mirror of
https://github.com/TES3MP/openmw-tes3mp.git
synced 2025-01-16 06:49:55 +00:00
572 lines
19 KiB
C++
572 lines
19 KiB
C++
//
|
|
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
|
|
//
|
|
// This software is provided 'as-is', without any express or implied
|
|
// warranty. In no event will the authors be held liable for any damages
|
|
// arising from the use of this software.
|
|
// Permission is granted to anyone to use this software for any purpose,
|
|
// including commercial applications, and to alter it and redistribute it
|
|
// freely, subject to the following restrictions:
|
|
// 1. The origin of this software must not be misrepresented; you must not
|
|
// claim that you wrote the original software. If you use this software
|
|
// in a product, an acknowledgment in the product documentation would be
|
|
// appreciated but is not required.
|
|
// 2. Altered source versions must be plainly marked as such, and must not be
|
|
// misrepresented as being the original software.
|
|
// 3. This notice may not be removed or altered from any source distribution.
|
|
//
|
|
|
|
#ifndef DETOURCOMMON_H
|
|
#define DETOURCOMMON_H
|
|
|
|
#include "DetourMath.h"
|
|
#include <stddef.h>
|
|
|
|
/**
|
|
@defgroup detour Detour
|
|
|
|
Members in this module are used to create, manipulate, and query navigation
|
|
meshes.
|
|
|
|
@note This is a summary list of members. Use the index or search
|
|
feature to find minor members.
|
|
*/
|
|
|
|
/// @name General helper functions
|
|
/// @{
|
|
|
|
/// Used to ignore a function parameter. VS complains about unused parameters
|
|
/// and this silences the warning.
|
|
/// @param [in] _ Unused parameter
|
|
template<class T> void dtIgnoreUnused(const T&) { }
|
|
|
|
/// Swaps the values of the two parameters.
|
|
/// @param[in,out] a Value A
|
|
/// @param[in,out] b Value B
|
|
template<class T> inline void dtSwap(T& a, T& b) { T t = a; a = b; b = t; }
|
|
|
|
/// Returns the minimum of two values.
|
|
/// @param[in] a Value A
|
|
/// @param[in] b Value B
|
|
/// @return The minimum of the two values.
|
|
template<class T> inline T dtMin(T a, T b) { return a < b ? a : b; }
|
|
|
|
/// Returns the maximum of two values.
|
|
/// @param[in] a Value A
|
|
/// @param[in] b Value B
|
|
/// @return The maximum of the two values.
|
|
template<class T> inline T dtMax(T a, T b) { return a > b ? a : b; }
|
|
|
|
/// Returns the absolute value.
|
|
/// @param[in] a The value.
|
|
/// @return The absolute value of the specified value.
|
|
template<class T> inline T dtAbs(T a) { return a < 0 ? -a : a; }
|
|
|
|
/// Returns the square of the value.
|
|
/// @param[in] a The value.
|
|
/// @return The square of the value.
|
|
template<class T> inline T dtSqr(T a) { return a*a; }
|
|
|
|
/// Clamps the value to the specified range.
|
|
/// @param[in] v The value to clamp.
|
|
/// @param[in] mn The minimum permitted return value.
|
|
/// @param[in] mx The maximum permitted return value.
|
|
/// @return The value, clamped to the specified range.
|
|
template<class T> inline T dtClamp(T v, T mn, T mx) { return v < mn ? mn : (v > mx ? mx : v); }
|
|
|
|
/// @}
|
|
/// @name Vector helper functions.
|
|
/// @{
|
|
|
|
/// Derives the cross product of two vectors. (@p v1 x @p v2)
|
|
/// @param[out] dest The cross product. [(x, y, z)]
|
|
/// @param[in] v1 A Vector [(x, y, z)]
|
|
/// @param[in] v2 A vector [(x, y, z)]
|
|
inline void dtVcross(float* dest, const float* v1, const float* v2)
|
|
{
|
|
dest[0] = v1[1]*v2[2] - v1[2]*v2[1];
|
|
dest[1] = v1[2]*v2[0] - v1[0]*v2[2];
|
|
dest[2] = v1[0]*v2[1] - v1[1]*v2[0];
|
|
}
|
|
|
|
/// Derives the dot product of two vectors. (@p v1 . @p v2)
|
|
/// @param[in] v1 A Vector [(x, y, z)]
|
|
/// @param[in] v2 A vector [(x, y, z)]
|
|
/// @return The dot product.
|
|
inline float dtVdot(const float* v1, const float* v2)
|
|
{
|
|
return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
|
|
}
|
|
|
|
/// Performs a scaled vector addition. (@p v1 + (@p v2 * @p s))
|
|
/// @param[out] dest The result vector. [(x, y, z)]
|
|
/// @param[in] v1 The base vector. [(x, y, z)]
|
|
/// @param[in] v2 The vector to scale and add to @p v1. [(x, y, z)]
|
|
/// @param[in] s The amount to scale @p v2 by before adding to @p v1.
|
|
inline void dtVmad(float* dest, const float* v1, const float* v2, const float s)
|
|
{
|
|
dest[0] = v1[0]+v2[0]*s;
|
|
dest[1] = v1[1]+v2[1]*s;
|
|
dest[2] = v1[2]+v2[2]*s;
|
|
}
|
|
|
|
/// Performs a linear interpolation between two vectors. (@p v1 toward @p v2)
|
|
/// @param[out] dest The result vector. [(x, y, x)]
|
|
/// @param[in] v1 The starting vector.
|
|
/// @param[in] v2 The destination vector.
|
|
/// @param[in] t The interpolation factor. [Limits: 0 <= value <= 1.0]
|
|
inline void dtVlerp(float* dest, const float* v1, const float* v2, const float t)
|
|
{
|
|
dest[0] = v1[0]+(v2[0]-v1[0])*t;
|
|
dest[1] = v1[1]+(v2[1]-v1[1])*t;
|
|
dest[2] = v1[2]+(v2[2]-v1[2])*t;
|
|
}
|
|
|
|
/// Performs a vector addition. (@p v1 + @p v2)
|
|
/// @param[out] dest The result vector. [(x, y, z)]
|
|
/// @param[in] v1 The base vector. [(x, y, z)]
|
|
/// @param[in] v2 The vector to add to @p v1. [(x, y, z)]
|
|
inline void dtVadd(float* dest, const float* v1, const float* v2)
|
|
{
|
|
dest[0] = v1[0]+v2[0];
|
|
dest[1] = v1[1]+v2[1];
|
|
dest[2] = v1[2]+v2[2];
|
|
}
|
|
|
|
/// Performs a vector subtraction. (@p v1 - @p v2)
|
|
/// @param[out] dest The result vector. [(x, y, z)]
|
|
/// @param[in] v1 The base vector. [(x, y, z)]
|
|
/// @param[in] v2 The vector to subtract from @p v1. [(x, y, z)]
|
|
inline void dtVsub(float* dest, const float* v1, const float* v2)
|
|
{
|
|
dest[0] = v1[0]-v2[0];
|
|
dest[1] = v1[1]-v2[1];
|
|
dest[2] = v1[2]-v2[2];
|
|
}
|
|
|
|
/// Scales the vector by the specified value. (@p v * @p t)
|
|
/// @param[out] dest The result vector. [(x, y, z)]
|
|
/// @param[in] v The vector to scale. [(x, y, z)]
|
|
/// @param[in] t The scaling factor.
|
|
inline void dtVscale(float* dest, const float* v, const float t)
|
|
{
|
|
dest[0] = v[0]*t;
|
|
dest[1] = v[1]*t;
|
|
dest[2] = v[2]*t;
|
|
}
|
|
|
|
/// Selects the minimum value of each element from the specified vectors.
|
|
/// @param[in,out] mn A vector. (Will be updated with the result.) [(x, y, z)]
|
|
/// @param[in] v A vector. [(x, y, z)]
|
|
inline void dtVmin(float* mn, const float* v)
|
|
{
|
|
mn[0] = dtMin(mn[0], v[0]);
|
|
mn[1] = dtMin(mn[1], v[1]);
|
|
mn[2] = dtMin(mn[2], v[2]);
|
|
}
|
|
|
|
/// Selects the maximum value of each element from the specified vectors.
|
|
/// @param[in,out] mx A vector. (Will be updated with the result.) [(x, y, z)]
|
|
/// @param[in] v A vector. [(x, y, z)]
|
|
inline void dtVmax(float* mx, const float* v)
|
|
{
|
|
mx[0] = dtMax(mx[0], v[0]);
|
|
mx[1] = dtMax(mx[1], v[1]);
|
|
mx[2] = dtMax(mx[2], v[2]);
|
|
}
|
|
|
|
/// Sets the vector elements to the specified values.
|
|
/// @param[out] dest The result vector. [(x, y, z)]
|
|
/// @param[in] x The x-value of the vector.
|
|
/// @param[in] y The y-value of the vector.
|
|
/// @param[in] z The z-value of the vector.
|
|
inline void dtVset(float* dest, const float x, const float y, const float z)
|
|
{
|
|
dest[0] = x; dest[1] = y; dest[2] = z;
|
|
}
|
|
|
|
/// Performs a vector copy.
|
|
/// @param[out] dest The result. [(x, y, z)]
|
|
/// @param[in] a The vector to copy. [(x, y, z)]
|
|
inline void dtVcopy(float* dest, const float* a)
|
|
{
|
|
dest[0] = a[0];
|
|
dest[1] = a[1];
|
|
dest[2] = a[2];
|
|
}
|
|
|
|
/// Derives the scalar length of the vector.
|
|
/// @param[in] v The vector. [(x, y, z)]
|
|
/// @return The scalar length of the vector.
|
|
inline float dtVlen(const float* v)
|
|
{
|
|
return dtMathSqrtf(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
|
|
}
|
|
|
|
/// Derives the square of the scalar length of the vector. (len * len)
|
|
/// @param[in] v The vector. [(x, y, z)]
|
|
/// @return The square of the scalar length of the vector.
|
|
inline float dtVlenSqr(const float* v)
|
|
{
|
|
return v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
|
|
}
|
|
|
|
/// Returns the distance between two points.
|
|
/// @param[in] v1 A point. [(x, y, z)]
|
|
/// @param[in] v2 A point. [(x, y, z)]
|
|
/// @return The distance between the two points.
|
|
inline float dtVdist(const float* v1, const float* v2)
|
|
{
|
|
const float dx = v2[0] - v1[0];
|
|
const float dy = v2[1] - v1[1];
|
|
const float dz = v2[2] - v1[2];
|
|
return dtMathSqrtf(dx*dx + dy*dy + dz*dz);
|
|
}
|
|
|
|
/// Returns the square of the distance between two points.
|
|
/// @param[in] v1 A point. [(x, y, z)]
|
|
/// @param[in] v2 A point. [(x, y, z)]
|
|
/// @return The square of the distance between the two points.
|
|
inline float dtVdistSqr(const float* v1, const float* v2)
|
|
{
|
|
const float dx = v2[0] - v1[0];
|
|
const float dy = v2[1] - v1[1];
|
|
const float dz = v2[2] - v1[2];
|
|
return dx*dx + dy*dy + dz*dz;
|
|
}
|
|
|
|
/// Derives the distance between the specified points on the xz-plane.
|
|
/// @param[in] v1 A point. [(x, y, z)]
|
|
/// @param[in] v2 A point. [(x, y, z)]
|
|
/// @return The distance between the point on the xz-plane.
|
|
///
|
|
/// The vectors are projected onto the xz-plane, so the y-values are ignored.
|
|
inline float dtVdist2D(const float* v1, const float* v2)
|
|
{
|
|
const float dx = v2[0] - v1[0];
|
|
const float dz = v2[2] - v1[2];
|
|
return dtMathSqrtf(dx*dx + dz*dz);
|
|
}
|
|
|
|
/// Derives the square of the distance between the specified points on the xz-plane.
|
|
/// @param[in] v1 A point. [(x, y, z)]
|
|
/// @param[in] v2 A point. [(x, y, z)]
|
|
/// @return The square of the distance between the point on the xz-plane.
|
|
inline float dtVdist2DSqr(const float* v1, const float* v2)
|
|
{
|
|
const float dx = v2[0] - v1[0];
|
|
const float dz = v2[2] - v1[2];
|
|
return dx*dx + dz*dz;
|
|
}
|
|
|
|
/// Normalizes the vector.
|
|
/// @param[in,out] v The vector to normalize. [(x, y, z)]
|
|
inline void dtVnormalize(float* v)
|
|
{
|
|
float d = 1.0f / dtMathSqrtf(dtSqr(v[0]) + dtSqr(v[1]) + dtSqr(v[2]));
|
|
v[0] *= d;
|
|
v[1] *= d;
|
|
v[2] *= d;
|
|
}
|
|
|
|
/// Performs a 'sloppy' colocation check of the specified points.
|
|
/// @param[in] p0 A point. [(x, y, z)]
|
|
/// @param[in] p1 A point. [(x, y, z)]
|
|
/// @return True if the points are considered to be at the same location.
|
|
///
|
|
/// Basically, this function will return true if the specified points are
|
|
/// close enough to eachother to be considered colocated.
|
|
inline bool dtVequal(const float* p0, const float* p1)
|
|
{
|
|
static const float thr = dtSqr(1.0f/16384.0f);
|
|
const float d = dtVdistSqr(p0, p1);
|
|
return d < thr;
|
|
}
|
|
|
|
/// Checks that the specified vector's components are all finite.
|
|
/// @param[in] v A point. [(x, y, z)]
|
|
/// @return True if all of the point's components are finite, i.e. not NaN
|
|
/// or any of the infinities.
|
|
inline bool dtVisfinite(const float* v)
|
|
{
|
|
bool result =
|
|
dtMathIsfinite(v[0]) &&
|
|
dtMathIsfinite(v[1]) &&
|
|
dtMathIsfinite(v[2]);
|
|
|
|
return result;
|
|
}
|
|
|
|
/// Checks that the specified vector's 2D components are finite.
|
|
/// @param[in] v A point. [(x, y, z)]
|
|
inline bool dtVisfinite2D(const float* v)
|
|
{
|
|
bool result = dtMathIsfinite(v[0]) && dtMathIsfinite(v[2]);
|
|
return result;
|
|
}
|
|
|
|
/// Derives the dot product of two vectors on the xz-plane. (@p u . @p v)
|
|
/// @param[in] u A vector [(x, y, z)]
|
|
/// @param[in] v A vector [(x, y, z)]
|
|
/// @return The dot product on the xz-plane.
|
|
///
|
|
/// The vectors are projected onto the xz-plane, so the y-values are ignored.
|
|
inline float dtVdot2D(const float* u, const float* v)
|
|
{
|
|
return u[0]*v[0] + u[2]*v[2];
|
|
}
|
|
|
|
/// Derives the xz-plane 2D perp product of the two vectors. (uz*vx - ux*vz)
|
|
/// @param[in] u The LHV vector [(x, y, z)]
|
|
/// @param[in] v The RHV vector [(x, y, z)]
|
|
/// @return The dot product on the xz-plane.
|
|
///
|
|
/// The vectors are projected onto the xz-plane, so the y-values are ignored.
|
|
inline float dtVperp2D(const float* u, const float* v)
|
|
{
|
|
return u[2]*v[0] - u[0]*v[2];
|
|
}
|
|
|
|
/// @}
|
|
/// @name Computational geometry helper functions.
|
|
/// @{
|
|
|
|
/// Derives the signed xz-plane area of the triangle ABC, or the relationship of line AB to point C.
|
|
/// @param[in] a Vertex A. [(x, y, z)]
|
|
/// @param[in] b Vertex B. [(x, y, z)]
|
|
/// @param[in] c Vertex C. [(x, y, z)]
|
|
/// @return The signed xz-plane area of the triangle.
|
|
inline float dtTriArea2D(const float* a, const float* b, const float* c)
|
|
{
|
|
const float abx = b[0] - a[0];
|
|
const float abz = b[2] - a[2];
|
|
const float acx = c[0] - a[0];
|
|
const float acz = c[2] - a[2];
|
|
return acx*abz - abx*acz;
|
|
}
|
|
|
|
/// Determines if two axis-aligned bounding boxes overlap.
|
|
/// @param[in] amin Minimum bounds of box A. [(x, y, z)]
|
|
/// @param[in] amax Maximum bounds of box A. [(x, y, z)]
|
|
/// @param[in] bmin Minimum bounds of box B. [(x, y, z)]
|
|
/// @param[in] bmax Maximum bounds of box B. [(x, y, z)]
|
|
/// @return True if the two AABB's overlap.
|
|
/// @see dtOverlapBounds
|
|
inline bool dtOverlapQuantBounds(const unsigned short amin[3], const unsigned short amax[3],
|
|
const unsigned short bmin[3], const unsigned short bmax[3])
|
|
{
|
|
bool overlap = true;
|
|
overlap = (amin[0] > bmax[0] || amax[0] < bmin[0]) ? false : overlap;
|
|
overlap = (amin[1] > bmax[1] || amax[1] < bmin[1]) ? false : overlap;
|
|
overlap = (amin[2] > bmax[2] || amax[2] < bmin[2]) ? false : overlap;
|
|
return overlap;
|
|
}
|
|
|
|
/// Determines if two axis-aligned bounding boxes overlap.
|
|
/// @param[in] amin Minimum bounds of box A. [(x, y, z)]
|
|
/// @param[in] amax Maximum bounds of box A. [(x, y, z)]
|
|
/// @param[in] bmin Minimum bounds of box B. [(x, y, z)]
|
|
/// @param[in] bmax Maximum bounds of box B. [(x, y, z)]
|
|
/// @return True if the two AABB's overlap.
|
|
/// @see dtOverlapQuantBounds
|
|
inline bool dtOverlapBounds(const float* amin, const float* amax,
|
|
const float* bmin, const float* bmax)
|
|
{
|
|
bool overlap = true;
|
|
overlap = (amin[0] > bmax[0] || amax[0] < bmin[0]) ? false : overlap;
|
|
overlap = (amin[1] > bmax[1] || amax[1] < bmin[1]) ? false : overlap;
|
|
overlap = (amin[2] > bmax[2] || amax[2] < bmin[2]) ? false : overlap;
|
|
return overlap;
|
|
}
|
|
|
|
/// Derives the closest point on a triangle from the specified reference point.
|
|
/// @param[out] closest The closest point on the triangle.
|
|
/// @param[in] p The reference point from which to test. [(x, y, z)]
|
|
/// @param[in] a Vertex A of triangle ABC. [(x, y, z)]
|
|
/// @param[in] b Vertex B of triangle ABC. [(x, y, z)]
|
|
/// @param[in] c Vertex C of triangle ABC. [(x, y, z)]
|
|
void dtClosestPtPointTriangle(float* closest, const float* p,
|
|
const float* a, const float* b, const float* c);
|
|
|
|
/// Derives the y-axis height of the closest point on the triangle from the specified reference point.
|
|
/// @param[in] p The reference point from which to test. [(x, y, z)]
|
|
/// @param[in] a Vertex A of triangle ABC. [(x, y, z)]
|
|
/// @param[in] b Vertex B of triangle ABC. [(x, y, z)]
|
|
/// @param[in] c Vertex C of triangle ABC. [(x, y, z)]
|
|
/// @param[out] h The resulting height.
|
|
bool dtClosestHeightPointTriangle(const float* p, const float* a, const float* b, const float* c, float& h);
|
|
|
|
bool dtIntersectSegmentPoly2D(const float* p0, const float* p1,
|
|
const float* verts, int nverts,
|
|
float& tmin, float& tmax,
|
|
int& segMin, int& segMax);
|
|
|
|
bool dtIntersectSegSeg2D(const float* ap, const float* aq,
|
|
const float* bp, const float* bq,
|
|
float& s, float& t);
|
|
|
|
/// Determines if the specified point is inside the convex polygon on the xz-plane.
|
|
/// @param[in] pt The point to check. [(x, y, z)]
|
|
/// @param[in] verts The polygon vertices. [(x, y, z) * @p nverts]
|
|
/// @param[in] nverts The number of vertices. [Limit: >= 3]
|
|
/// @return True if the point is inside the polygon.
|
|
bool dtPointInPolygon(const float* pt, const float* verts, const int nverts);
|
|
|
|
bool dtDistancePtPolyEdgesSqr(const float* pt, const float* verts, const int nverts,
|
|
float* ed, float* et);
|
|
|
|
float dtDistancePtSegSqr2D(const float* pt, const float* p, const float* q, float& t);
|
|
|
|
/// Derives the centroid of a convex polygon.
|
|
/// @param[out] tc The centroid of the polgyon. [(x, y, z)]
|
|
/// @param[in] idx The polygon indices. [(vertIndex) * @p nidx]
|
|
/// @param[in] nidx The number of indices in the polygon. [Limit: >= 3]
|
|
/// @param[in] verts The polygon vertices. [(x, y, z) * vertCount]
|
|
void dtCalcPolyCenter(float* tc, const unsigned short* idx, int nidx, const float* verts);
|
|
|
|
/// Determines if the two convex polygons overlap on the xz-plane.
|
|
/// @param[in] polya Polygon A vertices. [(x, y, z) * @p npolya]
|
|
/// @param[in] npolya The number of vertices in polygon A.
|
|
/// @param[in] polyb Polygon B vertices. [(x, y, z) * @p npolyb]
|
|
/// @param[in] npolyb The number of vertices in polygon B.
|
|
/// @return True if the two polygons overlap.
|
|
bool dtOverlapPolyPoly2D(const float* polya, const int npolya,
|
|
const float* polyb, const int npolyb);
|
|
|
|
/// @}
|
|
/// @name Miscellanious functions.
|
|
/// @{
|
|
|
|
inline unsigned int dtNextPow2(unsigned int v)
|
|
{
|
|
v--;
|
|
v |= v >> 1;
|
|
v |= v >> 2;
|
|
v |= v >> 4;
|
|
v |= v >> 8;
|
|
v |= v >> 16;
|
|
v++;
|
|
return v;
|
|
}
|
|
|
|
inline unsigned int dtIlog2(unsigned int v)
|
|
{
|
|
unsigned int r;
|
|
unsigned int shift;
|
|
r = (v > 0xffff) << 4; v >>= r;
|
|
shift = (v > 0xff) << 3; v >>= shift; r |= shift;
|
|
shift = (v > 0xf) << 2; v >>= shift; r |= shift;
|
|
shift = (v > 0x3) << 1; v >>= shift; r |= shift;
|
|
r |= (v >> 1);
|
|
return r;
|
|
}
|
|
|
|
inline int dtAlign4(int x) { return (x+3) & ~3; }
|
|
|
|
inline int dtOppositeTile(int side) { return (side+4) & 0x7; }
|
|
|
|
inline void dtSwapByte(unsigned char* a, unsigned char* b)
|
|
{
|
|
unsigned char tmp = *a;
|
|
*a = *b;
|
|
*b = tmp;
|
|
}
|
|
|
|
inline void dtSwapEndian(unsigned short* v)
|
|
{
|
|
unsigned char* x = (unsigned char*)v;
|
|
dtSwapByte(x+0, x+1);
|
|
}
|
|
|
|
inline void dtSwapEndian(short* v)
|
|
{
|
|
unsigned char* x = (unsigned char*)v;
|
|
dtSwapByte(x+0, x+1);
|
|
}
|
|
|
|
inline void dtSwapEndian(unsigned int* v)
|
|
{
|
|
unsigned char* x = (unsigned char*)v;
|
|
dtSwapByte(x+0, x+3); dtSwapByte(x+1, x+2);
|
|
}
|
|
|
|
inline void dtSwapEndian(int* v)
|
|
{
|
|
unsigned char* x = (unsigned char*)v;
|
|
dtSwapByte(x+0, x+3); dtSwapByte(x+1, x+2);
|
|
}
|
|
|
|
inline void dtSwapEndian(float* v)
|
|
{
|
|
unsigned char* x = (unsigned char*)v;
|
|
dtSwapByte(x+0, x+3); dtSwapByte(x+1, x+2);
|
|
}
|
|
|
|
void dtRandomPointInConvexPoly(const float* pts, const int npts, float* areas,
|
|
const float s, const float t, float* out);
|
|
|
|
template<typename TypeToRetrieveAs>
|
|
TypeToRetrieveAs* dtGetThenAdvanceBufferPointer(const unsigned char*& buffer, const size_t distanceToAdvance)
|
|
{
|
|
TypeToRetrieveAs* returnPointer = reinterpret_cast<TypeToRetrieveAs*>(buffer);
|
|
buffer += distanceToAdvance;
|
|
return returnPointer;
|
|
}
|
|
|
|
template<typename TypeToRetrieveAs>
|
|
TypeToRetrieveAs* dtGetThenAdvanceBufferPointer(unsigned char*& buffer, const size_t distanceToAdvance)
|
|
{
|
|
TypeToRetrieveAs* returnPointer = reinterpret_cast<TypeToRetrieveAs*>(buffer);
|
|
buffer += distanceToAdvance;
|
|
return returnPointer;
|
|
}
|
|
|
|
|
|
/// @}
|
|
|
|
#endif // DETOURCOMMON_H
|
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
|
|
// This section contains detailed documentation for members that don't have
|
|
// a source file. It reduces clutter in the main section of the header.
|
|
|
|
/**
|
|
|
|
@fn float dtTriArea2D(const float* a, const float* b, const float* c)
|
|
@par
|
|
|
|
The vertices are projected onto the xz-plane, so the y-values are ignored.
|
|
|
|
This is a low cost function than can be used for various purposes. Its main purpose
|
|
is for point/line relationship testing.
|
|
|
|
In all cases: A value of zero indicates that all vertices are collinear or represent the same point.
|
|
(On the xz-plane.)
|
|
|
|
When used for point/line relationship tests, AB usually represents a line against which
|
|
the C point is to be tested. In this case:
|
|
|
|
A positive value indicates that point C is to the left of line AB, looking from A toward B.<br/>
|
|
A negative value indicates that point C is to the right of lineAB, looking from A toward B.
|
|
|
|
When used for evaluating a triangle:
|
|
|
|
The absolute value of the return value is two times the area of the triangle when it is
|
|
projected onto the xz-plane.
|
|
|
|
A positive return value indicates:
|
|
|
|
<ul>
|
|
<li>The vertices are wrapped in the normal Detour wrap direction.</li>
|
|
<li>The triangle's 3D face normal is in the general up direction.</li>
|
|
</ul>
|
|
|
|
A negative return value indicates:
|
|
|
|
<ul>
|
|
<li>The vertices are reverse wrapped. (Wrapped opposite the normal Detour wrap direction.)</li>
|
|
<li>The triangle's 3D face normal is in the general down direction.</li>
|
|
</ul>
|
|
|
|
*/
|