Merge remote-tracking branch 'cc9cii/PathFinder-split'

actorid
Marc Zinnschlag 11 years ago
commit fafb7501e3

@ -68,7 +68,7 @@ add_openmw_dir (mwclass
add_openmw_dir (mwmechanics
mechanicsmanagerimp stat character creaturestats magiceffects movement actors objects
drawstate spells activespells npcstats aipackage aisequence alchemy aiwander aitravel aifollow
aiescort aiactivate aicombat repair enchanting pathfinding security spellsuccess spellcasting
aiescort aiactivate aicombat repair enchanting pathfinding pathgrid security spellsuccess spellcasting
disease pickpocket levelledlist combat steering
)

@ -1,7 +1,5 @@
#include "pathfinding.hpp"
#include <map>
#include "OgreMath.h"
#include "OgreVector3.h"
@ -37,44 +35,6 @@ namespace
return sqrt(x * x + y * y + z * z);
}
// See http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html
//
// One of the smallest cost in Seyda Neen is between points 77 & 78:
// pt x y
// 77 = 8026, 4480
// 78 = 7986, 4218
//
// Euclidean distance is about 262 (ignoring z) and Manhattan distance is 300
// (again ignoring z). Using a value of about 300 for D seems like a reasonable
// starting point for experiments. If in doubt, just use value 1.
//
// The distance between 3 & 4 are pretty small, too.
// 3 = 5435, 223
// 4 = 5948, 193
//
// Approx. 514 Euclidean distance and 533 Manhattan distance.
//
float manhattan(ESM::Pathgrid::Point a, ESM::Pathgrid::Point b)
{
return 300 * (abs(a.mX - b.mX) + abs(a.mY - b.mY) + abs(a.mZ - b.mZ));
}
// Choose a heuristics - these may not be the best for directed graphs with
// non uniform edge costs.
//
// distance:
// - sqrt((curr.x - goal.x)^2 + (curr.y - goal.y)^2 + (curr.z - goal.z)^2)
// - slower but more accurate
//
// Manhattan:
// - |curr.x - goal.x| + |curr.y - goal.y| + |curr.z - goal.z|
// - faster but not the shortest path
float costAStar(ESM::Pathgrid::Point a, ESM::Pathgrid::Point b)
{
//return distance(a, b);
return manhattan(a, b);
}
// Slightly cheaper version for comparisons.
// Caller needs to be careful for very short distances (i.e. less than 1)
// or when accumuating the results i.e. (a + b)^2 != a^2 + b^2
@ -113,12 +73,13 @@ namespace
return closestIndex;
}
// Uses mSCComp to choose a reachable end pathgrid point. start is assumed reachable.
// Chooses a reachable end pathgrid point. start is assumed reachable.
std::pair<int, bool> getClosestReachablePoint(const ESM::Pathgrid* grid,
Ogre::Vector3 pos, int start, std::vector<int> &sCComp)
const MWWorld::CellStore *cell,
Ogre::Vector3 pos, int start)
{
// assume grid is fine
int startGroup = sCComp[start];
if(!grid || grid->mPoints.empty())
return std::pair<int, bool> (-1, false);
float distanceBetween = distanceSquared(grid->mPoints[0], pos);
int closestIndex = 0;
@ -133,7 +94,7 @@ namespace
// found a closer one
distanceBetween = potentialDistBetween;
closestIndex = counter;
if (sCComp[counter] == startGroup)
if (cell->isPointConnected(start, counter))
{
closestReachableIndex = counter;
}
@ -152,7 +113,7 @@ namespace MWMechanics
{
PathFinder::PathFinder()
: mIsPathConstructed(false),
mIsGraphConstructed(false),
mPathgrid(NULL),
mCell(NULL)
{
}
@ -164,293 +125,14 @@ namespace MWMechanics
mIsPathConstructed = false;
}
/*
* NOTE: Based on buildPath2(), please check git history if interested
*
* Populate mGraph with the cost of each allowed edge.
*
* Any existing data in mGraph is wiped clean first. The node's parent
* is set with initial value of -1. The parent values are populated by
* aStarSearch() in order to reconstruct a path.
*
* mGraph[f].edges[n].destination = t
*
* f = point index of location "from"
* t = point index of location "to"
* n = index of edges from point f
*
*
* Example: (note from p(0) to p(2) not allowed in this example)
*
* mGraph[0].edges[0].destination = 1
* .edges[1].destination = 3
*
* mGraph[1].edges[0].destination = 0
* .edges[1].destination = 2
* .edges[2].destination = 3
*
* mGraph[2].edges[0].destination = 1
*
* (etc, etc)
*
*
* low
* cost
* p(0) <---> p(1) <------------> p(2)
* ^ ^
* | |
* | +-----> p(3)
* +---------------->
* high cost
*/
void PathFinder::buildPathgridGraph(const ESM::Pathgrid* pathGrid)
{
mGraph.clear();
// resize lists
mGScore.resize(pathGrid->mPoints.size(), -1);
mFScore.resize(pathGrid->mPoints.size(), -1);
Node defaultNode;
defaultNode.label = -1;
defaultNode.parent = -1;
mGraph.resize(pathGrid->mPoints.size(),defaultNode);
// initialise mGraph
for(unsigned int i = 0; i < pathGrid->mPoints.size(); i++)
{
Node node;
node.label = i;
node.parent = -1;
mGraph[i] = node;
}
// store the costs of each edge
for(unsigned int i = 0; i < pathGrid->mEdges.size(); i++)
{
Edge edge;
edge.cost = costAStar(pathGrid->mPoints[pathGrid->mEdges[i].mV0],
pathGrid->mPoints[pathGrid->mEdges[i].mV1]);
// forward path of the edge
edge.destination = pathGrid->mEdges[i].mV1;
mGraph[pathGrid->mEdges[i].mV0].edges.push_back(edge);
// reverse path of the edge
// NOTE: These are redundant, the ESM already contains the reverse paths.
//edge.destination = pathGrid->mEdges[i].mV0;
//mGraph[pathGrid->mEdges[i].mV1].edges.push_back(edge);
}
mIsGraphConstructed = true;
}
// v is the pathgrid point index (some call them vertices)
void PathFinder::recursiveStrongConnect(int v)
{
mSCCPoint[v].first = mSCCIndex; // index
mSCCPoint[v].second = mSCCIndex; // lowlink
mSCCIndex++;
mSCCStack.push_back(v);
int w;
for(int i = 0; i < static_cast<int> (mGraph[v].edges.size()); i++)
{
w = mGraph[v].edges[i].destination;
if(mSCCPoint[w].first == -1) // not visited
{
recursiveStrongConnect(w); // recurse
mSCCPoint[v].second = std::min(mSCCPoint[v].second,
mSCCPoint[w].second);
}
else
{
if(find(mSCCStack.begin(), mSCCStack.end(), w) != mSCCStack.end())
mSCCPoint[v].second = std::min(mSCCPoint[v].second,
mSCCPoint[w].first);
}
}
if(mSCCPoint[v].second == mSCCPoint[v].first)
{
// new component
do
{
w = mSCCStack.back();
mSCCStack.pop_back();
mSCComp[w] = mSCCId;
}
while(w != v);
mSCCId++;
}
return;
}
/*
* mSCComp contains the strongly connected component group id's.
*
* A cell can have disjointed pathgrid, e.g. Seyda Neen which has 3
*
* mSCComp for Seyda Neen will have 3 different values. When selecting a
* random pathgrid point for AiWander, mSCComp can be checked for quickly
* finding whether the destination is reachable.
*
* Otherwise, buildPath will automatically select a closest reachable end
* pathgrid point (reachable from the closest start point).
*
* Using Tarjan's algorithm
*
* mGraph | graph G |
* mSCCPoint | V | derived from pathGrid->mPoints
* mGraph[v].edges | E (for v) |
* mSCCIndex | index | keep track of smallest unused index
* mSCCStack | S |
* pathGrid
* ->mEdges[v].mV1 | w | = mGraph[v].edges[i].destination
*
* FIXME: Some of these can be cleaned up by including them to struct
* Node used by mGraph
*/
void PathFinder::buildConnectedPoints(const ESM::Pathgrid* pathGrid)
{
mSCComp.clear();
mSCComp.resize(pathGrid->mPoints.size(), 0);
mSCCId = 0;
mSCCIndex = 0;
mSCCStack.clear();
mSCCPoint.clear();
mSCCPoint.resize(pathGrid->mPoints.size(), std::pair<int, int> (-1, -1));
for(unsigned int v = 0; v < pathGrid->mPoints.size(); v++)
{
if(mSCCPoint[v].first == -1) // undefined (haven't visited)
recursiveStrongConnect(v);
}
}
void PathFinder::cleanUpAStar()
{
for(int i = 0; i < static_cast<int> (mGraph.size()); i++)
{
mGraph[i].parent = -1;
mGScore[i] = -1;
mFScore[i] = -1;
}
}
/*
* NOTE: Based on buildPath2(), please check git history if interested
* Should consider a using 3rd party library version (e.g. boost)
*
* Find the shortest path to the target goal using a well known algorithm.
* Uses mGraph which has pre-computed costs for allowed edges. It is assumed
* that mGraph is already constructed. The caller, i.e. buildPath(), needs
* to ensure this.
*
* Returns path (a list of pathgrid point indexes) which may be empty.
*
* Input params:
* start, goal - pathgrid point indexes (for this cell)
* xCell, yCell - values to add to convert path back to world scale
*
* Variables:
* openset - point indexes to be traversed, lowest cost at the front
* closedset - point indexes already traversed
*
* Class variables:
* mGScore - past accumulated costs vector indexed by point index
* mFScore - future estimated costs vector indexed by point index
* these are resized by buildPathgridGraph()
*/
std::list<ESM::Pathgrid::Point> PathFinder::aStarSearch(const ESM::Pathgrid* pathGrid,
int start, int goal,
float xCell, float yCell)
{
cleanUpAStar();
// mGScore & mFScore keep costs for each pathgrid point in pathGrid->mPoints
mGScore[start] = 0;
mFScore[start] = costAStar(pathGrid->mPoints[start], pathGrid->mPoints[goal]);
std::list<int> openset;
std::list<int> closedset;
openset.push_back(start);
int current = -1;
while(!openset.empty())
{
current = openset.front(); // front has the lowest cost
openset.pop_front();
if(current == goal)
break;
closedset.push_back(current); // remember we've been here
// check all edges for the current point index
for(int j = 0; j < static_cast<int> (mGraph[current].edges.size()); j++)
{
if(std::find(closedset.begin(), closedset.end(), mGraph[current].edges[j].destination) ==
closedset.end())
{
// not in closedset - i.e. have not traversed this edge destination
int dest = mGraph[current].edges[j].destination;
float tentative_g = mGScore[current] + mGraph[current].edges[j].cost;
bool isInOpenSet = std::find(openset.begin(), openset.end(), dest) != openset.end();
if(!isInOpenSet
|| tentative_g < mGScore[dest])
{
mGraph[dest].parent = current;
mGScore[dest] = tentative_g;
mFScore[dest] = tentative_g +
costAStar(pathGrid->mPoints[dest], pathGrid->mPoints[goal]);
if(!isInOpenSet)
{
// add this edge to openset, lowest cost goes to the front
// TODO: if this causes performance problems a hash table may help
std::list<int>::iterator it = openset.begin();
for(it = openset.begin(); it!= openset.end(); it++)
{
if(mFScore[*it] > mFScore[dest])
break;
}
openset.insert(it, dest);
}
}
} // if in closedset, i.e. traversed this edge already, try the next edge
}
}
std::list<ESM::Pathgrid::Point> path;
if(current != goal)
return path; // for some reason couldn't build a path
// e.g. start was not reachable (we assume it is)
// reconstruct path to return, using world co-ordinates
while(mGraph[current].parent != -1)
{
ESM::Pathgrid::Point pt = pathGrid->mPoints[current];
pt.mX += xCell;
pt.mY += yCell;
path.push_front(pt);
current = mGraph[current].parent;
}
// TODO: Is this a bug? If path is empty the algorithm couldn't find a path.
// Simply using the destination as the path in this scenario seems strange.
// Commented out pending further testing.
#if 0
if(path.empty())
{
ESM::Pathgrid::Point pt = pathGrid->mPoints[goal];
pt.mX += xCell;
pt.mY += yCell;
path.push_front(pt);
}
#endif
return path;
}
/*
* NOTE: This method may fail to find a path. The caller must check the
* result before using it. If there is no path the AI routies need to
* implement some other heuristics to reach the target.
*
* NOTE: It may be desirable to simply go directly to the endPoint if for
* example there are no pathgrids in this cell.
*
* NOTE: startPoint & endPoint are in world co-ordinates
*
* Updates mPath using aStarSearch() or ray test (if shortcut allowed).
@ -462,9 +144,6 @@ namespace MWMechanics
*
* mPathConstructed is set true if successful, false if not
*
* May update mGraph by calling buildPathgridGraph() if it isn't
* constructed yet. At the same time mConnectedPoints is also updated.
*
* NOTE: co-ordinates must be converted prior to calling getClosestPoint()
*
* |
@ -486,7 +165,8 @@ namespace MWMechanics
*/
void PathFinder::buildPath(const ESM::Pathgrid::Point &startPoint,
const ESM::Pathgrid::Point &endPoint,
const MWWorld::CellStore* cell, bool allowShortcuts)
const MWWorld::CellStore* cell,
bool allowShortcuts)
{
mPath.clear();
@ -502,17 +182,25 @@ namespace MWMechanics
}
}
if(mCell != cell)
if(mCell != cell || !mPathgrid)
{
mIsGraphConstructed = false; // must be in a new cell, need a new mGraph and mSCComp
mCell = cell;
mPathgrid = MWBase::Environment::get().getWorld()->getStore().get<ESM::Pathgrid>().search(*mCell->getCell());
}
const ESM::Pathgrid *pathGrid =
MWBase::Environment::get().getWorld()->getStore().get<ESM::Pathgrid>().search(*mCell->getCell());
// Refer to AiWander reseach topic on openmw forums for some background.
// Maybe there is no pathgrid for this cell. Just go to destination and let
// physics take care of any blockages.
if(!mPathgrid || mPathgrid->mPoints.empty())
{
mPath.push_back(endPoint);
mIsPathConstructed = true;
return;
}
// NOTE: getClosestPoint expects local co-ordinates
float xCell = 0;
float yCell = 0;
if (mCell->isExterior())
{
xCell = mCell->getCell()->mData.mX * ESM::Land::REAL_SIZE;
@ -524,26 +212,19 @@ namespace MWMechanics
// outside an area enclosed by walls, but there is a pathgrid
// point right behind the wall that is closer than any pathgrid
// point outside the wall
//
// NOTE: getClosestPoint expects local co-ordinates
//
int startNode = getClosestPoint(pathGrid,
int startNode = getClosestPoint(mPathgrid,
Ogre::Vector3(startPoint.mX - xCell, startPoint.mY - yCell, startPoint.mZ));
if(startNode != -1) // only check once, assume pathGrid won't change
{
if(!mIsGraphConstructed)
// Some cells don't have any pathgrids at all
if(startNode != -1)
{
buildPathgridGraph(pathGrid); // pre-compute costs for use with aStarSearch
buildConnectedPoints(pathGrid); // must before calling getClosestReachablePoint
}
std::pair<int, bool> endNode = getClosestReachablePoint(pathGrid,
std::pair<int, bool> endNode = getClosestReachablePoint(mPathgrid, cell,
Ogre::Vector3(endPoint.mX - xCell, endPoint.mY - yCell, endPoint.mZ),
startNode, mSCComp);
startNode);
// this shouldn't really happen, but just in case
if(endNode.first != -1)
{
mPath = aStarSearch(pathGrid, startNode, endNode.first, xCell, yCell);
mPath = mCell->aStarSearch(startNode, endNode.first);
if(!mPath.empty())
{
@ -567,7 +248,9 @@ namespace MWMechanics
mIsPathConstructed = false;
}
else
mIsPathConstructed = false; // this shouldn't really happen, but just in case
mIsPathConstructed = false;
return;
}
float PathFinder::getZAngleToNext(float x, float y) const
@ -646,4 +329,3 @@ namespace MWMechanics
}
}

@ -34,8 +34,6 @@ namespace MWMechanics
void clearPath();
void buildPathgridGraph(const ESM::Pathgrid* pathGrid);
void buildPath(const ESM::Pathgrid::Point &startPoint, const ESM::Pathgrid::Point &endPoint,
const MWWorld::CellStore* cell, bool allowShortcuts = true);
@ -75,60 +73,14 @@ namespace MWMechanics
mPath.push_back(point);
}
// While a public method is defined here, it is anticipated that
// mSCComp will only be used internally.
std::vector<int> getSCComp() const
{
return mSCComp;
}
private:
struct Edge
{
int destination;
float cost;
};
struct Node
{
int label;
std::vector<Edge> edges;
int parent;//used in pathfinding
};
std::vector<float> mGScore;
std::vector<float> mFScore;
std::list<ESM::Pathgrid::Point> aStarSearch(const ESM::Pathgrid* pathGrid,int start,int goal,float xCell = 0, float yCell = 0);
void cleanUpAStar();
std::vector<Node> mGraph;
bool mIsPathConstructed;
std::list<ESM::Pathgrid::Point> mPath;
bool mIsGraphConstructed;
const MWWorld::CellStore* mCell;
// contains an integer indicating the groups of connected pathgrid points
// (all connected points will have the same value)
//
// In Seyda Neen there are 3:
//
// 52, 53 and 54 are one set (enclosed yard)
// 48, 49, 50, 51, 84, 85, 86, 87, 88, 89, 90 are another (ship & office)
// all other pathgrid points are the third set
//
std::vector<int> mSCComp;
// variables used to calculate mSCComp
int mSCCId;
int mSCCIndex;
std::list<int> mSCCStack;
typedef std::pair<int, int> VPair; // first is index, second is lowlink
std::vector<VPair> mSCCPoint;
// methods used to calculate mSCComp
void recursiveStrongConnect(int v);
void buildConnectedPoints(const ESM::Pathgrid* pathGrid);
const ESM::Pathgrid *mPathgrid;
const MWWorld::CellStore* mCell;
};
}

@ -0,0 +1,337 @@
#include "pathgrid.hpp"
#include "../mwbase/world.hpp"
#include "../mwbase/environment.hpp"
#include "../mwworld/cellstore.hpp"
namespace
{
// See http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html
//
// One of the smallest cost in Seyda Neen is between points 77 & 78:
// pt x y
// 77 = 8026, 4480
// 78 = 7986, 4218
//
// Euclidean distance is about 262 (ignoring z) and Manhattan distance is 300
// (again ignoring z). Using a value of about 300 for D seems like a reasonable
// starting point for experiments. If in doubt, just use value 1.
//
// The distance between 3 & 4 are pretty small, too.
// 3 = 5435, 223
// 4 = 5948, 193
//
// Approx. 514 Euclidean distance and 533 Manhattan distance.
//
float manhattan(const ESM::Pathgrid::Point& a, const ESM::Pathgrid::Point& b)
{
return 300 * (abs(a.mX - b.mX) + abs(a.mY - b.mY) + abs(a.mZ - b.mZ));
}
// Choose a heuristics - Note that these may not be the best for directed
// graphs with non-uniform edge costs.
//
// distance:
// - sqrt((curr.x - goal.x)^2 + (curr.y - goal.y)^2 + (curr.z - goal.z)^2)
// - slower but more accurate
//
// Manhattan:
// - |curr.x - goal.x| + |curr.y - goal.y| + |curr.z - goal.z|
// - faster but not the shortest path
float costAStar(const ESM::Pathgrid::Point& a, const ESM::Pathgrid::Point& b)
{
//return distance(a, b);
return manhattan(a, b);
}
}
namespace MWMechanics
{
PathgridGraph::PathgridGraph()
: mCell(NULL)
, mIsGraphConstructed(false)
, mPathgrid(NULL)
, mGraph(0)
, mSCCId(0)
, mSCCIndex(0)
, mIsExterior(0)
{
}
/*
* mGraph is populated with the cost of each allowed edge.
*
* The data structure is based on the code in buildPath2() but modified.
* Please check git history if interested.
*
* mGraph[v].edges[i].index = w
*
* v = point index of location "from"
* i = index of edges from point v
* w = point index of location "to"
*
*
* Example: (notice from p(0) to p(2) is not allowed in this example)
*
* mGraph[0].edges[0].index = 1
* .edges[1].index = 3
*
* mGraph[1].edges[0].index = 0
* .edges[1].index = 2
* .edges[2].index = 3
*
* mGraph[2].edges[0].index = 1
*
* (etc, etc)
*
*
* low
* cost
* p(0) <---> p(1) <------------> p(2)
* ^ ^
* | |
* | +-----> p(3)
* +---------------->
* high cost
*/
bool PathgridGraph::load(const ESM::Cell* cell)
{
if(!cell)
return false;
mCell = cell;
mIsExterior = cell->isExterior();
mPathgrid = MWBase::Environment::get().getWorld()->getStore().get<ESM::Pathgrid>().search(*cell);
if(!mPathgrid)
return false;
if(mIsGraphConstructed)
return true;
mGraph.resize(mPathgrid->mPoints.size());
for(int i = 0; i < static_cast<int> (mPathgrid->mEdges.size()); i++)
{
ConnectedPoint neighbour;
neighbour.cost = costAStar(mPathgrid->mPoints[mPathgrid->mEdges[i].mV0],
mPathgrid->mPoints[mPathgrid->mEdges[i].mV1]);
// forward path of the edge
neighbour.index = mPathgrid->mEdges[i].mV1;
mGraph[mPathgrid->mEdges[i].mV0].edges.push_back(neighbour);
// reverse path of the edge
// NOTE: These are redundant, ESM already contains the required reverse paths
//neighbour.index = mPathgrid->mEdges[i].mV0;
//mGraph[mPathgrid->mEdges[i].mV1].edges.push_back(neighbour);
}
buildConnectedPoints();
mIsGraphConstructed = true;
return true;
}
// v is the pathgrid point index (some call them vertices)
void PathgridGraph::recursiveStrongConnect(int v)
{
mSCCPoint[v].first = mSCCIndex; // index
mSCCPoint[v].second = mSCCIndex; // lowlink
mSCCIndex++;
mSCCStack.push_back(v);
int w;
for(int i = 0; i < static_cast<int> (mGraph[v].edges.size()); i++)
{
w = mGraph[v].edges[i].index;
if(mSCCPoint[w].first == -1) // not visited
{
recursiveStrongConnect(w); // recurse
mSCCPoint[v].second = std::min(mSCCPoint[v].second,
mSCCPoint[w].second);
}
else
{
if(find(mSCCStack.begin(), mSCCStack.end(), w) != mSCCStack.end())
mSCCPoint[v].second = std::min(mSCCPoint[v].second,
mSCCPoint[w].first);
}
}
if(mSCCPoint[v].second == mSCCPoint[v].first)
{ // new component
do
{
w = mSCCStack.back();
mSCCStack.pop_back();
mGraph[w].componentId = mSCCId;
}
while(w != v);
mSCCId++;
}
return;
}
/*
* mGraph contains the strongly connected component group id's along
* with pre-calculated edge costs.
*
* A cell can have disjointed pathgrids, e.g. Seyda Neen has 3
*
* mGraph for Seyda Neen will therefore have 3 different values. When
* selecting a random pathgrid point for AiWander, mGraph can be checked
* for quickly finding whether the destination is reachable.
*
* Otherwise, buildPath can automatically select a closest reachable end
* pathgrid point (reachable from the closest start point).
*
* Using Tarjan's algorithm:
*
* mGraph | graph G |
* mSCCPoint | V | derived from mPoints
* mGraph[v].edges | E (for v) |
* mSCCIndex | index | tracking smallest unused index
* mSCCStack | S |
* mGraph[v].edges[i].index | w |
*
*/
void PathgridGraph::buildConnectedPoints()
{
// both of these are set to zero in the constructor
//mSCCId = 0; // how many strongly connected components in this cell
//mSCCIndex = 0;
int pointsSize = mPathgrid->mPoints.size();
mSCCPoint.resize(pointsSize, std::pair<int, int> (-1, -1));
mSCCStack.reserve(pointsSize);
for(int v = 0; v < static_cast<int> (pointsSize); v++)
{
if(mSCCPoint[v].first == -1) // undefined (haven't visited)
recursiveStrongConnect(v);
}
}
bool PathgridGraph::isPointConnected(const int start, const int end) const
{
return (mGraph[start].componentId == mGraph[end].componentId);
}
/*
* NOTE: Based on buildPath2(), please check git history if interested
* Should consider using a 3rd party library version (e.g. boost)
*
* Find the shortest path to the target goal using a well known algorithm.
* Uses mGraph which has pre-computed costs for allowed edges. It is assumed
* that mGraph is already constructed.
*
* Should be possible to make this MT safe.
*
* Returns path which may be empty. path contains pathgrid points in local
* cell co-ordinates (indoors) or world co-ordinates (external).
*
* Input params:
* start, goal - pathgrid point indexes (for this cell)
*
* Variables:
* openset - point indexes to be traversed, lowest cost at the front
* closedset - point indexes already traversed
* gScore - past accumulated costs vector indexed by point index
* fScore - future estimated costs vector indexed by point index
*
* TODO: An intersting exercise might be to cache the paths created for a
* start/goal pair. To cache the results the paths need to be in
* pathgrid points form (currently they are converted to world
* co-ordinates). Essentially trading speed w/ memory.
*/
std::list<ESM::Pathgrid::Point> PathgridGraph::aStarSearch(const int start,
const int goal) const
{
std::list<ESM::Pathgrid::Point> path;
if(!isPointConnected(start, goal))
{
return path; // there is no path, return an empty path
}
int graphSize = mGraph.size();
std::vector<float> gScore;
gScore.resize(graphSize, -1);
std::vector<float> fScore;
fScore.resize(graphSize, -1);
std::vector<int> graphParent;
graphParent.resize(graphSize, -1);
// gScore & fScore keep costs for each pathgrid point in mPoints
gScore[start] = 0;
fScore[start] = costAStar(mPathgrid->mPoints[start], mPathgrid->mPoints[goal]);
std::list<int> openset;
std::list<int> closedset;
openset.push_back(start);
int current = -1;
while(!openset.empty())
{
current = openset.front(); // front has the lowest cost
openset.pop_front();
if(current == goal)
break;
closedset.push_back(current); // remember we've been here
// check all edges for the current point index
for(int j = 0; j < static_cast<int> (mGraph[current].edges.size()); j++)
{
if(std::find(closedset.begin(), closedset.end(), mGraph[current].edges[j].index) ==
closedset.end())
{
// not in closedset - i.e. have not traversed this edge destination
int dest = mGraph[current].edges[j].index;
float tentative_g = gScore[current] + mGraph[current].edges[j].cost;
bool isInOpenSet = std::find(openset.begin(), openset.end(), dest) != openset.end();
if(!isInOpenSet
|| tentative_g < gScore[dest])
{
graphParent[dest] = current;
gScore[dest] = tentative_g;
fScore[dest] = tentative_g + costAStar(mPathgrid->mPoints[dest],
mPathgrid->mPoints[goal]);
if(!isInOpenSet)
{
// add this edge to openset, lowest cost goes to the front
// TODO: if this causes performance problems a hash table may help
std::list<int>::iterator it = openset.begin();
for(it = openset.begin(); it!= openset.end(); it++)
{
if(fScore[*it] > fScore[dest])
break;
}
openset.insert(it, dest);
}
}
} // if in closedset, i.e. traversed this edge already, try the next edge
}
}
if(current != goal)
return path; // for some reason couldn't build a path
// reconstruct path to return, using world co-ordinates
float xCell = 0;
float yCell = 0;
if (mIsExterior)
{
xCell = mPathgrid->mData.mX * ESM::Land::REAL_SIZE;
yCell = mPathgrid->mData.mY * ESM::Land::REAL_SIZE;
}
while(graphParent[current] != -1)
{
ESM::Pathgrid::Point pt = mPathgrid->mPoints[current];
pt.mX += xCell;
pt.mY += yCell;
path.push_front(pt);
current = graphParent[current];
}
return path;
}
}

@ -0,0 +1,77 @@
#ifndef GAME_MWMECHANICS_PATHGRID_H
#define GAME_MWMECHANICS_PATHGRID_H
#include <components/esm/loadpgrd.hpp>
#include <list>
namespace ESM
{
class Cell;
}
namespace MWWorld
{
class CellStore;
}
namespace MWMechanics
{
class PathgridGraph
{
public:
PathgridGraph();
bool load(const ESM::Cell *cell);
// returns true if end point is strongly connected (i.e. reachable
// from start point) both start and end are pathgrid point indexes
bool isPointConnected(const int start, const int end) const;
// the input parameters are pathgrid point indexes
// the output list is in local (internal cells) or world (external
// cells) co-ordinates
std::list<ESM::Pathgrid::Point> aStarSearch(const int start,
const int end) const;
private:
const ESM::Cell *mCell;
const ESM::Pathgrid *mPathgrid;
bool mIsExterior;
struct ConnectedPoint // edge
{
int index; // pathgrid point index of neighbour
float cost;
};
struct Node // point
{
int componentId;
std::vector<ConnectedPoint> edges; // neighbours
};
// componentId is an integer indicating the groups of connected
// pathgrid points (all connected points will have the same value)
//
// In Seyda Neen there are 3:
//
// 52, 53 and 54 are one set (enclosed yard)
// 48, 49, 50, 51, 84, 85, 86, 87, 88, 89, 90 (ship & office)
// all other pathgrid points are the third set
//
std::vector<Node> mGraph;
bool mIsGraphConstructed;
// variables used to calculate connected components
int mSCCId;
int mSCCIndex;
std::vector<int> mSCCStack;
typedef std::pair<int, int> VPair; // first is index, second is lowlink
std::vector<VPair> mSCCPoint;
// methods used to calculate connected components
void recursiveStrongConnect(int v);
void buildConnectedPoints();
};
}
#endif

@ -363,6 +363,7 @@ namespace MWWorld
loadRefs (store, esm);
mState = State_Loaded;
mPathgridGraph.load(mCell);
}
}
@ -680,4 +681,14 @@ namespace MWWorld
{
return !(left==right);
}
bool CellStore::isPointConnected(const int start, const int end) const
{
return mPathgridGraph.isPointConnected(start, end);
}
std::list<ESM::Pathgrid::Point> CellStore::aStarSearch(const int start, const int end) const
{
return mPathgridGraph.aStarSearch(start, end);
}
}

@ -8,6 +8,8 @@
#include "esmstore.hpp"
#include "cellreflist.hpp"
#include "../mwmechanics/pathgrid.hpp"
namespace ESM
{
struct CellState;
@ -141,6 +143,10 @@ namespace MWWorld
throw std::runtime_error ("Storage for this type not exist in cells");
}
bool isPointConnected(const int start, const int end) const;
std::list<ESM::Pathgrid::Point> aStarSearch(const int start, const int end) const;
private:
template<class Functor, class List>
@ -166,6 +172,8 @@ namespace MWWorld
///< Make case-adjustments to \a ref and insert it into the respective container.
///
/// Invalid \a ref objects are silently dropped.
MWMechanics::PathgridGraph mPathgridGraph;
};
template<>

Loading…
Cancel
Save