You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
openmw/components/nifosg/particle.cpp

672 lines
22 KiB
C++

#include "particle.hpp"
#include <limits>
#include <optional>
#include <osg/Geometry>
#include <osg/MatrixTransform>
#include <osg/ValueObject>
#include <components/debug/debuglog.hpp>
#include <components/misc/rng.hpp>
#include <components/nif/controlled.hpp>
#include <components/nif/data.hpp>
#include <components/sceneutil/morphgeometry.hpp>
#include <components/sceneutil/riggeometry.hpp>
namespace
{
class FindFirstGeometry : public osg::NodeVisitor
{
public:
FindFirstGeometry()
: osg::NodeVisitor(osg::NodeVisitor::TRAVERSE_ALL_CHILDREN)
, mGeometry(nullptr)
{
}
void apply(osg::Node& node) override
{
if (mGeometry)
return;
traverse(node);
}
void apply(osg::Drawable& drawable) override
{
if (auto morph = dynamic_cast<SceneUtil::MorphGeometry*>(&drawable))
{
mGeometry = morph->getSourceGeometry();
return;
}
else if (auto rig = dynamic_cast<SceneUtil::RigGeometry*>(&drawable))
{
mGeometry = rig->getSourceGeometry();
return;
}
traverse(drawable);
}
void apply(osg::Geometry& geometry) override { mGeometry = &geometry; }
osg::Geometry* mGeometry;
};
class LocalToWorldAccumulator : public osg::NodeVisitor
{
public:
LocalToWorldAccumulator(osg::Matrix& matrix)
: osg::NodeVisitor()
, mMatrix(matrix)
{
}
virtual void apply(osg::Transform& transform)
{
if (&transform != mLastAppliedTransform)
{
mLastAppliedTransform = &transform;
mLastMatrix = mMatrix;
}
transform.computeLocalToWorldMatrix(mMatrix, this);
}
void accumulate(const osg::NodePath& path)
{
if (path.empty())
return;
size_t i = path.size();
for (auto rit = path.rbegin(); rit != path.rend(); rit++, --i)
{
const osg::Camera* camera = (*rit)->asCamera();
if (camera
&& (camera->getReferenceFrame() != osg::Transform::RELATIVE_RF || camera->getParents().empty()))
break;
}
for (; i < path.size(); ++i)
path[i]->accept(*this);
}
osg::Matrix& mMatrix;
std::optional<osg::Matrix> mLastMatrix;
osg::Transform* mLastAppliedTransform = nullptr;
};
}
namespace NifOsg
{
ParticleSystem::ParticleSystem()
: osgParticle::ParticleSystem()
, mQuota(std::numeric_limits<int>::max())
{
mNormalArray = new osg::Vec3Array(1);
mNormalArray->setBinding(osg::Array::BIND_OVERALL);
(*mNormalArray.get())[0] = osg::Vec3(0.3, 0.3, 0.3);
}
ParticleSystem::ParticleSystem(const ParticleSystem& copy, const osg::CopyOp& copyop)
: osgParticle::ParticleSystem(copy, copyop)
, mQuota(copy.mQuota)
{
mNormalArray = new osg::Vec3Array(1);
mNormalArray->setBinding(osg::Array::BIND_OVERALL);
(*mNormalArray.get())[0] = osg::Vec3(0.3, 0.3, 0.3);
// For some reason the osgParticle constructor doesn't copy the particles
for (int i = 0; i < copy.numParticles() - copy.numDeadParticles(); ++i)
ParticleSystem::createParticle(copy.getParticle(i));
}
void ParticleSystem::setQuota(int quota)
{
mQuota = quota;
}
osgParticle::Particle* ParticleSystem::createParticle(const osgParticle::Particle* ptemplate)
{
if (numParticles() - numDeadParticles() < mQuota)
return osgParticle::ParticleSystem::createParticle(ptemplate);
return nullptr;
}
void ParticleSystem::drawImplementation(osg::RenderInfo& renderInfo) const
{
osg::State& state = *renderInfo.getState();
if (state.useVertexArrayObject(getUseVertexArrayObject()))
{
state.getCurrentVertexArrayState()->assignNormalArrayDispatcher();
state.getCurrentVertexArrayState()->setNormalArray(state, mNormalArray);
}
else
{
state.getAttributeDispatchers().activateNormalArray(mNormalArray);
}
osgParticle::ParticleSystem::drawImplementation(renderInfo);
}
void InverseWorldMatrix::operator()(osg::MatrixTransform* node, osg::NodeVisitor* nv)
{
osg::NodePath path = nv->getNodePath();
path.pop_back();
osg::Matrix mat = osg::computeLocalToWorld(path);
mat.orthoNormalize(mat); // don't undo the scale
mat.invert(mat);
node->setMatrix(mat);
traverse(node, nv);
}
ParticleShooter::ParticleShooter(float minSpeed, float maxSpeed, float horizontalDir, float horizontalAngle,
float verticalDir, float verticalAngle, float lifetime, float lifetimeRandom)
: mMinSpeed(minSpeed)
, mMaxSpeed(maxSpeed)
, mHorizontalDir(horizontalDir)
, mHorizontalAngle(horizontalAngle)
, mVerticalDir(verticalDir)
, mVerticalAngle(verticalAngle)
, mLifetime(lifetime)
, mLifetimeRandom(lifetimeRandom)
{
}
ParticleShooter::ParticleShooter()
: mMinSpeed(0.f)
, mMaxSpeed(0.f)
, mHorizontalDir(0.f)
, mHorizontalAngle(0.f)
, mVerticalDir(0.f)
, mVerticalAngle(0.f)
, mLifetime(0.f)
, mLifetimeRandom(0.f)
{
}
ParticleShooter::ParticleShooter(const ParticleShooter& copy, const osg::CopyOp& copyop)
: osgParticle::Shooter(copy, copyop)
{
mMinSpeed = copy.mMinSpeed;
mMaxSpeed = copy.mMaxSpeed;
mHorizontalDir = copy.mHorizontalDir;
mHorizontalAngle = copy.mHorizontalAngle;
mVerticalDir = copy.mVerticalDir;
mVerticalAngle = copy.mVerticalAngle;
mLifetime = copy.mLifetime;
mLifetimeRandom = copy.mLifetimeRandom;
}
void ParticleShooter::shoot(osgParticle::Particle* particle) const
{
float hdir = mHorizontalDir + mHorizontalAngle * (2.f * Misc::Rng::rollClosedProbability() - 1.f);
float vdir = mVerticalDir + mVerticalAngle * (2.f * Misc::Rng::rollClosedProbability() - 1.f);
osg::Vec3f dir
= (osg::Quat(vdir, osg::Vec3f(0, 1, 0)) * osg::Quat(hdir, osg::Vec3f(0, 0, 1))) * osg::Vec3f(0, 0, 1);
float vel = mMinSpeed + (mMaxSpeed - mMinSpeed) * Misc::Rng::rollClosedProbability();
particle->setVelocity(dir * vel);
// Not supposed to set this here, but there doesn't seem to be a better way of doing it
particle->setLifeTime(std::max(
std::numeric_limits<float>::epsilon(), mLifetime + mLifetimeRandom * Misc::Rng::rollClosedProbability()));
}
GrowFadeAffector::GrowFadeAffector(float growTime, float fadeTime)
: mGrowTime(growTime)
, mFadeTime(fadeTime)
, mCachedDefaultSize(0.f)
{
}
GrowFadeAffector::GrowFadeAffector()
: mGrowTime(0.f)
, mFadeTime(0.f)
, mCachedDefaultSize(0.f)
{
}
GrowFadeAffector::GrowFadeAffector(const GrowFadeAffector& copy, const osg::CopyOp& copyop)
: osgParticle::Operator(copy, copyop)
{
mGrowTime = copy.mGrowTime;
mFadeTime = copy.mFadeTime;
mCachedDefaultSize = copy.mCachedDefaultSize;
}
void GrowFadeAffector::beginOperate(osgParticle::Program* program)
{
mCachedDefaultSize = program->getParticleSystem()->getDefaultParticleTemplate().getSizeRange().minimum;
}
void GrowFadeAffector::operate(osgParticle::Particle* particle, double /* dt */)
{
float size = mCachedDefaultSize;
if (particle->getAge() < mGrowTime && mGrowTime != 0.f)
size *= particle->getAge() / mGrowTime;
if (particle->getLifeTime() - particle->getAge() < mFadeTime && mFadeTime != 0.f)
size *= (particle->getLifeTime() - particle->getAge()) / mFadeTime;
particle->setSizeRange(osgParticle::rangef(size, size));
}
ParticleColorAffector::ParticleColorAffector(const Nif::NiColorData* clrdata)
: mData(clrdata->mKeyMap, osg::Vec4f(1, 1, 1, 1))
{
}
ParticleColorAffector::ParticleColorAffector() {}
ParticleColorAffector::ParticleColorAffector(const ParticleColorAffector& copy, const osg::CopyOp& copyop)
: osgParticle::Operator(copy, copyop)
{
mData = copy.mData;
}
void ParticleColorAffector::operate(osgParticle::Particle* particle, double /* dt */)
{
assert(particle->getLifeTime() > 0);
float time = static_cast<float>(particle->getAge() / particle->getLifeTime());
osg::Vec4f color = mData.interpKey(time);
float alpha = color.a();
color.a() = 1.0f;
particle->setColorRange(osgParticle::rangev4(color, color));
particle->setAlphaRange(osgParticle::rangef(alpha, alpha));
}
GravityAffector::GravityAffector(const Nif::NiGravity* gravity)
: mForce(gravity->mForce)
, mType(static_cast<ForceType>(gravity->mType))
, mPosition(gravity->mPosition)
, mDirection(gravity->mDirection)
, mDecay(gravity->mDecay)
{
}
GravityAffector::GravityAffector()
: mForce(0)
, mType(Type_Wind)
, mDecay(0.f)
{
}
GravityAffector::GravityAffector(const GravityAffector& copy, const osg::CopyOp& copyop)
: osgParticle::Operator(copy, copyop)
{
mForce = copy.mForce;
mType = copy.mType;
mPosition = copy.mPosition;
mDirection = copy.mDirection;
mDecay = copy.mDecay;
mCachedWorldPosition = copy.mCachedWorldPosition;
mCachedWorldDirection = copy.mCachedWorldDirection;
}
void GravityAffector::beginOperate(osgParticle::Program* program)
{
bool absolute = (program->getReferenceFrame() == osgParticle::ParticleProcessor::ABSOLUTE_RF);
if (mType == Type_Point
|| mDecay != 0.f) // we don't need the position for Wind gravity, except if decay is being applied
mCachedWorldPosition = absolute ? program->transformLocalToWorld(mPosition) : mPosition;
mCachedWorldDirection = absolute ? program->rotateLocalToWorld(mDirection) : mDirection;
mCachedWorldDirection.normalize();
}
void GravityAffector::operate(osgParticle::Particle* particle, double dt)
{
const float magic = 1.6f;
switch (mType)
{
case Type_Wind:
{
float decayFactor = 1.f;
if (mDecay != 0.f)
{
osg::Plane gravityPlane(mCachedWorldDirection, mCachedWorldPosition);
float distance = std::abs(gravityPlane.distance(particle->getPosition()));
decayFactor = std::exp(-1.f * mDecay * distance);
}
particle->addVelocity(mCachedWorldDirection * mForce * dt * decayFactor * magic);
break;
}
case Type_Point:
{
osg::Vec3f diff = mCachedWorldPosition - particle->getPosition();
float decayFactor = 1.f;
if (mDecay != 0.f)
decayFactor = std::exp(-1.f * mDecay * diff.length());
diff.normalize();
particle->addVelocity(diff * mForce * dt * decayFactor * magic);
break;
}
}
}
Emitter::Emitter()
: osgParticle::Emitter()
, mFlags(0)
, mGeometryEmitterTarget(std::nullopt)
{
}
Emitter::Emitter(const Emitter& copy, const osg::CopyOp& copyop)
: osgParticle::Emitter(copy, copyop)
, mTargets(copy.mTargets)
, mPlacer(copy.mPlacer)
, mShooter(copy.mShooter)
// need a deep copy because the remainder is stored in the object
, mCounter(static_cast<osgParticle::Counter*>(copy.mCounter->clone(osg::CopyOp::DEEP_COPY_ALL)))
, mFlags(copy.mFlags)
, mGeometryEmitterTarget(copy.mGeometryEmitterTarget)
, mCachedGeometryEmitter(copy.mCachedGeometryEmitter)
{
}
Emitter::Emitter(const std::vector<int>& targets)
: mTargets(targets)
, mFlags(0)
, mGeometryEmitterTarget(std::nullopt)
{
}
void Emitter::emitParticles(double dt)
{
int n = mCounter->numParticlesToCreate(dt);
if (n == 0)
return;
osg::Matrix worldToPs;
// maybe this could be optimized by halting at the lowest common ancestor of the particle and emitter nodes
osg::NodePathList partsysNodePaths = getParticleSystem()->getParentalNodePaths();
if (!partsysNodePaths.empty())
{
osg::Matrix psToWorld = osg::computeLocalToWorld(partsysNodePaths[0]);
worldToPs = osg::Matrix::inverse(psToWorld);
}
const osg::Matrix& ltw = getLocalToWorldMatrix();
osg::Matrix emitterToPs = ltw * worldToPs;
osg::ref_ptr<osg::Vec3Array> geometryVertices = nullptr;
const bool useGeometryEmitter = mFlags & Nif::NiParticleSystemController::BSPArrayController_AtVertex;
if (useGeometryEmitter || !mTargets.empty())
{
int recIndex;
if (useGeometryEmitter)
{
if (!mGeometryEmitterTarget.has_value())
return;
recIndex = mGeometryEmitterTarget.value();
}
else
{
int randomIndex = Misc::Rng::rollClosedProbability() * (mTargets.size() - 1);
recIndex = mTargets[randomIndex];
}
// we could use a map here for faster lookup
FindGroupByRecIndex visitor(recIndex);
getParent(0)->accept(visitor);
if (!visitor.mFound)
{
Log(Debug::Info) << "Can't find emitter node" << recIndex;
return;
}
if (useGeometryEmitter)
{
if (!mCachedGeometryEmitter.lock(geometryVertices))
{
FindFirstGeometry geometryVisitor;
visitor.mFound->accept(geometryVisitor);
if (geometryVisitor.mGeometry)
{
if (auto* vertices = dynamic_cast<osg::Vec3Array*>(geometryVisitor.mGeometry->getVertexArray()))
{
mCachedGeometryEmitter = osg::observer_ptr<osg::Vec3Array>(vertices);
geometryVertices = vertices;
}
}
}
}
osg::NodePath path = visitor.mFoundPath;
path.erase(path.begin());
if (!useGeometryEmitter && (mFlags & Nif::NiParticleSystemController::BSPArrayController_AtNode)
&& path.size())
{
osg::Matrix current;
LocalToWorldAccumulator accum(current);
accum.accumulate(path);
osg::Matrix parent = accum.mLastMatrix.value_or(current);
auto p1 = parent.getTrans();
auto p2 = current.getTrans();
current.setTrans((p2 - p1) * Misc::Rng::rollClosedProbability() + p1);
emitterToPs = current * emitterToPs;
}
else
{
emitterToPs = osg::computeLocalToWorld(path) * emitterToPs;
}
}
emitterToPs.orthoNormalize(emitterToPs);
if (useGeometryEmitter && (!geometryVertices.valid() || geometryVertices->empty()))
return;
for (int i = 0; i < n; ++i)
{
osgParticle::Particle* P = getParticleSystem()->createParticle(nullptr);
if (P)
{
if (useGeometryEmitter)
P->setPosition((*geometryVertices)[Misc::Rng::rollDice(geometryVertices->getNumElements())]);
else if (mPlacer)
mPlacer->place(P);
mShooter->shoot(P);
P->transformPositionVelocity(emitterToPs);
}
}
}
FindGroupByRecIndex::FindGroupByRecIndex(unsigned int recIndex)
: osg::NodeVisitor(TRAVERSE_ALL_CHILDREN)
, mFound(nullptr)
, mRecIndex(recIndex)
{
}
void FindGroupByRecIndex::apply(osg::Node& node)
{
applyNode(node);
}
void FindGroupByRecIndex::apply(osg::MatrixTransform& node)
{
applyNode(node);
}
void FindGroupByRecIndex::apply(osg::Geometry& node)
{
applyNode(node);
}
void FindGroupByRecIndex::applyNode(osg::Node& searchNode)
{
unsigned int recIndex;
if (searchNode.getUserValue("recIndex", recIndex) && mRecIndex == recIndex)
{
osg::Group* group = searchNode.asGroup();
if (!group)
group = searchNode.getParent(0);
mFound = group;
mFoundPath = getNodePath();
return;
}
traverse(searchNode);
}
PlanarCollider::PlanarCollider(const Nif::NiPlanarCollider* collider)
: mBounceFactor(collider->mBounceFactor)
, mExtents(collider->mExtents)
, mPosition(collider->mPosition)
, mXVector(collider->mXVector)
, mYVector(collider->mYVector)
, mPlane(-collider->mPlaneNormal, collider->mPlaneDistance)
{
}
PlanarCollider::PlanarCollider(const PlanarCollider& copy, const osg::CopyOp& copyop)
: osgParticle::Operator(copy, copyop)
, mBounceFactor(copy.mBounceFactor)
, mExtents(copy.mExtents)
, mPosition(copy.mPosition)
, mPositionInParticleSpace(copy.mPositionInParticleSpace)
, mXVector(copy.mXVector)
, mXVectorInParticleSpace(copy.mXVectorInParticleSpace)
, mYVector(copy.mYVector)
, mYVectorInParticleSpace(copy.mYVectorInParticleSpace)
, mPlane(copy.mPlane)
, mPlaneInParticleSpace(copy.mPlaneInParticleSpace)
{
}
void PlanarCollider::beginOperate(osgParticle::Program* program)
{
mPositionInParticleSpace = mPosition;
mPlaneInParticleSpace = mPlane;
mXVectorInParticleSpace = mXVector;
mYVectorInParticleSpace = mYVector;
if (program->getReferenceFrame() == osgParticle::ParticleProcessor::ABSOLUTE_RF)
{
mPositionInParticleSpace = program->transformLocalToWorld(mPosition);
mPlaneInParticleSpace.transform(program->getLocalToWorldMatrix());
mXVectorInParticleSpace = program->rotateLocalToWorld(mXVector);
mYVectorInParticleSpace = program->rotateLocalToWorld(mYVector);
}
}
void PlanarCollider::operate(osgParticle::Particle* particle, double dt)
{
// Does the particle in question move towards the collider?
float velDotProduct = particle->getVelocity() * mPlaneInParticleSpace.getNormal();
if (velDotProduct <= 0)
return;
// Does it intersect the collider's plane?
osg::BoundingSphere bs(particle->getPosition(), 0.f);
if (mPlaneInParticleSpace.intersect(bs) != 1)
return;
// Is it inside the collider's bounds?
osg::Vec3f relativePos = particle->getPosition() - mPositionInParticleSpace;
float xDotProduct = relativePos * mXVectorInParticleSpace;
float yDotProduct = relativePos * mYVectorInParticleSpace;
if (-mExtents.x() * 0.5f > xDotProduct || mExtents.x() * 0.5f < xDotProduct)
return;
if (-mExtents.y() * 0.5f > yDotProduct || mExtents.y() * 0.5f < yDotProduct)
return;
// Deflect the particle
osg::Vec3 reflectedVelocity = particle->getVelocity() - mPlaneInParticleSpace.getNormal() * (2 * velDotProduct);
reflectedVelocity *= mBounceFactor;
particle->setVelocity(reflectedVelocity);
}
SphericalCollider::SphericalCollider(const Nif::NiSphericalCollider* collider)
: mBounceFactor(collider->mBounceFactor)
, mSphere(collider->mCenter, collider->mRadius)
{
}
SphericalCollider::SphericalCollider()
: mBounceFactor(1.0f)
{
}
SphericalCollider::SphericalCollider(const SphericalCollider& copy, const osg::CopyOp& copyop)
: osgParticle::Operator(copy, copyop)
, mBounceFactor(copy.mBounceFactor)
, mSphere(copy.mSphere)
, mSphereInParticleSpace(copy.mSphereInParticleSpace)
{
}
void SphericalCollider::beginOperate(osgParticle::Program* program)
{
mSphereInParticleSpace = mSphere;
if (program->getReferenceFrame() == osgParticle::ParticleProcessor::ABSOLUTE_RF)
mSphereInParticleSpace.center() = program->transformLocalToWorld(mSphereInParticleSpace.center());
}
void SphericalCollider::operate(osgParticle::Particle* particle, double dt)
{
osg::Vec3f cent
= (particle->getPosition() - mSphereInParticleSpace.center()); // vector from sphere center to particle
bool insideSphere = cent.length2() <= mSphereInParticleSpace.radius2();
if (insideSphere
|| (cent * particle->getVelocity()
< 0.0f)) // if outside, make sure the particle is flying towards the sphere
{
// Collision test (finding point of contact) is performed by solving a quadratic equation:
// ||vec(cent) + vec(vel)*k|| = R /^2
// k^2 + 2*k*(vec(cent)*vec(vel))/||vec(vel)||^2 + (||vec(cent)||^2 - R^2)/||vec(vel)||^2 = 0
float b = -(cent * particle->getVelocity()) / particle->getVelocity().length2();
osg::Vec3f u = cent + particle->getVelocity() * b;
if (insideSphere || (u.length2() < mSphereInParticleSpace.radius2()))
{
float d = (mSphereInParticleSpace.radius2() - u.length2()) / particle->getVelocity().length2();
float k = insideSphere ? (std::sqrt(d) + b) : (b - std::sqrt(d));
if (k < dt)
{
// collision detected; reflect off the tangent plane
osg::Vec3f contact = particle->getPosition() + particle->getVelocity() * k;
osg::Vec3 normal = (contact - mSphereInParticleSpace.center());
normal.normalize();
float dotproduct = particle->getVelocity() * normal;
osg::Vec3 reflectedVelocity = particle->getVelocity() - normal * (2 * dotproduct);
reflectedVelocity *= mBounceFactor;
particle->setVelocity(reflectedVelocity);
}
}
}
}
}