You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
openmw/components/nifosg/controller.cpp

657 lines
23 KiB
C++

#include "controller.hpp"
#include <osg/Material>
#include <osg/MatrixTransform>
#include <osg/TexMat>
#include <osg/Texture2D>
#include <osgAnimation/Bone>
#include <osgParticle/Emitter>
#include <components/nif/data.hpp>
#include <components/sceneutil/morphgeometry.hpp>
#include "matrixtransform.hpp"
namespace NifOsg
{
ControllerFunction::ControllerFunction(const Nif::NiTimeController* ctrl)
: mFrequency(ctrl->mFrequency)
, mPhase(ctrl->mPhase)
, mStartTime(ctrl->mTimeStart)
, mStopTime(ctrl->mTimeStop)
, mExtrapolationMode(ctrl->extrapolationMode())
{
}
float ControllerFunction::calculate(float value) const
{
float time = mFrequency * value + mPhase;
if (time >= mStartTime && time <= mStopTime)
return time;
switch (mExtrapolationMode)
{
case Nif::NiTimeController::ExtrapolationMode::Cycle:
{
float delta = mStopTime - mStartTime;
if (delta <= 0)
return mStartTime;
float cycles = (time - mStartTime) / delta;
float remainder = (cycles - std::floor(cycles)) * delta;
return mStartTime + remainder;
}
case Nif::NiTimeController::ExtrapolationMode::Reverse:
{
float delta = mStopTime - mStartTime;
if (delta <= 0)
return mStartTime;
float cycles = (time - mStartTime) / delta;
float remainder = (cycles - std::floor(cycles)) * delta;
// Even number of cycles?
if ((static_cast<int>(std::fabs(std::floor(cycles))) % 2) == 0)
return mStartTime + remainder;
return mStopTime - remainder;
}
case Nif::NiTimeController::ExtrapolationMode::Constant:
default:
{
if (time < mStartTime)
return mStartTime;
if (time > mStopTime)
return mStopTime;
return time;
}
}
}
float ControllerFunction::getMaximum() const
{
return mStopTime;
}
KeyframeController::KeyframeController() {}
KeyframeController::KeyframeController(const KeyframeController& copy, const osg::CopyOp& copyop)
: osg::Object(copy, copyop)
, SceneUtil::KeyframeController(copy)
, SceneUtil::NodeCallback<KeyframeController, NifOsg::MatrixTransform*>(copy, copyop)
, mRotations(copy.mRotations)
, mXRotations(copy.mXRotations)
, mYRotations(copy.mYRotations)
, mZRotations(copy.mZRotations)
, mTranslations(copy.mTranslations)
, mScales(copy.mScales)
, mAxisOrder(copy.mAxisOrder)
{
}
KeyframeController::KeyframeController(const Nif::NiKeyframeController* keyctrl)
{
if (!keyctrl->mInterpolator.empty())
{
if (keyctrl->mInterpolator->recType == Nif::RC_NiTransformInterpolator)
{
const Nif::NiTransformInterpolator* interp
= static_cast<const Nif::NiTransformInterpolator*>(keyctrl->mInterpolator.getPtr());
const Nif::NiQuatTransform& defaultTransform = interp->mDefaultValue;
if (!interp->mData.empty())
{
mRotations = QuaternionInterpolator(interp->mData->mRotations, defaultTransform.mRotation);
mXRotations = FloatInterpolator(interp->mData->mXRotations);
mYRotations = FloatInterpolator(interp->mData->mYRotations);
mZRotations = FloatInterpolator(interp->mData->mZRotations);
mTranslations = Vec3Interpolator(interp->mData->mTranslations, defaultTransform.mTranslation);
mScales = FloatInterpolator(interp->mData->mScales, defaultTransform.mScale);
mAxisOrder = interp->mData->mAxisOrder;
}
else
{
mRotations = QuaternionInterpolator(Nif::QuaternionKeyMapPtr(), defaultTransform.mRotation);
mTranslations = Vec3Interpolator(Nif::Vector3KeyMapPtr(), defaultTransform.mTranslation);
mScales = FloatInterpolator(Nif::FloatKeyMapPtr(), defaultTransform.mScale);
}
}
}
else if (!keyctrl->mData.empty())
{
const Nif::NiKeyframeData* keydata = keyctrl->mData.getPtr();
mRotations = QuaternionInterpolator(keydata->mRotations);
mXRotations = FloatInterpolator(keydata->mXRotations);
mYRotations = FloatInterpolator(keydata->mYRotations);
mZRotations = FloatInterpolator(keydata->mZRotations);
mTranslations = Vec3Interpolator(keydata->mTranslations);
mScales = FloatInterpolator(keydata->mScales, 1.f);
mAxisOrder = keydata->mAxisOrder;
}
}
osg::Quat KeyframeController::getXYZRotation(float time) const
{
float xrot = 0, yrot = 0, zrot = 0;
if (!mXRotations.empty())
xrot = mXRotations.interpKey(time);
if (!mYRotations.empty())
yrot = mYRotations.interpKey(time);
if (!mZRotations.empty())
zrot = mZRotations.interpKey(time);
osg::Quat xr(xrot, osg::X_AXIS);
osg::Quat yr(yrot, osg::Y_AXIS);
osg::Quat zr(zrot, osg::Z_AXIS);
switch (mAxisOrder)
{
case Nif::NiKeyframeData::AxisOrder::Order_XYZ:
return xr * yr * zr;
case Nif::NiKeyframeData::AxisOrder::Order_XZY:
return xr * zr * yr;
case Nif::NiKeyframeData::AxisOrder::Order_YZX:
return yr * zr * xr;
case Nif::NiKeyframeData::AxisOrder::Order_YXZ:
return yr * xr * zr;
case Nif::NiKeyframeData::AxisOrder::Order_ZXY:
return zr * xr * yr;
case Nif::NiKeyframeData::AxisOrder::Order_ZYX:
return zr * yr * xr;
case Nif::NiKeyframeData::AxisOrder::Order_XYX:
return xr * yr * xr;
case Nif::NiKeyframeData::AxisOrder::Order_YZY:
return yr * zr * yr;
case Nif::NiKeyframeData::AxisOrder::Order_ZXZ:
return zr * xr * zr;
}
return xr * yr * zr;
}
osg::Vec3f KeyframeController::getTranslation(float time) const
{
if (!mTranslations.empty())
return mTranslations.interpKey(time);
return osg::Vec3f();
}
void KeyframeController::operator()(NifOsg::MatrixTransform* node, osg::NodeVisitor* nv)
{
auto [translation, rotation, scale] = getCurrentTransformation(nv);
if (rotation)
{
node->setRotation(*rotation);
}
else
{
// This is necessary to prevent first person animations glitching out due to RotationController
node->setRotation(node->mRotationScale);
}
if (translation)
node->setTranslation(*translation);
if (scale)
node->setScale(*scale);
traverse(node, nv);
}
KeyframeController::KfTransform KeyframeController::getCurrentTransformation(osg::NodeVisitor* nv)
{
KfTransform out;
if (hasInput())
{
float time = getInputValue(nv);
if (!mRotations.empty())
out.mRotation = mRotations.interpKey(time);
else if (!mXRotations.empty() || !mYRotations.empty() || !mZRotations.empty())
out.mRotation = getXYZRotation(time);
if (!mTranslations.empty())
out.mTranslation = mTranslations.interpKey(time);
if (!mScales.empty())
out.mScale = mScales.interpKey(time);
}
return out;
}
GeomMorpherController::GeomMorpherController() {}
GeomMorpherController::GeomMorpherController(const GeomMorpherController& copy, const osg::CopyOp& copyop)
: Controller(copy)
, SceneUtil::NodeCallback<GeomMorpherController, SceneUtil::MorphGeometry*>(copy, copyop)
, mKeyFrames(copy.mKeyFrames)
, mWeights(copy.mWeights)
{
}
GeomMorpherController::GeomMorpherController(const Nif::NiGeomMorpherController* ctrl)
{
if (ctrl->mInterpolators.size() == 0)
{
if (!ctrl->mData.empty())
{
for (const auto& morph : ctrl->mData->mMorphs)
mKeyFrames.emplace_back(morph.mKeyFrames);
}
return;
}
mKeyFrames.resize(ctrl->mInterpolators.size());
mWeights = ctrl->mWeights;
for (std::size_t i = 0, n = ctrl->mInterpolators.size(); i < n; ++i)
{
if (!ctrl->mInterpolators[i].empty() && ctrl->mInterpolators[i]->recType == Nif::RC_NiFloatInterpolator)
{
auto interpolator = static_cast<const Nif::NiFloatInterpolator*>(ctrl->mInterpolators[i].getPtr());
mKeyFrames[i] = FloatInterpolator(interpolator);
}
}
}
void GeomMorpherController::operator()(SceneUtil::MorphGeometry* node, osg::NodeVisitor* nv)
{
if (hasInput())
{
if (mKeyFrames.size() <= 1)
return;
float input = getInputValue(nv);
size_t i = 1;
for (std::vector<FloatInterpolator>::iterator it = mKeyFrames.begin() + 1; it != mKeyFrames.end();
++it, ++i)
{
float val = 0;
if (!(*it).empty())
{
val = it->interpKey(input);
if (i < mWeights.size())
val *= mWeights[i];
}
SceneUtil::MorphGeometry::MorphTarget& target = node->getMorphTarget(i);
if (target.getWeight() != val)
{
target.setWeight(val);
node->dirty();
}
}
}
}
UVController::UVController(const Nif::NiUVData* data, const std::set<unsigned int>& textureUnits)
: mUTrans(data->mKeyList[0], 0.f)
, mVTrans(data->mKeyList[1], 0.f)
, mUScale(data->mKeyList[2], 1.f)
, mVScale(data->mKeyList[3], 1.f)
, mTextureUnits(textureUnits)
{
}
UVController::UVController(const UVController& copy, const osg::CopyOp& copyop)
: osg::Object(copy, copyop)
, StateSetUpdater(copy, copyop)
, Controller(copy)
, mUTrans(copy.mUTrans)
, mVTrans(copy.mVTrans)
, mUScale(copy.mUScale)
, mVScale(copy.mVScale)
, mTextureUnits(copy.mTextureUnits)
{
}
void UVController::setDefaults(osg::StateSet* stateset)
{
osg::ref_ptr<osg::TexMat> texMat(new osg::TexMat);
for (unsigned int unit : mTextureUnits)
stateset->setTextureAttributeAndModes(unit, texMat, osg::StateAttribute::ON);
}
void UVController::apply(osg::StateSet* stateset, osg::NodeVisitor* nv)
{
if (hasInput())
{
float value = getInputValue(nv);
// First scale the UV relative to its center, then apply the offset.
// U offset is flipped regardless of the graphics library,
// while V offset is flipped to account for OpenGL Y axis convention.
osg::Vec3f uvOrigin(0.5f, 0.5f, 0.f);
osg::Vec3f uvScale(mUScale.interpKey(value), mVScale.interpKey(value), 1.f);
osg::Vec3f uvTrans(-mUTrans.interpKey(value), -mVTrans.interpKey(value), 0.f);
osg::Matrixf mat = osg::Matrixf::translate(uvOrigin);
mat.preMultScale(uvScale);
mat.preMultTranslate(-uvOrigin);
mat.setTrans(mat.getTrans() + uvTrans);
// setting once is enough because all other texture units share the same TexMat (see setDefaults).
if (!mTextureUnits.empty())
{
osg::TexMat* texMat = static_cast<osg::TexMat*>(
stateset->getTextureAttribute(*mTextureUnits.begin(), osg::StateAttribute::TEXMAT));
texMat->setMatrix(mat);
}
}
}
VisController::VisController(const Nif::NiVisController* ctrl, unsigned int mask)
: mMask(mask)
{
if (!ctrl->mInterpolator.empty())
{
if (ctrl->mInterpolator->recType != Nif::RC_NiBoolInterpolator)
return;
mInterpolator = { static_cast<const Nif::NiBoolInterpolator*>(ctrl->mInterpolator.getPtr()) };
}
else if (!ctrl->mData.empty())
mData = ctrl->mData->mKeys;
}
VisController::VisController() {}
VisController::VisController(const VisController& copy, const osg::CopyOp& copyop)
: SceneUtil::NodeCallback<VisController>(copy, copyop)
, Controller(copy)
, mData(copy.mData)
, mInterpolator(copy.mInterpolator)
, mMask(copy.mMask)
{
}
bool VisController::calculate(float time) const
{
if (!mInterpolator.empty())
return mInterpolator.interpKey(time);
if (mData->empty())
return true;
auto iter = mData->upper_bound(time);
if (iter != mData->begin())
--iter;
return iter->second;
}
void VisController::operator()(osg::Node* node, osg::NodeVisitor* nv)
{
if (hasInput())
{
bool vis = calculate(getInputValue(nv));
node->setNodeMask(vis ? ~0 : mMask);
}
traverse(node, nv);
}
RollController::RollController(const Nif::NiRollController* ctrl)
{
if (!ctrl->mInterpolator.empty())
{
if (ctrl->mInterpolator->recType == Nif::RC_NiFloatInterpolator)
mData = FloatInterpolator(static_cast<const Nif::NiFloatInterpolator*>(ctrl->mInterpolator.getPtr()));
}
else if (!ctrl->mData.empty())
mData = FloatInterpolator(ctrl->mData->mKeyList, 1.f);
}
RollController::RollController(const RollController& copy, const osg::CopyOp& copyop)
: SceneUtil::NodeCallback<RollController, osg::MatrixTransform*>(copy, copyop)
, Controller(copy)
, mData(copy.mData)
, mStartingTime(copy.mStartingTime)
{
}
void RollController::operator()(osg::MatrixTransform* node, osg::NodeVisitor* nv)
{
traverse(node, nv);
if (hasInput())
{
double newTime = nv->getFrameStamp()->getSimulationTime();
double duration = newTime - mStartingTime;
mStartingTime = newTime;
float value = mData.interpKey(getInputValue(nv));
// Rotate around "roll" axis.
// Note: in original game rotation speed is the framerate-dependent in a very tricky way.
// Do not replicate this behaviour until we will really need it.
// For now consider controller's current value as an angular speed in radians per 1/60 seconds.
node->preMult(osg::Matrix::rotate(value * duration * 60.f, 0, 0, 1));
// Note: doing it like this means RollControllers are not compatible with KeyframeControllers.
// KeyframeController currently wins the conflict.
// However unlikely that is, NetImmerse might combine the transformations somehow.
}
}
AlphaController::AlphaController() {}
AlphaController::AlphaController(const Nif::NiAlphaController* ctrl, const osg::Material* baseMaterial)
: mBaseMaterial(baseMaterial)
{
if (!ctrl->mInterpolator.empty())
{
if (ctrl->mInterpolator->recType == Nif::RC_NiFloatInterpolator)
mData = FloatInterpolator(static_cast<const Nif::NiFloatInterpolator*>(ctrl->mInterpolator.getPtr()));
}
else if (!ctrl->mData.empty())
mData = FloatInterpolator(ctrl->mData->mKeyList, 1.f);
}
AlphaController::AlphaController(const AlphaController& copy, const osg::CopyOp& copyop)
: StateSetUpdater(copy, copyop)
, Controller(copy)
, mData(copy.mData)
, mBaseMaterial(copy.mBaseMaterial)
{
}
void AlphaController::setDefaults(osg::StateSet* stateset)
{
stateset->setAttribute(
static_cast<osg::Material*>(mBaseMaterial->clone(osg::CopyOp::DEEP_COPY_ALL)), osg::StateAttribute::ON);
}
void AlphaController::apply(osg::StateSet* stateset, osg::NodeVisitor* nv)
{
if (hasInput())
{
float value = mData.interpKey(getInputValue(nv));
osg::Material* mat = static_cast<osg::Material*>(stateset->getAttribute(osg::StateAttribute::MATERIAL));
osg::Vec4f diffuse = mat->getDiffuse(osg::Material::FRONT_AND_BACK);
diffuse.a() = value;
mat->setDiffuse(osg::Material::FRONT_AND_BACK, diffuse);
}
}
MaterialColorController::MaterialColorController() = default;
MaterialColorController::MaterialColorController(
const Nif::NiMaterialColorController* ctrl, const osg::Material* baseMaterial)
: mTargetColor(ctrl->mTargetColor)
, mBaseMaterial(baseMaterial)
{
if (!ctrl->mInterpolator.empty())
{
if (ctrl->mInterpolator->recType == Nif::RC_NiPoint3Interpolator)
mData = Vec3Interpolator(static_cast<const Nif::NiPoint3Interpolator*>(ctrl->mInterpolator.getPtr()));
}
else if (!ctrl->mData.empty())
mData = Vec3Interpolator(ctrl->mData->mKeyList, osg::Vec3f(1, 1, 1));
}
MaterialColorController::MaterialColorController(const MaterialColorController& copy, const osg::CopyOp& copyop)
: StateSetUpdater(copy, copyop)
, Controller(copy)
, mData(copy.mData)
, mTargetColor(copy.mTargetColor)
, mBaseMaterial(copy.mBaseMaterial)
{
}
void MaterialColorController::setDefaults(osg::StateSet* stateset)
{
stateset->setAttribute(
static_cast<osg::Material*>(mBaseMaterial->clone(osg::CopyOp::DEEP_COPY_ALL)), osg::StateAttribute::ON);
}
void MaterialColorController::apply(osg::StateSet* stateset, osg::NodeVisitor* nv)
{
if (hasInput())
{
osg::Vec3f value = mData.interpKey(getInputValue(nv));
osg::Material* mat = static_cast<osg::Material*>(stateset->getAttribute(osg::StateAttribute::MATERIAL));
using TargetColor = Nif::NiMaterialColorController::TargetColor;
switch (mTargetColor)
{
case TargetColor::Diffuse:
{
osg::Vec4f diffuse = mat->getDiffuse(osg::Material::FRONT_AND_BACK);
diffuse.set(value.x(), value.y(), value.z(), diffuse.a());
mat->setDiffuse(osg::Material::FRONT_AND_BACK, diffuse);
break;
}
case TargetColor::Specular:
{
osg::Vec4f specular = mat->getSpecular(osg::Material::FRONT_AND_BACK);
specular.set(value.x(), value.y(), value.z(), specular.a());
mat->setSpecular(osg::Material::FRONT_AND_BACK, specular);
break;
}
case TargetColor::Emissive:
{
osg::Vec4f emissive = mat->getEmission(osg::Material::FRONT_AND_BACK);
emissive.set(value.x(), value.y(), value.z(), emissive.a());
mat->setEmission(osg::Material::FRONT_AND_BACK, emissive);
break;
}
case TargetColor::Ambient:
default:
{
osg::Vec4f ambient = mat->getAmbient(osg::Material::FRONT_AND_BACK);
ambient.set(value.x(), value.y(), value.z(), ambient.a());
mat->setAmbient(osg::Material::FRONT_AND_BACK, ambient);
}
}
}
}
FlipController::FlipController(
const Nif::NiFlipController* ctrl, const std::vector<osg::ref_ptr<osg::Texture2D>>& textures)
: mTexSlot(0) // always affects diffuse
, mDelta(ctrl->mDelta)
, mTextures(textures)
{
if (!ctrl->mInterpolator.empty() && ctrl->mInterpolator->recType == Nif::RC_NiFloatInterpolator)
mData = static_cast<const Nif::NiFloatInterpolator*>(ctrl->mInterpolator.getPtr());
}
FlipController::FlipController(int texSlot, float delta, const std::vector<osg::ref_ptr<osg::Texture2D>>& textures)
: mTexSlot(texSlot)
, mDelta(delta)
, mTextures(textures)
{
}
FlipController::FlipController(const FlipController& copy, const osg::CopyOp& copyop)
: StateSetUpdater(copy, copyop)
, Controller(copy)
, mTexSlot(copy.mTexSlot)
, mDelta(copy.mDelta)
, mTextures(copy.mTextures)
, mData(copy.mData)
{
}
void FlipController::apply(osg::StateSet* stateset, osg::NodeVisitor* nv)
{
if (hasInput() && !mTextures.empty())
{
int curTexture = 0;
if (mDelta != 0)
curTexture = int(getInputValue(nv) / mDelta) % mTextures.size();
else
curTexture = int(mData.interpKey(getInputValue(nv))) % mTextures.size();
stateset->setTextureAttribute(mTexSlot, mTextures[curTexture]);
}
}
ParticleSystemController::ParticleSystemController(const Nif::NiParticleSystemController* ctrl)
: mEmitStart(ctrl->mEmitStartTime)
, mEmitStop(ctrl->mEmitStopTime)
{
}
ParticleSystemController::ParticleSystemController(const ParticleSystemController& copy, const osg::CopyOp& copyop)
: SceneUtil::NodeCallback<ParticleSystemController, osgParticle::ParticleProcessor*>(copy, copyop)
, Controller(copy)
, mEmitStart(copy.mEmitStart)
, mEmitStop(copy.mEmitStop)
{
}
void ParticleSystemController::operator()(osgParticle::ParticleProcessor* node, osg::NodeVisitor* nv)
{
if (hasInput())
{
float time = getInputValue(nv);
node->getParticleSystem()->setFrozen(false);
node->setEnabled(time >= mEmitStart && time < mEmitStop);
}
else
node->getParticleSystem()->setFrozen(true);
traverse(node, nv);
}
PathController::PathController(const PathController& copy, const osg::CopyOp& copyop)
: SceneUtil::NodeCallback<PathController, NifOsg::MatrixTransform*>(copy, copyop)
, Controller(copy)
, mPath(copy.mPath)
, mPercent(copy.mPercent)
, mFlags(copy.mFlags)
{
}
PathController::PathController(const Nif::NiPathController* ctrl)
: mPath(ctrl->mPathData->mKeyList, osg::Vec3f())
, mPercent(ctrl->mPercentData->mKeyList, 1.f)
, mFlags(ctrl->mPathFlags)
{
}
float PathController::getPercent(float time) const
{
float percent = mPercent.interpKey(time);
if (percent < 0.f)
percent = std::fmod(percent, 1.f) + 1.f;
else if (percent > 1.f)
percent = std::fmod(percent, 1.f);
return percent;
}
void PathController::operator()(NifOsg::MatrixTransform* node, osg::NodeVisitor* nv)
{
if (mPath.empty() || mPercent.empty() || !hasInput())
{
traverse(node, nv);
return;
}
float time = getInputValue(nv);
float percent = getPercent(time);
node->setTranslation(mPath.interpKey(percent));
traverse(node, nv);
}
}