
, mXRotations(copy.mXRotations)
, mYRotations(copy.mYRotations)
, mZRotations(copy.mZRotations)
, mTranslations(copy.mTranslations)
, mScales(copy.mScales)
{
}
KeyframeController::KeyframeController(const Nif::NiKeyframeData *data)
: mRotations(data->mRotations)
, mXRotations(data->mXRotations)
, mYRotations(data->mYRotations)
, mZRotations(data->mZRotations)
, mTranslations(data->mTranslations)
, mScales(data->mScales)
{
}
osg::Quat KeyframeController::interpKey(const Nif::QuaternionKeyMap::MapType &keys, float time)
{
if(time <= keys.begin()->first)
return keys.begin()->second.mValue;
Nif::QuaternionKeyMap::MapType::const_iterator it = keys.lower_bound(time);
if (it != keys.end())
{
float aTime = it->first;
const Nif::QuaternionKey* aKey = &it->second;
assert (it != keys.begin()); // Shouldn't happen, was checked at beginning of this function
Nif::QuaternionKeyMap::MapType::const_iterator last = --it;
float aLastTime = last->first;
const Nif::QuaternionKey* aLastKey = &last->second;
float a = (time - aLastTime) / (aTime - aLastTime);
osg::Quat v1 = aLastKey->mValue;
osg::Quat v2 = aKey->mValue;
// don't take the long path
if (v1.x()*v2.x() + v1.y()*v2.y() + v1.z()*v2.z() + v1.w()*v2.w() < 0) // dotProduct(v1,v2)
v1 = -v1;
osg::Quat result;
result.slerp(a, v1, v2);
return result;
}
else
return keys.rbegin()->second.mValue;
}
osg::Quat KeyframeController::getXYZRotation(float time) const
{
float xrot = 0, yrot = 0, zrot = 0;
if (mXRotations.get())
xrot = interpKey(mXRotations->mKeys, time);
if (mYRotations.get())
yrot = interpKey(mYRotations->mKeys, time);
if (mZRotations.get())
zrot = interpKey(mZRotations->mKeys, time);
osg::Quat xr(xrot, osg::Vec3f(1,0,0));
osg::Quat yr(yrot, osg::Vec3f(0,1,0));
osg::Quat zr(zrot, osg::Vec3f(0,0,1));
2015-03-25 00:58:41 +00:00
return (xr*yr*zr);
}
osg::Vec3f KeyframeController::getTranslation(float time) const
{
if(mTranslations.get() && mTranslations->mKeys.size() > 0)
return interpKey(mTranslations->mKeys, time);
return osg::Vec3f();
}
void KeyframeController::operator() (osg::Node* node, osg::NodeVisitor* nv)
{
if (hasInput())
{
osg::MatrixTransform* trans = static_cast<osg::MatrixTransform*>(node);
osg::Matrix mat = trans->getMatrix();
float time = getInputValue(nv);
NodeUserData* userdata = static_cast<NodeUserData*>(trans->getUserDataContainer()->getUserObject(0));
Nif::Matrix3& rot = userdata->mRotationScale;
bool setRot = false;
if(mRotations.get() && !mRotations->mKeys.empty())
{
mat.setRotate(interpKey(mRotations->mKeys, time));
setRot = true;
}
else if (mXRotations.get() || mYRotations.get() || mZRotations.get())
{
mat.setRotate(getXYZRotation(time));
setRot = true;
}
else
{
// no rotation specified, use the previous value from the UserData
for (int i=0;i<3;++i)
for (int j=0;j<3;++j)
mat(j,i) = rot.mValues[i][j]; // NB column/row major difference
}
if (setRot) // copy the new values back to the UserData
for (int i=0;i<3;++i)
for (int j=0;j<3;++j)
rot.mValues[i][j] = mat(j,i); // NB column/row major difference
float& scale = userdata->mScale;
if(mScales.get() && !mScales->mKeys.empty())
scale = interpKey(mScales->mKeys, time);
for (int i=0;i<3;++i)
for (int j=0;j<3;++j)
mat(i,j) *= scale;
if(mTranslations.get() && !mTranslations->mKeys.empty())
mat.setTrans(interpKey(mTranslations->mKeys, time));
trans->setMatrix(mat);
}
traverse(node, nv);
}
GeomMorpherController::GeomMorpherController()
{
}
GeomMorpherController::GeomMorpherController(const GeomMorpherController &copy, const osg::CopyOp &copyop)
: osg::Drawable::UpdateCallback(copy, copyop)
, Controller(copy)
, mKeyFrames(copy.mKeyFrames)
{
}
GeomMorpherController::GeomMorpherController(const Nif::NiMorphData *data)
{
for (unsigned int i=0; i<data->mMorphs.size(); ++i)
mKeyFrames.push_back(data->mMorphs[i].mKeyFrames);
}
void GeomMorpherController::update(osg::NodeVisitor *nv, osg::Drawable *drawable)
{
osgAnimation::MorphGeometry* morphGeom = dynamic_cast<osgAnimation::MorphGeometry*>(drawable);
if (morphGeom)
{
if (hasInput())
{
if (mKeyFrames.size() <= 1)
return;
float input = getInputValue(nv);
int i = 0;
for (std::vector<Nif::FloatKeyMapPtr>::iterator it = mKeyFrames.begin()+1; it != mKeyFrames.end(); ++it,++i)
{
float val = 0;
if (!(*it)->mKeys.empty())
val = interpKey((*it)->mKeys, input);
val = std::max(0.f, std::min(1.f, val));
morphGeom->setWeight(i, val);
}
}
morphGeom->transformSoftwareMethod();
}
}
UVController::UVController()
{
}
UVController::UVController(const Nif::NiUVData *data, std::set<int> textureUnits)
: mUTrans(data->mKeyList[0])
, mVTrans(data->mKeyList[1])
, mUScale(data->mKeyList[2])
, mVScale(data->mKeyList[3])
, mTextureUnits(textureUnits)
{
}
UVController::UVController(const UVController& copy, const osg::CopyOp& copyop)
: osg::Object(copy, copyop), StateSetUpdater(copy, copyop), Controller(copy)
, mUTrans(copy.mUTrans)
, mVTrans(copy.mVTrans)
, mUScale(copy.mUScale)
, mVScale(copy.mVScale)
, mTextureUnits(copy.mTextureUnits)
{
}
void UVController::setDefaults(osg::StateSet *stateset)
{
osg::TexMat* texMat = new osg::TexMat;
for (std::set<int>::const_iterator it = mTextureUnits.begin(); it != mTextureUnits.end(); ++it)
stateset->setTextureAttributeAndModes(*it, texMat, osg::StateAttribute::ON);
}
void UVController::apply(osg::StateSet* stateset, osg::NodeVisitor* nv)
{
if (hasInput())
{
float value = getInputValue(nv);
float uTrans = interpKey(mUTrans->mKeys, value, 0.0f);
float vTrans = interpKey(mVTrans->mKeys, value, 0.0f);
float uScale = interpKey(mUScale->mKeys, value, 1.0f);
float vScale = interpKey(mVScale->mKeys, value, 1.0f);
osg::Matrixf mat = osg::Matrixf::scale(uScale, vScale, 1);
mat.setTrans(uTrans, vTrans, 0);
// setting once is enough because all other texture units share the same TexMat (see setDefaults).
if (mTextureUnits.size())
{
osg::TexMat* texMat = static_cast<osg::TexMat*>(stateset->getTextureAttribute(*mTextureUnits.begin(), osg::StateAttribute::TEXMAT));
texMat->setMatrix(mat);
}
}
}
VisController::VisController(const Nif::NiVisData *data)
: mData(data->mVis)
{
}
VisController::VisController()
{
}
VisController::VisController(const VisController &copy, const osg::CopyOp &copyop)
: osg::NodeCallback(copy, copyop)
, Controller(copy)
, mData(copy.mData)
{
}
bool VisController::calculate(float time) const
{
if(mData.size() == 0)
return true;
for(size_t i = 1;i < mData.size();i++)
{
if(mData[i].time > time)
return mData[i-1].isSet;
}
return mData.back().isSet;
}
void VisController::operator() (osg::Node* node, osg::NodeVisitor* nv)
{
if (hasInput())
{
bool vis = calculate(getInputValue(nv));
2015-03-20 20:32:26 +00:00
// Leave 0x1 enabled for UpdateVisitor, so we can make ourselves visible again in the future from this update callback
node->setNodeMask(vis ? ~0 : 0x1);
}
traverse(node, nv);
}
AlphaController::AlphaController(const Nif::NiFloatData *data)
: mData(data->mKeyList)
{
}
AlphaController::AlphaController()
{
}
AlphaController::AlphaController(const AlphaController &copy, const osg::CopyOp &copyop)
2015-05-23 20:44:00 +00:00
: StateSetUpdater(copy, copyop), Controller(copy), ValueInterpolator()
2015-03-28 20:19:16 +00:00
, mData(copy.mData)
{
}
void AlphaController::apply(osg::StateSet *stateset, osg::NodeVisitor *nv)
{
if (hasInput())
{
float value = interpKey(mData->mKeys, getInputValue(nv));
osg::Material* mat = static_cast<osg::Material*>(stateset->getAttribute(osg::StateAttribute::MATERIAL));
osg::Vec4f diffuse = mat->getDiffuse(osg::Material::FRONT_AND_BACK);
diffuse.a() = value;
mat->setDiffuse(osg::Material::FRONT_AND_BACK, diffuse);
}
}
MaterialColorController::MaterialColorController(const Nif::NiPosData *data)
: mData(data->mKeyList)
{
}
MaterialColorController::MaterialColorController()
{
}
MaterialColorController::MaterialColorController(const MaterialColorController &copy, const osg::CopyOp &copyop)
: StateSetUpdater(copy, copyop), Controller(copy)
, mData(copy.mData)
{
}
void MaterialColorController::apply(osg::StateSet *stateset, osg::NodeVisitor *nv)
{
if (hasInput())
{
osg::Vec3f value = interpKey(mData->mKeys, getInputValue(nv));
osg::Material* mat = static_cast<osg::Material*>(stateset->getAttribute(osg::StateAttribute::MATERIAL));
osg::Vec4f diffuse = mat->getDiffuse(osg::Material::FRONT_AND_BACK);
diffuse.set(value.x(), value.y(), value.z(), diffuse.a());
mat->setDiffuse(osg::Material::FRONT_AND_BACK, diffuse);
}
}
FlipController::FlipController(const Nif::NiFlipController *ctrl, std::vector<osg::ref_ptr<osg::Texture2D> > textures)
2015-02-23 23:02:10 +00:00
: mTexSlot(ctrl->mTexSlot)
, mDelta(ctrl->mDelta)
, mTextures(textures)
{
}
2015-06-02 14:35:35 +00:00
FlipController::FlipController(int texSlot, float delta, std::vector<osg::ref_ptr<osg::Texture2D> > textures)
: mTexSlot(texSlot)
, mDelta(delta)
, mTextures(textures)
{
}
FlipController::FlipController()
2015-07-01 01:42:04 +00:00
: mDelta(0.f)
{
}
FlipController::FlipController(const FlipController &copy, const osg::CopyOp &copyop)
: StateSetUpdater(copy, copyop)
, Controller(copy)
, mTexSlot(copy.mTexSlot)
, mDelta(copy.mDelta)
, mTextures(copy.mTextures)
2015-02-23 23:02:10 +00:00
{
}
void FlipController::apply(osg::StateSet* stateset, osg::NodeVisitor* nv)
{
if (hasInput() && mDelta != 0)
{
int curTexture = int(getInputValue(nv) / mDelta) % mTextures.size();
stateset->setTextureAttribute(mTexSlot, mTextures[curTexture]);
}
}
ParticleSystemController::ParticleSystemController(const Nif::NiParticleSystemController *ctrl)
: mEmitStart(ctrl->startTime), mEmitStop(ctrl->stopTime)
{
}
ParticleSystemController::ParticleSystemController()
2015-07-01 01:42:04 +00:00
: mEmitStart(0.f), mEmitStop(0.f)
{
}
ParticleSystemController::ParticleSystemController(const ParticleSystemController &copy, const osg::CopyOp &copyop)
: osg::NodeCallback(copy, copyop)
, Controller(copy)
, mEmitStart(copy.mEmitStart)
, mEmitStop(copy.mEmitStop)
{
}
void ParticleSystemController::operator() (osg::Node* node, osg::NodeVisitor* nv)
{
if (hasInput())
{
osgParticle::ParticleProcessor* emitter = dynamic_cast<osgParticle::ParticleProcessor*>(node);
float time = getInputValue(nv);
if (emitter)
emitter->setEnabled(time >= mEmitStart && time < mEmitStop);
}
traverse(node, nv);
}
}