You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
openmw/components/detournavigator/findsmoothpath.hpp

309 lines
12 KiB
C++

#ifndef OPENMW_COMPONENTS_DETOURNAVIGATOR_FINDSMOOTHPATH_H
#define OPENMW_COMPONENTS_DETOURNAVIGATOR_FINDSMOOTHPATH_H
#include "dtstatus.hpp"
#include "exceptions.hpp"
#include "flags.hpp"
#include "settings.hpp"
#include "settingsutils.hpp"
#include "debug.hpp"
#include "status.hpp"
#include "areatype.hpp"
#include <DetourCommon.h>
#include <DetourNavMesh.h>
#include <DetourNavMeshQuery.h>
#include <osg/Vec3f>
#include <cassert>
#include <vector>
#include <functional>
class dtNavMesh;
namespace DetourNavigator
{
struct Settings;
inline bool inRange(const osg::Vec3f& v1, const osg::Vec3f& v2, const float r)
{
return (osg::Vec2f(v1.x(), v1.z()) - osg::Vec2f(v2.x(), v2.z())).length() < r;
}
std::size_t fixupCorridor(std::vector<dtPolyRef>& path, std::size_t pathSize, const std::vector<dtPolyRef>& visited);
// This function checks if the path has a small U-turn, that is,
// a polygon further in the path is adjacent to the first polygon
// in the path. If that happens, a shortcut is taken.
// This can happen if the target (T) location is at tile boundary,
// and we're (S) approaching it parallel to the tile edge.
// The choice at the vertex can be arbitrary,
// +---+---+
// |:::|:::|
// +-S-+-T-+
// |:::| | <-- the step can end up in here, resulting U-turn path.
// +---+---+
std::size_t fixupShortcuts(dtPolyRef* path, std::size_t pathSize, const dtNavMeshQuery& navQuery);
struct SteerTarget
{
osg::Vec3f mSteerPos;
unsigned char mSteerPosFlag;
dtPolyRef mSteerPosRef;
};
std::optional<SteerTarget> getSteerTarget(const dtNavMeshQuery& navQuery, const osg::Vec3f& startPos,
const osg::Vec3f& endPos, const float minTargetDist, const dtPolyRef* path, const std::size_t pathSize);
template <class OutputIterator>
class OutputTransformIterator
{
public:
explicit OutputTransformIterator(OutputIterator& impl, const RecastSettings& settings)
: mImpl(impl), mSettings(settings)
{
}
OutputTransformIterator& operator *()
{
return *this;
}
OutputTransformIterator& operator ++()
{
++mImpl.get();
return *this;
}
OutputTransformIterator operator ++(int)
{
const auto copy = *this;
++(*this);
return copy;
}
OutputTransformIterator& operator =(const osg::Vec3f& value)
{
*mImpl.get() = fromNavMeshCoordinates(mSettings, value);
return *this;
}
private:
std::reference_wrapper<OutputIterator> mImpl;
std::reference_wrapper<const RecastSettings> mSettings;
};
inline bool initNavMeshQuery(dtNavMeshQuery& value, const dtNavMesh& navMesh, const int maxNodes)
{
const auto status = value.init(&navMesh, maxNodes);
return dtStatusSucceed(status);
}
dtPolyRef findNearestPoly(const dtNavMeshQuery& query, const dtQueryFilter& filter,
const osg::Vec3f& center, const osg::Vec3f& halfExtents);
struct MoveAlongSurfaceResult
{
osg::Vec3f mResultPos;
std::vector<dtPolyRef> mVisited;
};
inline std::optional<MoveAlongSurfaceResult> moveAlongSurface(const dtNavMeshQuery& navMeshQuery,
const dtPolyRef startRef, const osg::Vec3f& startPos, const osg::Vec3f& endPos, const dtQueryFilter& filter,
const std::size_t maxVisitedSize)
{
MoveAlongSurfaceResult result;
result.mVisited.resize(maxVisitedSize);
int visitedNumber = 0;
const auto status = navMeshQuery.moveAlongSurface(startRef, startPos.ptr(), endPos.ptr(),
&filter, result.mResultPos.ptr(), result.mVisited.data(), &visitedNumber, static_cast<int>(maxVisitedSize));
if (!dtStatusSucceed(status))
return {};
assert(visitedNumber >= 0);
assert(visitedNumber <= static_cast<int>(maxVisitedSize));
result.mVisited.resize(static_cast<std::size_t>(visitedNumber));
return {std::move(result)};
}
inline std::optional<std::size_t> findPath(const dtNavMeshQuery& navMeshQuery, const dtPolyRef startRef,
const dtPolyRef endRef, const osg::Vec3f& startPos, const osg::Vec3f& endPos, const dtQueryFilter& queryFilter,
dtPolyRef* path, const std::size_t maxSize)
{
int pathLen = 0;
const auto status = navMeshQuery.findPath(startRef, endRef, startPos.ptr(), endPos.ptr(), &queryFilter,
path, &pathLen, static_cast<int>(maxSize));
if (!dtStatusSucceed(status))
return {};
assert(pathLen >= 0);
assert(static_cast<std::size_t>(pathLen) <= maxSize);
return static_cast<std::size_t>(pathLen);
}
template <class OutputIterator>
Status makeSmoothPath(const dtNavMesh& navMesh, const dtNavMeshQuery& navMeshQuery,
const dtQueryFilter& filter, const osg::Vec3f& start, const osg::Vec3f& end, const float stepSize,
std::vector<dtPolyRef>& polygonPath, std::size_t polygonPathSize, std::size_t maxSmoothPathSize, OutputIterator& out)
{
// Iterate over the path to find smooth path on the detail mesh surface.
osg::Vec3f iterPos;
navMeshQuery.closestPointOnPoly(polygonPath.front(), start.ptr(), iterPos.ptr(), nullptr);
osg::Vec3f targetPos;
navMeshQuery.closestPointOnPoly(polygonPath[polygonPathSize - 1], end.ptr(), targetPos.ptr(), nullptr);
constexpr float slop = 0.01f;
*out++ = iterPos;
std::size_t smoothPathSize = 1;
// Move towards target a small advancement at a time until target reached or
// when ran out of memory to store the path.
while (polygonPathSize > 0 && smoothPathSize < maxSmoothPathSize)
{
// Find location to steer towards.
const auto steerTarget = getSteerTarget(navMeshQuery, iterPos, targetPos, slop, polygonPath.data(), polygonPathSize);
if (!steerTarget)
break;
const bool endOfPath = bool(steerTarget->mSteerPosFlag & DT_STRAIGHTPATH_END);
const bool offMeshConnection = bool(steerTarget->mSteerPosFlag & DT_STRAIGHTPATH_OFFMESH_CONNECTION);
// Find movement delta.
const osg::Vec3f delta = steerTarget->mSteerPos - iterPos;
float len = delta.length();
// If the steer target is end of path or off-mesh link, do not move past the location.
if ((endOfPath || offMeshConnection) && len < stepSize)
len = 1;
else
len = stepSize / len;
const osg::Vec3f moveTgt = iterPos + delta * len;
const auto result = moveAlongSurface(navMeshQuery, polygonPath.front(), iterPos, moveTgt, filter, 16);
if (!result)
return Status::MoveAlongSurfaceFailed;
polygonPathSize = fixupCorridor(polygonPath, polygonPathSize, result->mVisited);
polygonPathSize = fixupShortcuts(polygonPath.data(), polygonPathSize, navMeshQuery);
// Handle end of path and off-mesh links when close enough.
if (endOfPath && inRange(result->mResultPos, steerTarget->mSteerPos, slop))
{
// Reached end of path.
iterPos = targetPos;
*out++ = iterPos;
++smoothPathSize;
break;
}
dtPolyRef polyRef = polygonPath.front();
osg::Vec3f polyPos = result->mResultPos;
if (offMeshConnection && inRange(polyPos, steerTarget->mSteerPos, slop))
{
// Advance the path up to and over the off-mesh connection.
dtPolyRef prevRef = 0;
std::size_t npos = 0;
while (npos < polygonPathSize && polyRef != steerTarget->mSteerPosRef)
{
prevRef = polyRef;
polyRef = polygonPath[npos];
++npos;
}
if (npos > 0)
{
std::copy(polygonPath.begin() + npos, polygonPath.begin() + polygonPathSize, polygonPath.begin());
polygonPathSize -= npos;
}
// Reached off-mesh connection.
osg::Vec3f startPos;
osg::Vec3f endPos;
// Handle the connection.
if (dtStatusSucceed(navMesh.getOffMeshConnectionPolyEndPoints(prevRef, polyRef,
startPos.ptr(), endPos.ptr())))
{
*out++ = startPos;
++smoothPathSize;
// Hack to make the dotted path not visible during off-mesh connection.
if (smoothPathSize & 1)
{
*out++ = startPos;
++smoothPathSize;
}
// Move position at the other side of the off-mesh link.
polyPos = endPos;
}
}
if (dtStatusFailed(navMeshQuery.getPolyHeight(polyRef, polyPos.ptr(), &iterPos.y())))
return Status::GetPolyHeightFailed;
iterPos.x() = result->mResultPos.x();
iterPos.z() = result->mResultPos.z();
// Store results.
*out++ = iterPos;
++smoothPathSize;
}
return Status::Success;
}
template <class OutputIterator>
Status findSmoothPath(const dtNavMesh& navMesh, const osg::Vec3f& halfExtents, const float stepSize,
const osg::Vec3f& start, const osg::Vec3f& end, const Flags includeFlags, const AreaCosts& areaCosts,
const Settings& settings, float endTolerance, OutputIterator& out)
{
dtNavMeshQuery navMeshQuery;
if (!initNavMeshQuery(navMeshQuery, navMesh, settings.mDetour.mMaxNavMeshQueryNodes))
return Status::InitNavMeshQueryFailed;
dtQueryFilter queryFilter;
queryFilter.setIncludeFlags(includeFlags);
queryFilter.setAreaCost(AreaType_water, areaCosts.mWater);
queryFilter.setAreaCost(AreaType_door, areaCosts.mDoor);
queryFilter.setAreaCost(AreaType_pathgrid, areaCosts.mPathgrid);
queryFilter.setAreaCost(AreaType_ground, areaCosts.mGround);
constexpr float polyDistanceFactor = 4;
const osg::Vec3f polyHalfExtents = halfExtents * polyDistanceFactor;
const dtPolyRef startRef = findNearestPoly(navMeshQuery, queryFilter, start, polyHalfExtents);
if (startRef == 0)
return Status::StartPolygonNotFound;
const dtPolyRef endRef = findNearestPoly(navMeshQuery, queryFilter, end,
polyHalfExtents + osg::Vec3f(endTolerance, endTolerance, endTolerance));
if (endRef == 0)
return Status::EndPolygonNotFound;
std::vector<dtPolyRef> polygonPath(settings.mDetour.mMaxPolygonPathSize);
const auto polygonPathSize = findPath(navMeshQuery, startRef, endRef, start, end, queryFilter,
polygonPath.data(), polygonPath.size());
if (!polygonPathSize.has_value())
return Status::FindPathOverPolygonsFailed;
if (*polygonPathSize == 0)
return Status::Success;
const bool partialPath = polygonPath[*polygonPathSize - 1] != endRef;
auto outTransform = OutputTransformIterator<OutputIterator>(out, settings.mRecast);
const Status smoothStatus = makeSmoothPath(navMesh, navMeshQuery, queryFilter, start, end, stepSize,
polygonPath, *polygonPathSize, settings.mDetour.mMaxSmoothPathSize, outTransform);
if (smoothStatus != Status::Success)
return smoothStatus;
return partialPath ? Status::PartialPath : Status::Success;
}
}
#endif