it is updated in the solver only if the actor is standing on
"something". The ground is not "something", so in case the actor goes
from standing on an object to the standing on the ground, this change was not taken
into account.
Clear the value before the simulation to solve this problem.
Container base record mutations
See merge request OpenMW/openmw!353
(cherry picked from commit 8b33765dd414680f0074b3e115b52b291b4cb7cb)
275908a0 mutate container base records
16fca11d add changelog entry
Before movement calculation, the main thread prepare a
vector of ActorFrameData, which contains all data necessary to perform
the simulation, and feed it to the solver. At the same time it fetches
the result from the previous background simulation, which in turn is
used by the game mechanics.
Other functions of the physics system (weapon hit for instance)
interrupt the background simulation, with some exceptions described
below.
The number of threads is controlled by the numeric setting
[Physics]
async num threads
In case 'async num threads' > 1 and Bullet doesn't support multiple threads,
1 async thread will be used. 0 means synchronous solver.
Additional settings (will be silently switched off if async num threads = 0)
[Physics]
defer aabb update
Update AABBs of actors and objects in the background thread(s). It is not an especially
costly operation, but it needs exclusive access to the collision world, which blocks
other operations. Since AABB needs to be updated for collision detection, one can queue
them to defer update before start of the movement solver. Extensive tests on as much
as one installation (mine) show no drawback having that switched on.
[Physics]
lineofsight keep inactive cache
Control for how long (how many frames) the line of sight (LOS) request will be kept updated.
When a request for LOS is made for the first time, the background threads are stopped to
service it. From now on, the LOS will be refreshed preemptively as part of the background
routine until it is not required for lineofsight keep inactive cache frames. This mean
that subsequent request will not interrupt the background computation.
Change order of traversal simulation step to make it rare enough to be parallelizable
Before:
for actor in actors:
repeat numstep:
solve(actor)
After:
repeat numstep:
for actor in actors:
solve(actor)
Introduce struct ActorFrameData to pack all data that is necessary for
the solver