mirror of https://github.com/OpenMW/openmw.git
You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
372 lines
14 KiB
GLSL
372 lines
14 KiB
GLSL
#version 120
|
|
|
|
#if @useUBO
|
|
#extension GL_ARB_uniform_buffer_object : require
|
|
#endif
|
|
|
|
#if @useGPUShader4
|
|
#extension GL_EXT_gpu_shader4: require
|
|
#endif
|
|
|
|
#define REFRACTION @refraction_enabled
|
|
#define RAIN_RIPPLE_DETAIL @rain_ripple_detail
|
|
|
|
// Inspired by Blender GLSL Water by martinsh ( https://devlog-martinsh.blogspot.de/2012/07/waterundewater-shader-wip.html )
|
|
|
|
// tweakables -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
|
|
|
|
const float VISIBILITY = 2500.0;
|
|
|
|
const float BIG_WAVES_X = 0.1; // strength of big waves
|
|
const float BIG_WAVES_Y = 0.1;
|
|
|
|
const float MID_WAVES_X = 0.1; // strength of middle sized waves
|
|
const float MID_WAVES_Y = 0.1;
|
|
const float MID_WAVES_RAIN_X = 0.2;
|
|
const float MID_WAVES_RAIN_Y = 0.2;
|
|
|
|
const float SMALL_WAVES_X = 0.1; // strength of small waves
|
|
const float SMALL_WAVES_Y = 0.1;
|
|
const float SMALL_WAVES_RAIN_X = 0.3;
|
|
const float SMALL_WAVES_RAIN_Y = 0.3;
|
|
|
|
const float WAVE_CHOPPYNESS = 0.05; // wave choppyness
|
|
const float WAVE_SCALE = 75.0; // overall wave scale
|
|
|
|
const float BUMP = 0.5; // overall water surface bumpiness
|
|
const float BUMP_RAIN = 2.5;
|
|
const float REFL_BUMP = 0.10; // reflection distortion amount
|
|
const float REFR_BUMP = 0.07; // refraction distortion amount
|
|
|
|
const float SCATTER_AMOUNT = 0.3; // amount of sunlight scattering
|
|
const vec3 SCATTER_COLOUR = vec3(0.0,1.0,0.95); // colour of sunlight scattering
|
|
|
|
const vec3 SUN_EXT = vec3(0.45, 0.55, 0.68); //sunlight extinction
|
|
|
|
const float SPEC_HARDNESS = 256.0; // specular highlights hardness
|
|
|
|
const float BUMP_SUPPRESS_DEPTH = 300.0; // at what water depth bumpmap will be suppressed for reflections and refractions (prevents artifacts at shores)
|
|
|
|
const vec2 WIND_DIR = vec2(0.5f, -0.8f);
|
|
const float WIND_SPEED = 0.2f;
|
|
|
|
const vec3 WATER_COLOR = vec3(0.090195, 0.115685, 0.12745);
|
|
|
|
const float WOBBLY_SHORE_FADE_DISTANCE = 6200.0; // fade out wobbly shores to mask precision errors, the effect is almost impossible to see at a distance
|
|
|
|
// ---------------- rain ripples related stuff ---------------------
|
|
|
|
const float RAIN_RIPPLE_GAPS = 10.0;
|
|
const float RAIN_RIPPLE_RADIUS = 0.2;
|
|
|
|
float scramble(float x, float z)
|
|
{
|
|
return fract(pow(fract(x)*3.0+1.0, z));
|
|
}
|
|
|
|
vec2 randOffset(vec2 c, float time)
|
|
{
|
|
time = fract(time/1000.0);
|
|
c = vec2(c.x * c.y / 8.0 + c.y * 0.3 + c.x * 0.2,
|
|
c.x * c.y / 14.0 + c.y * 0.5 + c.x * 0.7);
|
|
c.x *= scramble(scramble(time + c.x/1000.0, 4.0), 3.0) + 1.0;
|
|
c.y *= scramble(scramble(time + c.y/1000.0, 3.5), 3.0) + 1.0;
|
|
return fract(c);
|
|
}
|
|
|
|
float randPhase(vec2 c)
|
|
{
|
|
return fract((c.x * c.y) / (c.x + c.y + 0.1));
|
|
}
|
|
|
|
float blip(float x)
|
|
{
|
|
x = max(0.0, 1.0-x*x);
|
|
return x*x*x;
|
|
}
|
|
|
|
float blipDerivative(float x)
|
|
{
|
|
x = clamp(x, -1.0, 1.0);
|
|
float n = x*x-1.0;
|
|
return -6.0*x*n*n;
|
|
}
|
|
|
|
const float RAIN_RING_TIME_OFFSET = 1.0/6.0;
|
|
|
|
vec4 circle(vec2 coords, vec2 corner, float adjusted_time)
|
|
{
|
|
vec2 center = vec2(0.5,0.5) + (0.5 - RAIN_RIPPLE_RADIUS) * (2.0 * randOffset(corner, floor(adjusted_time)) - 1.0);
|
|
float phase = fract(adjusted_time);
|
|
vec2 toCenter = coords - center;
|
|
|
|
float r = RAIN_RIPPLE_RADIUS;
|
|
float d = length(toCenter);
|
|
float ringfollower = (phase-d/r)/RAIN_RING_TIME_OFFSET-1.0; // -1.0 ~ +1.0 cover the breadth of the ripple's ring
|
|
|
|
#if RAIN_RIPPLE_DETAIL > 0
|
|
// normal mapped ripples
|
|
if(ringfollower < -1.0 || ringfollower > 1.0)
|
|
return vec4(0.0);
|
|
|
|
if(d > 1.0) // normalize center direction vector, but not for near-center ripples
|
|
toCenter /= d;
|
|
|
|
float height = blip(ringfollower*2.0+0.5); // brighten up outer edge of ring; for fake specularity
|
|
float range_limit = blip(min(0.0, ringfollower));
|
|
float energy = 1.0-phase;
|
|
|
|
vec2 normal2d = -toCenter*blipDerivative(ringfollower)*5.0;
|
|
vec3 normal = vec3(normal2d, 0.5);
|
|
vec4 ret = vec4(normal, height);
|
|
ret.xyw *= energy*energy;
|
|
// do energy adjustment here rather than later, so that we can use the w component for fake specularity
|
|
ret.xyz = normalize(ret.xyz) * energy*range_limit;
|
|
ret.z *= range_limit;
|
|
return ret;
|
|
#else
|
|
// ring-only ripples
|
|
if(ringfollower < -1.0 || ringfollower > 0.5)
|
|
return vec4(0.0);
|
|
|
|
float energy = 1.0-phase;
|
|
float height = blip(ringfollower*2.0+0.5)*energy*energy; // fake specularity
|
|
|
|
return vec4(0.0, 0.0, 0.0, height);
|
|
#endif
|
|
}
|
|
vec4 rain(vec2 uv, float time)
|
|
{
|
|
uv *= RAIN_RIPPLE_GAPS;
|
|
vec2 f_part = fract(uv);
|
|
vec2 i_part = floor(uv);
|
|
float adjusted_time = time * 1.2 + randPhase(i_part);
|
|
#if RAIN_RIPPLE_DETAIL > 0
|
|
vec4 a = circle(f_part, i_part, adjusted_time);
|
|
vec4 b = circle(f_part, i_part, adjusted_time - RAIN_RING_TIME_OFFSET);
|
|
vec4 c = circle(f_part, i_part, adjusted_time - RAIN_RING_TIME_OFFSET*2.0);
|
|
vec4 d = circle(f_part, i_part, adjusted_time - RAIN_RING_TIME_OFFSET*3.0);
|
|
vec4 ret;
|
|
ret.xy = a.xy - b.xy/2.0 + c.xy/4.0 - d.xy/8.0;
|
|
// z should always point up
|
|
ret.z = a.z + b.z /2.0 + c.z /4.0 + d.z /8.0;
|
|
//ret.xyz *= 1.5;
|
|
// fake specularity looks weird if we use every single ring, also if the inner rings are too bright
|
|
ret.w = (a.w + c.w /8.0)*1.5;
|
|
return ret;
|
|
#else
|
|
return circle(f_part, i_part, adjusted_time) * 1.5;
|
|
#endif
|
|
}
|
|
|
|
vec2 complex_mult(vec2 a, vec2 b)
|
|
{
|
|
return vec2(a.x*b.x - a.y*b.y, a.x*b.y + a.y*b.x);
|
|
}
|
|
vec4 rainCombined(vec2 uv, float time) // returns ripple normal in xyz and fake specularity in w
|
|
{
|
|
return
|
|
rain(uv, time)
|
|
+ rain(complex_mult(uv, vec2(0.4, 0.7)) + vec2(1.2, 3.0),time)
|
|
#if RAIN_RIPPLE_DETAIL == 2
|
|
+ rain(uv * 0.75 + vec2( 3.7,18.9),time)
|
|
+ rain(uv * 0.9 + vec2( 5.7,30.1),time)
|
|
+ rain(uv * 1.0 + vec2(10.5 ,5.7),time)
|
|
#endif
|
|
;
|
|
}
|
|
|
|
|
|
// -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -
|
|
|
|
float fresnel_dielectric(vec3 Incoming, vec3 Normal, float eta)
|
|
{
|
|
float c = abs(dot(Incoming, Normal));
|
|
float g = eta * eta - 1.0 + c * c;
|
|
float result;
|
|
|
|
if(g > 0.0) {
|
|
g = sqrt(g);
|
|
float A =(g - c)/(g + c);
|
|
float B =(c *(g + c)- 1.0)/(c *(g - c)+ 1.0);
|
|
result = 0.5 * A * A *(1.0 + B * B);
|
|
}
|
|
else
|
|
result = 1.0; /* TIR (no refracted component) */
|
|
|
|
return result;
|
|
}
|
|
|
|
vec2 normalCoords(vec2 uv, float scale, float speed, float time, float timer1, float timer2, vec3 previousNormal)
|
|
{
|
|
return uv * (WAVE_SCALE * scale) + WIND_DIR * time * (WIND_SPEED * speed) -(previousNormal.xy/previousNormal.zz) * WAVE_CHOPPYNESS + vec2(time * timer1,time * timer2);
|
|
}
|
|
|
|
varying vec4 position;
|
|
varying float linearDepth;
|
|
|
|
uniform sampler2D normalMap;
|
|
|
|
uniform sampler2D reflectionMap;
|
|
#if REFRACTION
|
|
uniform sampler2D refractionMap;
|
|
uniform sampler2D refractionDepthMap;
|
|
#endif
|
|
|
|
uniform float osg_SimulationTime;
|
|
|
|
uniform float near;
|
|
uniform float far;
|
|
uniform vec3 nodePosition;
|
|
|
|
uniform float rainIntensity;
|
|
|
|
uniform vec2 screenRes;
|
|
|
|
#define PER_PIXEL_LIGHTING 0
|
|
|
|
#include "shadows_fragment.glsl"
|
|
#include "lighting.glsl"
|
|
|
|
float frustumDepth;
|
|
|
|
float linearizeDepth(float depth)
|
|
{
|
|
#if @reverseZ
|
|
depth = 1.0 - depth;
|
|
#endif
|
|
float z_n = 2.0 * depth - 1.0;
|
|
depth = 2.0 * near * far / (far + near - z_n * frustumDepth);
|
|
return depth;
|
|
}
|
|
|
|
void main(void)
|
|
{
|
|
frustumDepth = abs(far - near);
|
|
vec3 worldPos = position.xyz + nodePosition.xyz;
|
|
vec2 UV = worldPos.xy / (8192.0*5.0) * 3.0;
|
|
UV.y *= -1.0;
|
|
|
|
float shadow = unshadowedLightRatio(linearDepth);
|
|
|
|
vec2 screenCoords = gl_FragCoord.xy / screenRes;
|
|
|
|
#define waterTimer osg_SimulationTime
|
|
|
|
vec3 normal0 = 2.0 * texture2D(normalMap,normalCoords(UV, 0.05, 0.04, waterTimer, -0.015, -0.005, vec3(0.0,0.0,0.0))).rgb - 1.0;
|
|
vec3 normal1 = 2.0 * texture2D(normalMap,normalCoords(UV, 0.1, 0.08, waterTimer, 0.02, 0.015, normal0)).rgb - 1.0;
|
|
vec3 normal2 = 2.0 * texture2D(normalMap,normalCoords(UV, 0.25, 0.07, waterTimer, -0.04, -0.03, normal1)).rgb - 1.0;
|
|
vec3 normal3 = 2.0 * texture2D(normalMap,normalCoords(UV, 0.5, 0.09, waterTimer, 0.03, 0.04, normal2)).rgb - 1.0;
|
|
vec3 normal4 = 2.0 * texture2D(normalMap,normalCoords(UV, 1.0, 0.4, waterTimer, -0.02, 0.1, normal3)).rgb - 1.0;
|
|
vec3 normal5 = 2.0 * texture2D(normalMap,normalCoords(UV, 2.0, 0.7, waterTimer, 0.1, -0.06, normal4)).rgb - 1.0;
|
|
|
|
vec4 rainRipple;
|
|
|
|
if (rainIntensity > 0.01)
|
|
rainRipple = rainCombined(position.xy/1000.0, waterTimer) * clamp(rainIntensity, 0.0, 1.0);
|
|
else
|
|
rainRipple = vec4(0.0);
|
|
|
|
vec3 rippleAdd = rainRipple.xyz * 10.0;
|
|
|
|
vec2 bigWaves = vec2(BIG_WAVES_X,BIG_WAVES_Y);
|
|
vec2 midWaves = mix(vec2(MID_WAVES_X,MID_WAVES_Y),vec2(MID_WAVES_RAIN_X,MID_WAVES_RAIN_Y),rainIntensity);
|
|
vec2 smallWaves = mix(vec2(SMALL_WAVES_X,SMALL_WAVES_Y),vec2(SMALL_WAVES_RAIN_X,SMALL_WAVES_RAIN_Y),rainIntensity);
|
|
float bump = mix(BUMP,BUMP_RAIN,rainIntensity);
|
|
|
|
vec3 normal = (normal0 * bigWaves.x + normal1 * bigWaves.y + normal2 * midWaves.x +
|
|
normal3 * midWaves.y + normal4 * smallWaves.x + normal5 * smallWaves.y + rippleAdd);
|
|
normal = normalize(vec3(-normal.x * bump, -normal.y * bump, normal.z));
|
|
|
|
vec3 lVec = normalize((gl_ModelViewMatrixInverse * vec4(lcalcPosition(0).xyz, 0.0)).xyz);
|
|
vec3 cameraPos = (gl_ModelViewMatrixInverse * vec4(0,0,0,1)).xyz;
|
|
vec3 vVec = normalize(position.xyz - cameraPos.xyz);
|
|
|
|
float sunFade = length(gl_LightModel.ambient.xyz);
|
|
|
|
// fresnel
|
|
float ior = (cameraPos.z>0.0)?(1.333/1.0):(1.0/1.333); // air to water; water to air
|
|
float fresnel = clamp(fresnel_dielectric(vVec, normal, ior), 0.0, 1.0);
|
|
|
|
float radialise = 1.0;
|
|
|
|
#if @radialFog
|
|
float radialDepth = distance(position.xyz, cameraPos);
|
|
// TODO: Figure out how to properly radialise refraction depth and thus underwater fog
|
|
// while avoiding oddities when the water plane is close to the clipping plane
|
|
// radialise = radialDepth / linearDepth;
|
|
#endif
|
|
|
|
vec2 screenCoordsOffset = normal.xy * REFL_BUMP;
|
|
#if REFRACTION
|
|
float depthSample = linearizeDepth(texture2D(refractionDepthMap,screenCoords).x) * radialise;
|
|
float depthSampleDistorted = linearizeDepth(texture2D(refractionDepthMap,screenCoords-screenCoordsOffset).x) * radialise;
|
|
float surfaceDepth = linearizeDepth(gl_FragCoord.z) * radialise;
|
|
float realWaterDepth = depthSample - surfaceDepth; // undistorted water depth in view direction, independent of frustum
|
|
screenCoordsOffset *= clamp(realWaterDepth / BUMP_SUPPRESS_DEPTH,0,1);
|
|
#endif
|
|
// reflection
|
|
vec3 reflection = texture2D(reflectionMap, screenCoords + screenCoordsOffset).rgb;
|
|
|
|
// specular
|
|
float specular = pow(max(dot(reflect(vVec, normal), lVec), 0.0),SPEC_HARDNESS) * shadow;
|
|
|
|
vec3 waterColor = WATER_COLOR * sunFade;
|
|
|
|
vec4 sunSpec = lcalcSpecular(0);
|
|
|
|
// artificial specularity to make rain ripples more noticeable
|
|
vec3 skyColorEstimate = vec3(max(0.0, mix(-0.3, 1.0, sunFade)));
|
|
vec3 rainSpecular = abs(rainRipple.w)*mix(skyColorEstimate, vec3(1.0), 0.05)*0.5;
|
|
|
|
#if REFRACTION
|
|
// no alpha here, so make sure raindrop ripple specularity gets properly subdued
|
|
rainSpecular *= clamp(fresnel*6.0 + specular * sunSpec.w, 0.0, 1.0);
|
|
|
|
// refraction
|
|
vec3 refraction = texture2D(refractionMap, screenCoords - screenCoordsOffset).rgb;
|
|
vec3 rawRefraction = refraction;
|
|
|
|
// brighten up the refraction underwater
|
|
if (cameraPos.z < 0.0)
|
|
refraction = clamp(refraction * 1.5, 0.0, 1.0);
|
|
else
|
|
refraction = mix(refraction, waterColor, clamp(depthSampleDistorted/VISIBILITY, 0.0, 1.0));
|
|
|
|
// sunlight scattering
|
|
// normal for sunlight scattering
|
|
vec3 lNormal = (normal0 * bigWaves.x * 0.5 + normal1 * bigWaves.y * 0.5 + normal2 * midWaves.x * 0.2 +
|
|
normal3 * midWaves.y * 0.2 + normal4 * smallWaves.x * 0.1 + normal5 * smallWaves.y * 0.1 + rippleAdd);
|
|
lNormal = normalize(vec3(-lNormal.x * bump, -lNormal.y * bump, lNormal.z));
|
|
float sunHeight = lVec.z;
|
|
vec3 scatterColour = mix(SCATTER_COLOUR*vec3(1.0,0.4,0.0), SCATTER_COLOUR, clamp(1.0-exp(-sunHeight*SUN_EXT), 0.0, 1.0));
|
|
vec3 lR = reflect(lVec, lNormal);
|
|
float lightScatter = clamp(dot(lVec,lNormal)*0.7+0.3, 0.0, 1.0) * clamp(dot(lR, vVec)*2.0-1.2, 0.0, 1.0) * SCATTER_AMOUNT * sunFade * clamp(1.0-exp(-sunHeight), 0.0, 1.0);
|
|
gl_FragData[0].xyz = mix( mix(refraction, scatterColour, lightScatter), reflection, fresnel) + specular * sunSpec.xyz + rainSpecular;
|
|
gl_FragData[0].w = 1.0;
|
|
|
|
// wobbly water: hard-fade into refraction texture at extremely low depth, with a wobble based on normal mapping
|
|
vec3 normalShoreRippleRain = texture2D(normalMap,normalCoords(UV, 2.0, 2.7, -1.0*waterTimer, 0.05, 0.1, normal3)).rgb - 0.5
|
|
+ texture2D(normalMap,normalCoords(UV, 2.0, 2.7, waterTimer, 0.04, -0.13, normal4)).rgb - 0.5;
|
|
float verticalWaterDepth = realWaterDepth * mix(abs(vVec.z), 1.0, 0.2); // an estimate
|
|
float shoreOffset = verticalWaterDepth - (normal2.r + mix(0.0, normalShoreRippleRain.r, rainIntensity) + 0.15)*8.0;
|
|
float fuzzFactor = min(1.0, 1000.0/surfaceDepth) * mix(abs(vVec.z), 1.0, 0.2);
|
|
shoreOffset *= fuzzFactor;
|
|
shoreOffset = clamp(mix(shoreOffset, 1.0, clamp(linearDepth / WOBBLY_SHORE_FADE_DISTANCE, 0.0, 1.0)), 0.0, 1.0);
|
|
gl_FragData[0].xyz = mix(rawRefraction, gl_FragData[0].xyz, shoreOffset);
|
|
#else
|
|
gl_FragData[0].xyz = mix(reflection, waterColor, (1.0-fresnel)*0.5) + specular * sunSpec.xyz + rainSpecular;
|
|
gl_FragData[0].w = clamp(fresnel*6.0 + specular * sunSpec.w, 0.0, 1.0); //clamp(fresnel*2.0 + specular * gl_LightSource[0].specular.w, 0.0, 1.0);
|
|
#endif
|
|
|
|
// fog
|
|
#if @radialFog
|
|
float fogValue = clamp((radialDepth - gl_Fog.start) * gl_Fog.scale, 0.0, 1.0);
|
|
#else
|
|
float fogValue = clamp((linearDepth - gl_Fog.start) * gl_Fog.scale, 0.0, 1.0);
|
|
#endif
|
|
gl_FragData[0].xyz = mix(gl_FragData[0].xyz, gl_Fog.color.xyz, fogValue);
|
|
|
|
applyShadowDebugOverlay();
|
|
}
|