You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
openmw-tes3mp/apps/openmw/mwworld/weather.cpp

1147 lines
45 KiB
C++

#include "weather.hpp"
#include <components/misc/rng.hpp>
#include <components/esm/esmreader.hpp>
#include <components/esm/esmwriter.hpp>
#include <components/esm/savedgame.hpp>
#include <components/esm/weatherstate.hpp>
#include <components/fallback/fallback.hpp>
#include "../mwbase/environment.hpp"
#include "../mwbase/world.hpp"
#include "../mwbase/soundmanager.hpp"
#include "../mwmechanics/actorutil.hpp"
#include "../mwsound/sound.hpp"
#include "../mwrender/renderingmanager.hpp"
#include "../mwrender/sky.hpp"
#include "player.hpp"
#include "esmstore.hpp"
#include "cellstore.hpp"
#include <cmath>
using namespace MWWorld;
namespace
{
static const int invalidWeatherID = -1;
// linear interpolate between x and y based on factor.
float lerp (float x, float y, float factor)
{
return x * (1-factor) + y * factor;
}
// linear interpolate between x and y based on factor.
osg::Vec4f lerp (const osg::Vec4f& x, const osg::Vec4f& y, float factor)
{
return x * (1-factor) + y * factor;
}
}
template <typename T>
T TimeOfDayInterpolator<T>::getValue(const float gameHour, const TimeOfDaySettings& timeSettings) const
{
// TODO: use pre/post sunset/sunrise time values in [Weather] section
// night
if (gameHour <= timeSettings.mNightEnd || gameHour >= timeSettings.mNightStart + 1)
return mNightValue;
// sunrise
else if (gameHour >= timeSettings.mNightEnd && gameHour <= timeSettings.mDayStart + 1)
{
if (gameHour <= timeSettings.mSunriseTime)
{
// fade in
float advance = timeSettings.mSunriseTime - gameHour;
float factor = advance / 0.5f;
return lerp(mSunriseValue, mNightValue, factor);
}
else
{
// fade out
float advance = gameHour - timeSettings.mSunriseTime;
float factor = advance / 3.f;
return lerp(mSunriseValue, mDayValue, factor);
}
}
// day
else if (gameHour >= timeSettings.mDayStart + 1 && gameHour <= timeSettings.mDayEnd - 1)
return mDayValue;
// sunset
else if (gameHour >= timeSettings.mDayEnd - 1 && gameHour <= timeSettings.mNightStart + 1)
{
if (gameHour <= timeSettings.mDayEnd + 1)
{
// fade in
float advance = (timeSettings.mDayEnd + 1) - gameHour;
float factor = (advance / 2);
return lerp(mSunsetValue, mDayValue, factor);
}
else
{
// fade out
float advance = gameHour - (timeSettings.mDayEnd + 1);
float factor = advance / 2.f;
return lerp(mSunsetValue, mNightValue, factor);
}
}
// shut up compiler
return T();
}
template class MWWorld::TimeOfDayInterpolator<float>;
template class MWWorld::TimeOfDayInterpolator<osg::Vec4f>;
Weather::Weather(const std::string& name,
const Fallback::Map& fallback,
float stormWindSpeed,
float rainSpeed,
const std::string& particleEffect)
: mCloudTexture(fallback.getFallbackString("Weather_" + name + "_Cloud_Texture"))
, mSkyColor(fallback.getFallbackColour("Weather_" + name +"_Sky_Sunrise_Color"),
fallback.getFallbackColour("Weather_" + name + "_Sky_Day_Color"),
fallback.getFallbackColour("Weather_" + name + "_Sky_Sunset_Color"),
fallback.getFallbackColour("Weather_" + name + "_Sky_Night_Color"))
, mFogColor(fallback.getFallbackColour("Weather_" + name + "_Fog_Sunrise_Color"),
fallback.getFallbackColour("Weather_" + name + "_Fog_Day_Color"),
fallback.getFallbackColour("Weather_" + name + "_Fog_Sunset_Color"),
fallback.getFallbackColour("Weather_" + name + "_Fog_Night_Color"))
, mAmbientColor(fallback.getFallbackColour("Weather_" + name + "_Ambient_Sunrise_Color"),
fallback.getFallbackColour("Weather_" + name + "_Ambient_Day_Color"),
fallback.getFallbackColour("Weather_" + name + "_Ambient_Sunset_Color"),
fallback.getFallbackColour("Weather_" + name + "_Ambient_Night_Color"))
, mSunColor(fallback.getFallbackColour("Weather_" + name + "_Sun_Sunrise_Color"),
fallback.getFallbackColour("Weather_" + name + "_Sun_Day_Color"),
fallback.getFallbackColour("Weather_" + name + "_Sun_Sunset_Color"),
fallback.getFallbackColour("Weather_" + name + "_Sun_Night_Color"))
, mLandFogDepth(fallback.getFallbackFloat("Weather_" + name + "_Land_Fog_Day_Depth"),
fallback.getFallbackFloat("Weather_" + name + "_Land_Fog_Day_Depth"),
fallback.getFallbackFloat("Weather_" + name + "_Land_Fog_Day_Depth"),
fallback.getFallbackFloat("Weather_" + name + "_Land_Fog_Night_Depth"))
, mSunDiscSunsetColor(fallback.getFallbackColour("Weather_" + name + "_Sun_Disc_Sunset_Color"))
, mWindSpeed(fallback.getFallbackFloat("Weather_" + name + "_Wind_Speed"))
, mCloudSpeed(fallback.getFallbackFloat("Weather_" + name + "_Cloud_Speed"))
, mGlareView(fallback.getFallbackFloat("Weather_" + name + "_Glare_View"))
, mIsStorm(mWindSpeed > stormWindSpeed)
, mRainSpeed(rainSpeed)
, mRainFrequency(fallback.getFallbackFloat("Weather_" + name + "_Rain_Entrance_Speed"))
, mParticleEffect(particleEffect)
, mRainEffect(fallback.getFallbackBool("Weather_" + name + "_Using_Precip") ? "meshes\\raindrop.nif" : "")
, mTransitionDelta(fallback.getFallbackFloat("Weather_" + name + "_Transition_Delta"))
, mCloudsMaximumPercent(fallback.getFallbackFloat("Weather_" + name + "_Clouds_Maximum_Percent"))
, mThunderFrequency(fallback.getFallbackFloat("Weather_" + name + "_Thunder_Frequency"))
, mThunderThreshold(fallback.getFallbackFloat("Weather_" + name + "_Thunder_Threshold"))
, mThunderSoundID()
, mFlashDecrement(fallback.getFallbackFloat("Weather_" + name + "_Flash_Decrement"))
, mFlashBrightness(0.0f)
{
mThunderSoundID[0] = fallback.getFallbackString("Weather_" + name + "_Thunder_Sound_ID_0");
mThunderSoundID[1] = fallback.getFallbackString("Weather_" + name + "_Thunder_Sound_ID_1");
mThunderSoundID[2] = fallback.getFallbackString("Weather_" + name + "_Thunder_Sound_ID_2");
mThunderSoundID[3] = fallback.getFallbackString("Weather_" + name + "_Thunder_Sound_ID_3");
// TODO: support weathers that have both "Ambient Loop Sound ID" and "Rain Loop Sound ID", need to play both sounds at the same time.
if (!mRainEffect.empty()) // NOTE: in vanilla, the weathers with rain seem to be hardcoded; changing Using_Precip has no effect
{
mAmbientLoopSoundID = fallback.getFallbackString("Weather_" + name + "_Rain_Loop_Sound_ID");
if (mAmbientLoopSoundID.empty()) // default to "rain" if not set
mAmbientLoopSoundID = "rain";
}
else
mAmbientLoopSoundID = fallback.getFallbackString("Weather_" + name + "_Ambient_Loop_Sound_ID");
if (Misc::StringUtils::ciEqual(mAmbientLoopSoundID, "None"))
mAmbientLoopSoundID.clear();
/*
Unhandled:
Rain Diameter=600 ?
Rain Height Min=200 ?
Rain Height Max=700 ?
Rain Threshold=0.6 ?
Max Raindrops=650 ?
*/
}
float Weather::transitionDelta() const
{
// Transition Delta describes how quickly transitioning to the weather in question will take, in Hz. Note that the
// measurement is in real time, not in-game time.
return mTransitionDelta;
}
float Weather::cloudBlendFactor(const float transitionRatio) const
{
// Clouds Maximum Percent affects how quickly the sky transitions from one sky texture to the next.
return transitionRatio / mCloudsMaximumPercent;
}
float Weather::calculateThunder(const float transitionRatio, const float elapsedSeconds, const bool isPaused)
{
// When paused, the flash brightness remains the same and no new strikes can occur.
if(!isPaused)
{
// Morrowind doesn't appear to do any calculations unless the transition ratio is higher than the Thunder Threshold.
if(transitionRatio >= mThunderThreshold && mThunderFrequency > 0.0f)
{
flashDecrement(elapsedSeconds);
if(Misc::Rng::rollProbability() <= thunderChance(transitionRatio, elapsedSeconds))
{
lightningAndThunder();
}
}
else
{
mFlashBrightness = 0.0f;
}
}
return mFlashBrightness;
}
inline void Weather::flashDecrement(const float elapsedSeconds)
{
// The Flash Decrement is measured in whole units per second. This means that if the flash brightness was
// currently 1.0, then it should take approximately 0.25 seconds to decay to 0.0 (the minimum).
float decrement = mFlashDecrement * elapsedSeconds;
mFlashBrightness = decrement > mFlashBrightness ? 0.0f : mFlashBrightness - decrement;
}
inline float Weather::thunderChance(const float transitionRatio, const float elapsedSeconds) const
{
// This formula is reversed from the observation that with Thunder Frequency set to 1, there are roughly 10 strikes
// per minute. It doesn't appear to be tied to in game time as Timescale doesn't affect it. Various values of
// Thunder Frequency seem to change the average number of strikes in a linear fashion.. During a transition, it appears to
// scaled based on how far past it is past the Thunder Threshold.
float scaleFactor = (transitionRatio - mThunderThreshold) / (1.0f - mThunderThreshold);
return ((mThunderFrequency * 10.0f) / 60.0f) * elapsedSeconds * scaleFactor;
}
inline void Weather::lightningAndThunder(void)
{
// Morrowind seems to vary the intensity of the brightness based on which of the four sound IDs it selects.
// They appear to go from 0 (brightest, closest) to 3 (faintest, farthest). The value of 0.25 per distance
// was derived by setting the Flash Decrement to 0.1 and measuring how long each value took to decay to 0.
// TODO: Determine the distribution of each distance to see if it's evenly weighted.
unsigned int distance = Misc::Rng::rollDice(4);
// Flash brightness appears additive, since if multiple strikes occur, it takes longer for it to decay to 0.
mFlashBrightness += 1 - (distance * 0.25f);
MWBase::Environment::get().getSoundManager()->playSound(mThunderSoundID[distance], 1.0, 1.0);
}
RegionWeather::RegionWeather(const ESM::Region& region)
: mWeather(invalidWeatherID)
, mChances()
{
mChances.reserve(10);
mChances.push_back(region.mData.mClear);
mChances.push_back(region.mData.mCloudy);
mChances.push_back(region.mData.mFoggy);
mChances.push_back(region.mData.mOvercast);
mChances.push_back(region.mData.mRain);
mChances.push_back(region.mData.mThunder);
mChances.push_back(region.mData.mAsh);
mChances.push_back(region.mData.mBlight);
mChances.push_back(region.mData.mA);
mChances.push_back(region.mData.mB);
}
RegionWeather::RegionWeather(const ESM::RegionWeatherState& state)
: mWeather(state.mWeather)
, mChances(state.mChances)
{
}
RegionWeather::operator ESM::RegionWeatherState() const
{
ESM::RegionWeatherState state =
{
mWeather,
mChances
};
return state;
}
void RegionWeather::setChances(const std::vector<char>& chances)
{
if(mChances.size() < chances.size())
{
mChances.reserve(chances.size());
}
std::vector<char>::const_iterator it = chances.begin();
for(size_t i = 0; it != chances.end(); ++it, ++i)
{
mChances[i] = *it;
}
// Regional weather no longer supports the current type, select a new weather pattern.
if((static_cast<size_t>(mWeather) >= mChances.size()) || (mChances[mWeather] == 0))
{
chooseNewWeather();
}
}
void RegionWeather::setWeather(int weatherID)
{
mWeather = weatherID;
}
int RegionWeather::getWeather()
{
// If the region weather was already set (by ChangeWeather, or by a previous call) then just return that value.
// Note that the region weather will be expired periodically when the weather update timer expires.
if(mWeather == invalidWeatherID)
{
chooseNewWeather();
}
return mWeather;
}
void RegionWeather::chooseNewWeather()
{
// All probabilities must add to 100 (responsibility of the user).
// If chances A and B has values 30 and 70 then by generating 100 numbers 1..100, 30% will be lesser or equal 30
// and 70% will be greater than 30 (in theory).
int chance = Misc::Rng::rollDice(100) + 1; // 1..100
int sum = 0;
int i = 0;
for(; static_cast<size_t>(i) < mChances.size(); ++i)
{
sum += mChances[i];
if(chance <= sum)
{
mWeather = i;
return;
}
}
// if we hit this path then the chances don't add to 100, choose a default weather instead
mWeather = 0;
}
MoonModel::MoonModel(const std::string& name, const Fallback::Map& fallback)
: mFadeInStart(fallback.getFallbackFloat("Moons_" + name + "_Fade_In_Start"))
, mFadeInFinish(fallback.getFallbackFloat("Moons_" + name + "_Fade_In_Finish"))
, mFadeOutStart(fallback.getFallbackFloat("Moons_" + name + "_Fade_Out_Start"))
, mFadeOutFinish(fallback.getFallbackFloat("Moons_" + name + "_Fade_Out_Finish"))
, mAxisOffset(fallback.getFallbackFloat("Moons_" + name + "_Axis_Offset"))
, mSpeed(fallback.getFallbackFloat("Moons_" + name + "_Speed"))
, mDailyIncrement(fallback.getFallbackFloat("Moons_" + name + "_Daily_Increment"))
, mFadeStartAngle(fallback.getFallbackFloat("Moons_" + name + "_Fade_Start_Angle"))
, mFadeEndAngle(fallback.getFallbackFloat("Moons_" + name + "_Fade_End_Angle"))
, mMoonShadowEarlyFadeAngle(fallback.getFallbackFloat("Moons_" + name + "_Moon_Shadow_Early_Fade_Angle"))
{
// Morrowind appears to have a minimum speed in order to avoid situations where the moon couldn't conceivably
// complete a rotation in a single 24 hour period. The value of 180/23 was deduced from reverse engineering.
mSpeed = std::min(mSpeed, 180.0f / 23.0f);
}
MWRender::MoonState MoonModel::calculateState(const TimeStamp& gameTime) const
{
float rotationFromHorizon = angle(gameTime);
MWRender::MoonState state =
{
rotationFromHorizon,
mAxisOffset, // Reverse engineered from Morrowind's scene graph rotation matrices.
static_cast<MWRender::MoonState::Phase>(phase(gameTime)),
shadowBlend(rotationFromHorizon),
earlyMoonShadowAlpha(rotationFromHorizon) * hourlyAlpha(gameTime.getHour())
};
return state;
}
inline float MoonModel::angle(const TimeStamp& gameTime) const
{
// Morrowind's moons start travel on one side of the horizon (let's call it H-rise) and travel 180 degrees to the
// opposite horizon (let's call it H-set). Upon reaching H-set, they reset to H-rise until the next moon rise.
// When calculating the angle of the moon, several cases have to be taken into account:
// 1. Moon rises and then sets in one day.
// 2. Moon sets and doesn't rise in one day (occurs when the moon rise hour is >= 24).
// 3. Moon sets and then rises in one day.
float moonRiseHourToday = moonRiseHour(gameTime.getDay());
float moonRiseAngleToday = 0;
if(gameTime.getHour() < moonRiseHourToday)
{
float moonRiseHourYesterday = moonRiseHour(gameTime.getDay() - 1);
if(moonRiseHourYesterday < 24)
{
float moonRiseAngleYesterday = rotation(24 - moonRiseHourYesterday);
if(moonRiseAngleYesterday < 180)
{
// The moon rose but did not set yesterday, so accumulate yesterday's angle with how much we've travelled today.
moonRiseAngleToday = rotation(gameTime.getHour()) + moonRiseAngleYesterday;
}
}
}
else
{
moonRiseAngleToday = rotation(gameTime.getHour() - moonRiseHourToday);
}
if(moonRiseAngleToday >= 180)
{
// The moon set today, reset the angle to the horizon.
moonRiseAngleToday = 0;
}
return moonRiseAngleToday;
}
inline float MoonModel::moonRiseHour(unsigned int daysPassed) const
{
// This arises from the start date of 16 Last Seed, 427
// TODO: Find an alternate formula that doesn't rely on this day being fixed.
static const unsigned int startDay = 16;
// This odd formula arises from the fact that on 16 Last Seed, 17 increments have occurred, meaning
// that upon starting a new game, it must only calculate the moon phase as far back as 1 Last Seed.
// Note that we don't modulo after adding the latest daily increment because other calculations need to
// know if doing so would cause the moon rise to be postponed until the next day (which happens when
// the moon rise hour is >= 24 in Morrowind).
return mDailyIncrement + std::fmod((daysPassed - 1 + startDay) * mDailyIncrement, 24.0f);
}
inline float MoonModel::rotation(float hours) const
{
// 15 degrees per hour was reverse engineered from the rotation matrices of the Morrowind scene graph.
// Note that this correlates to 360 / 24, which is a full rotation every 24 hours, so speed is a measure
// of whole rotations that could be completed in a day.
return 15.0f * mSpeed * hours;
}
inline unsigned int MoonModel::phase(const TimeStamp& gameTime) const
{
// Morrowind starts with a full moon on 16 Last Seed and then begins to wane 17 Last Seed, working on 3 day phase cycle.
// Note: this is an internal helper, and as such we don't want to return MWRender::MoonState::Phase since we can't
// forward declare it (C++11 strongly typed enums solve this).
// If the moon didn't rise yet today, use yesterday's moon phase.
if(gameTime.getHour() < moonRiseHour(gameTime.getDay()))
return (gameTime.getDay() / 3) % 8;
else
return ((gameTime.getDay() + 1) / 3) % 8;
}
inline float MoonModel::shadowBlend(float angle) const
{
// The Fade End Angle and Fade Start Angle describe a region where the moon transitions from a solid disk
// that is roughly the color of the sky, to a textured surface.
// Depending on the current angle, the following values describe the ratio between the textured moon
// and the solid disk:
// 1. From Fade End Angle 1 to Fade Start Angle 1 (during moon rise): 0..1
// 2. From Fade Start Angle 1 to Fade Start Angle 2 (between moon rise and moon set): 1 (textured)
// 3. From Fade Start Angle 2 to Fade End Angle 2 (during moon set): 1..0
// 4. From Fade End Angle 2 to Fade End Angle 1 (between moon set and moon rise): 0 (solid disk)
float fadeAngle = mFadeStartAngle - mFadeEndAngle;
float fadeEndAngle2 = 180.0f - mFadeEndAngle;
float fadeStartAngle2 = 180.0f - mFadeStartAngle;
if((angle >= mFadeEndAngle) && (angle < mFadeStartAngle))
return (angle - mFadeEndAngle) / fadeAngle;
else if((angle >= mFadeStartAngle) && (angle < fadeStartAngle2))
return 1.0f;
else if((angle >= fadeStartAngle2) && (angle < fadeEndAngle2))
return (fadeEndAngle2 - angle) / fadeAngle;
else
return 0.0f;
}
inline float MoonModel::hourlyAlpha(float gameHour) const
{
// The Fade Out Start / Finish and Fade In Start / Finish describe the hours at which the moon
// appears and disappears.
// Depending on the current hour, the following values describe how transparent the moon is.
// 1. From Fade Out Start to Fade Out Finish: 1..0
// 2. From Fade Out Finish to Fade In Start: 0 (transparent)
// 3. From Fade In Start to Fade In Finish: 0..1
// 4. From Fade In Finish to Fade Out Start: 1 (solid)
if((gameHour >= mFadeOutStart) && (gameHour < mFadeOutFinish))
return (mFadeOutFinish - gameHour) / (mFadeOutFinish - mFadeOutStart);
else if((gameHour >= mFadeOutFinish) && (gameHour < mFadeInStart))
return 0.0f;
else if((gameHour >= mFadeInStart) && (gameHour < mFadeInFinish))
return (gameHour - mFadeInStart) / (mFadeInFinish - mFadeInStart);
else
return 1.0f;
}
inline float MoonModel::earlyMoonShadowAlpha(float angle) const
{
// The Moon Shadow Early Fade Angle describes an arc relative to Fade End Angle.
// Depending on the current angle, the following values describe how transparent the moon is.
// 1. From Moon Shadow Early Fade Angle 1 to Fade End Angle 1 (during moon rise): 0..1
// 2. From Fade End Angle 1 to Fade End Angle 2 (between moon rise and moon set): 1 (solid)
// 3. From Fade End Angle 2 to Moon Shadow Early Fade Angle 2 (during moon set): 1..0
// 4. From Moon Shadow Early Fade Angle 2 to Moon Shadow Early Fade Angle 1: 0 (transparent)
float moonShadowEarlyFadeAngle1 = mFadeEndAngle - mMoonShadowEarlyFadeAngle;
float fadeEndAngle2 = 180.0f - mFadeEndAngle;
float moonShadowEarlyFadeAngle2 = fadeEndAngle2 + mMoonShadowEarlyFadeAngle;
if((angle >= moonShadowEarlyFadeAngle1) && (angle < mFadeEndAngle))
return (angle - moonShadowEarlyFadeAngle1) / mMoonShadowEarlyFadeAngle;
else if((angle >= mFadeEndAngle) && (angle < fadeEndAngle2))
return 1.0f;
else if((angle >= fadeEndAngle2) && (angle < moonShadowEarlyFadeAngle2))
return (moonShadowEarlyFadeAngle2 - angle) / mMoonShadowEarlyFadeAngle;
else
return 0.0f;
}
WeatherManager::WeatherManager(MWRender::RenderingManager& rendering, const Fallback::Map& fallback, MWWorld::ESMStore& store)
: mStore(store)
, mRendering(rendering)
, mSunriseTime(fallback.getFallbackFloat("Weather_Sunrise_Time"))
, mSunsetTime(fallback.getFallbackFloat("Weather_Sunset_Time"))
, mSunriseDuration(fallback.getFallbackFloat("Weather_Sunrise_Duration"))
, mSunsetDuration(fallback.getFallbackFloat("Weather_Sunset_Duration"))
, mSunPreSunsetTime(fallback.getFallbackFloat("Weather_Sun_Pre-Sunset_Time"))
, mNightFade(0, 0, 0, 1)
, mHoursBetweenWeatherChanges(fallback.getFallbackFloat("Weather_Hours_Between_Weather_Changes"))
, mRainSpeed(fallback.getFallbackFloat("Weather_Precip_Gravity"))
, mUnderwaterFog(fallback.getFallbackFloat("Water_UnderwaterSunriseFog"),
fallback.getFallbackFloat("Water_UnderwaterDayFog"),
fallback.getFallbackFloat("Water_UnderwaterSunsetFog"),
fallback.getFallbackFloat("Water_UnderwaterNightFog"))
, mWeatherSettings()
, mMasser("Masser", fallback)
, mSecunda("Secunda", fallback)
, mWindSpeed(0.f)
, mIsStorm(false)
, mStormDirection(0,1,0)
, mCurrentRegion()
, mTimePassed(0)
, mFastForward(false)
, mWeatherUpdateTime(mHoursBetweenWeatherChanges)
, mTransitionFactor(0)
, mCurrentWeather(0)
, mNextWeather(0)
, mQueuedWeather(0)
, mRegions()
, mResult()
, mAmbientSound()
, mPlayingSoundID()
{
mTimeSettings.mNightStart = mSunsetTime + mSunsetDuration;
mTimeSettings.mNightEnd = mSunriseTime - 0.5f;
mTimeSettings.mDayStart = mSunriseTime + mSunriseDuration;
mTimeSettings.mDayEnd = mSunsetTime;
mTimeSettings.mSunriseTime = mSunriseTime;
mWeatherSettings.reserve(10);
addWeather("Clear", fallback); // 0
addWeather("Cloudy", fallback); // 1
addWeather("Foggy", fallback); // 2
addWeather("Overcast", fallback); // 3
addWeather("Rain", fallback); // 4
addWeather("Thunderstorm", fallback); // 5
addWeather("Ashstorm", fallback, "meshes\\ashcloud.nif"); // 6
addWeather("Blight", fallback, "meshes\\blightcloud.nif"); // 7
addWeather("Snow", fallback, "meshes\\snow.nif"); // 8
addWeather("Blizzard", fallback, "meshes\\blizzard.nif"); // 9
Store<ESM::Region>::iterator it = store.get<ESM::Region>().begin();
for(; it != store.get<ESM::Region>().end(); ++it)
{
std::string regionID = Misc::StringUtils::lowerCase(it->mId);
mRegions.insert(std::make_pair(regionID, RegionWeather(*it)));
}
forceWeather(0);
}
WeatherManager::~WeatherManager()
{
stopSounds();
}
void WeatherManager::changeWeather(const std::string& regionID, const unsigned int weatherID)
{
// In Morrowind, this seems to have the following behavior, when applied to the current region:
// - When there is no transition in progress, start transitioning to the new weather.
// - If there is a transition in progress, queue up the transition and process it when the current one completes.
// - If there is a transition in progress, and a queued transition, overwrite the queued transition.
// - If multiple calls to ChangeWeather are made while paused (console up), only the last call will be used,
// meaning that if there was no transition in progress, only the last ChangeWeather will be processed.
// If the region isn't current, Morrowind will store the new weather for the region in question.
if(weatherID < mWeatherSettings.size())
{
std::string lowerCaseRegionID = Misc::StringUtils::lowerCase(regionID);
std::map<std::string, RegionWeather>::iterator it = mRegions.find(lowerCaseRegionID);
if(it != mRegions.end())
{
it->second.setWeather(weatherID);
regionalWeatherChanged(it->first, it->second);
}
}
}
void WeatherManager::modRegion(const std::string& regionID, const std::vector<char>& chances)
{
// Sets the region's probability for various weather patterns. Note that this appears to be saved permanently.
// In Morrowind, this seems to have the following behavior when applied to the current region:
// - If the region supports the current weather, no change in current weather occurs.
// - If the region no longer supports the current weather, and there is no transition in progress, begin to
// transition to a new supported weather type.
// - If the region no longer supports the current weather, and there is a transition in progress, queue a
// transition to a new supported weather type.
std::string lowerCaseRegionID = Misc::StringUtils::lowerCase(regionID);
std::map<std::string, RegionWeather>::iterator it = mRegions.find(lowerCaseRegionID);
if(it != mRegions.end())
{
it->second.setChances(chances);
regionalWeatherChanged(it->first, it->second);
}
}
void WeatherManager::playerTeleported()
{
// If the player teleports to an outdoors cell in a new region (for instance, by travelling), the weather needs to
// be changed immediately, and any transitions for the previous region discarded.
MWBase::World* world = MWBase::Environment::get().getWorld();
if(world->isCellExterior() || world->isCellQuasiExterior())
{
std::string playerRegion = Misc::StringUtils::lowerCase(world->getPlayerPtr().getCell()->getCell()->mRegion);
std::map<std::string, RegionWeather>::iterator it = mRegions.find(playerRegion);
if(it != mRegions.end() && playerRegion != mCurrentRegion)
{
mCurrentRegion = playerRegion;
forceWeather(it->second.getWeather());
}
}
}
void WeatherManager::update(float duration, bool paused)
{
MWWorld::ConstPtr player = MWMechanics::getPlayer();
MWBase::World& world = *MWBase::Environment::get().getWorld();
TimeStamp time = world.getTimeStamp();
if(!paused || mFastForward)
{
// Add new transitions when either the player's current external region changes.
std::string playerRegion = Misc::StringUtils::lowerCase(player.getCell()->getCell()->mRegion);
if(updateWeatherTime() || updateWeatherRegion(playerRegion))
{
std::map<std::string, RegionWeather>::iterator it = mRegions.find(mCurrentRegion);
if(it != mRegions.end())
{
addWeatherTransition(it->second.getWeather());
}
}
updateWeatherTransitions(duration);
}
const bool exterior = (world.isCellExterior() || world.isCellQuasiExterior());
if(!exterior)
{
mRendering.setSkyEnabled(false);
stopSounds();
return;
}
calculateWeatherResult(time.getHour(), duration, paused);
mWindSpeed = mResult.mWindSpeed;
mIsStorm = mResult.mIsStorm;
if (mIsStorm)
{
osg::Vec3f playerPos (player.getRefData().getPosition().asVec3());
osg::Vec3f redMountainPos (19950, 72032, 27831);
mStormDirection = (playerPos - redMountainPos);
mStormDirection.z() = 0;
mStormDirection.normalize();
mRendering.getSkyManager()->setStormDirection(mStormDirection);
}
// disable sun during night
if (time.getHour() >= mTimeSettings.mNightStart || time.getHour() <= mSunriseTime)
mRendering.getSkyManager()->sunDisable();
else
mRendering.getSkyManager()->sunEnable();
// Update the sun direction. Run it east to west at a fixed angle from overhead.
// The sun's speed at day and night may differ, since mSunriseTime and mNightStart
// mark when the sun is level with the horizon.
{
// Shift times into a 24-hour window beginning at mSunriseTime...
float adjustedHour = time.getHour();
float adjustedNightStart = mTimeSettings.mNightStart;
if ( time.getHour() < mSunriseTime )
adjustedHour += 24.f;
if ( mTimeSettings.mNightStart < mSunriseTime )
adjustedNightStart += 24.f;
const bool is_night = adjustedHour >= adjustedNightStart;
const float dayDuration = adjustedNightStart - mSunriseTime;
const float nightDuration = 24.f - dayDuration;
double theta;
if ( !is_night ) {
theta = static_cast<float>(osg::PI) * (adjustedHour - mSunriseTime) / dayDuration;
} else {
theta = static_cast<float>(osg::PI) * (1.f - (adjustedHour - adjustedNightStart) / nightDuration);
}
osg::Vec3f final(
static_cast<float>(cos(theta)),
-0.268f, // approx tan( -15 degrees )
static_cast<float>(sin(theta)));
mRendering.setSunDirection( final * -1 );
}
float underwaterFog = mUnderwaterFog.getValue(time.getHour(), mTimeSettings);
float peakHour = mSunriseTime + (mSunsetTime - mSunriseTime) / 2;
if (time.getHour() < mSunriseTime || time.getHour() > mSunsetTime)
mRendering.getSkyManager()->setGlareTimeOfDayFade(0);
else if (time.getHour() < peakHour)
mRendering.getSkyManager()->setGlareTimeOfDayFade(1 - (peakHour - time.getHour()) / (peakHour - mSunriseTime));
else
mRendering.getSkyManager()->setGlareTimeOfDayFade(1 - (time.getHour() - peakHour) / (mSunsetTime - peakHour));
mRendering.getSkyManager()->setMasserState(mMasser.calculateState(time));
mRendering.getSkyManager()->setSecundaState(mSecunda.calculateState(time));
mRendering.configureFog(mResult.mFogDepth, underwaterFog, mResult.mFogColor);
mRendering.setAmbientColour(mResult.mAmbientColor);
mRendering.setSunColour(mResult.mSunColor, mResult.mSunColor * mResult.mGlareView);
mRendering.getSkyManager()->setWeather(mResult);
// Play sounds
if (mPlayingSoundID != mResult.mAmbientLoopSoundID)
{
stopSounds();
if (!mResult.mAmbientLoopSoundID.empty())
mAmbientSound = MWBase::Environment::get().getSoundManager()->playSound(mResult.mAmbientLoopSoundID, mResult.mAmbientSoundVolume, 1.0, MWBase::SoundManager::Play_TypeSfx, MWBase::SoundManager::Play_Loop);
mPlayingSoundID = mResult.mAmbientLoopSoundID;
}
if (mAmbientSound.get())
mAmbientSound->setVolume(mResult.mAmbientSoundVolume);
}
void WeatherManager::stopSounds()
{
if (mAmbientSound.get())
MWBase::Environment::get().getSoundManager()->stopSound(mAmbientSound);
mAmbientSound.reset();
mPlayingSoundID.clear();
}
float WeatherManager::getWindSpeed() const
{
return mWindSpeed;
}
bool WeatherManager::isInStorm() const
{
return mIsStorm;
}
osg::Vec3f WeatherManager::getStormDirection() const
{
return mStormDirection;
}
void WeatherManager::advanceTime(double hours, bool incremental)
{
// In Morrowind, when the player sleeps/waits, serves jail time, travels, or trains, all weather transitions are
// immediately applied, regardless of whatever transition time might have been remaining.
mTimePassed += hours;
mFastForward = !incremental ? true : mFastForward;
}
unsigned int WeatherManager::getWeatherID() const
{
return mCurrentWeather;
}
bool WeatherManager::isDark() const
{
TimeStamp time = MWBase::Environment::get().getWorld()->getTimeStamp();
bool exterior = (MWBase::Environment::get().getWorld()->isCellExterior()
|| MWBase::Environment::get().getWorld()->isCellQuasiExterior());
return exterior && (time.getHour() < mSunriseTime || time.getHour() > mTimeSettings.mNightStart - 1);
}
void WeatherManager::write(ESM::ESMWriter& writer, Loading::Listener& progress)
{
ESM::WeatherState state;
state.mCurrentRegion = mCurrentRegion;
state.mTimePassed = mTimePassed;
state.mFastForward = mFastForward;
state.mWeatherUpdateTime = mWeatherUpdateTime;
state.mTransitionFactor = mTransitionFactor;
state.mCurrentWeather = mCurrentWeather;
state.mNextWeather = mNextWeather;
state.mQueuedWeather = mQueuedWeather;
std::map<std::string, RegionWeather>::iterator it = mRegions.begin();
for(; it != mRegions.end(); ++it)
{
state.mRegions.insert(std::make_pair(it->first, it->second));
}
writer.startRecord(ESM::REC_WTHR);
state.save(writer);
writer.endRecord(ESM::REC_WTHR);
}
bool WeatherManager::readRecord(ESM::ESMReader& reader, uint32_t type)
{
if(ESM::REC_WTHR == type)
{
static const int oldestCompatibleSaveFormat = 2;
if(reader.getFormat() < oldestCompatibleSaveFormat)
{
// Weather state isn't really all that important, so to preserve older save games, we'll just discard the
// older weather records, rather than fail to handle the record.
reader.skipRecord();
}
else
{
ESM::WeatherState state;
state.load(reader);
mCurrentRegion.swap(state.mCurrentRegion);
mTimePassed = state.mTimePassed;
mFastForward = state.mFastForward;
mWeatherUpdateTime = state.mWeatherUpdateTime;
mTransitionFactor = state.mTransitionFactor;
mCurrentWeather = state.mCurrentWeather;
mNextWeather = state.mNextWeather;
mQueuedWeather = state.mQueuedWeather;
mRegions.clear();
importRegions();
for(std::map<std::string, ESM::RegionWeatherState>::iterator it = state.mRegions.begin(); it != state.mRegions.end(); ++it)
{
std::map<std::string, RegionWeather>::iterator found = mRegions.find(it->first);
if (found != mRegions.end())
{
found->second = RegionWeather(it->second);
}
}
}
return true;
}
return false;
}
void WeatherManager::clear()
{
stopSounds();
mCurrentRegion = "";
mTimePassed = 0.0f;
mWeatherUpdateTime = 0.0f;
forceWeather(0);
mRegions.clear();
importRegions();
}
inline void WeatherManager::addWeather(const std::string& name,
const Fallback::Map& fallback,
const std::string& particleEffect)
{
static const float fStromWindSpeed = mStore.get<ESM::GameSetting>().find("fStromWindSpeed")->getFloat();
Weather weather(name, fallback, fStromWindSpeed, mRainSpeed, particleEffect);
mWeatherSettings.push_back(weather);
}
inline void WeatherManager::importRegions()
{
Store<ESM::Region>::iterator it = mStore.get<ESM::Region>().begin();
for(; it != mStore.get<ESM::Region>().end(); ++it)
{
std::string regionID = Misc::StringUtils::lowerCase(it->mId);
mRegions.insert(std::make_pair(regionID, RegionWeather(*it)));
}
}
inline void WeatherManager::regionalWeatherChanged(const std::string& regionID, RegionWeather& region)
{
// If the region is current, then add a weather transition for it.
MWWorld::ConstPtr player = MWMechanics::getPlayer();
if(player.isInCell())
{
if(Misc::StringUtils::ciEqual(regionID, mCurrentRegion))
{
addWeatherTransition(region.getWeather());
}
}
}
inline bool WeatherManager::updateWeatherTime()
{
mWeatherUpdateTime -= mTimePassed;
mTimePassed = 0.0f;
if(mWeatherUpdateTime <= 0.0f)
{
// Expire all regional weather, so that any call to getWeather() will return a new weather ID.
std::map<std::string, RegionWeather>::iterator it = mRegions.begin();
for(; it != mRegions.end(); ++it)
{
it->second.setWeather(invalidWeatherID);
}
mWeatherUpdateTime += mHoursBetweenWeatherChanges;
return true;
}
return false;
}
inline bool WeatherManager::updateWeatherRegion(const std::string& playerRegion)
{
if(!playerRegion.empty() && playerRegion != mCurrentRegion)
{
mCurrentRegion = playerRegion;
return true;
}
return false;
}
inline void WeatherManager::updateWeatherTransitions(const float elapsedRealSeconds)
{
// When a player chooses to train, wait, or serves jail time, any transitions will be fast forwarded to the last
// weather type set, regardless of the remaining transition time.
if(!mFastForward && inTransition())
{
const float delta = mWeatherSettings[mNextWeather].transitionDelta();
mTransitionFactor -= elapsedRealSeconds * delta;
if(mTransitionFactor <= 0.0f)
{
mCurrentWeather = mNextWeather;
mNextWeather = mQueuedWeather;
mQueuedWeather = invalidWeatherID;
// We may have begun processing the queued transition, so we need to apply the remaining time towards it.
if(inTransition())
{
const float newDelta = mWeatherSettings[mNextWeather].transitionDelta();
const float remainingSeconds = -(mTransitionFactor / delta);
mTransitionFactor = 1.0f - (remainingSeconds * newDelta);
}
else
{
mTransitionFactor = 0.0f;
}
}
}
else
{
if(mQueuedWeather != invalidWeatherID)
{
mCurrentWeather = mQueuedWeather;
}
else if(mNextWeather != invalidWeatherID)
{
mCurrentWeather = mNextWeather;
}
mNextWeather = invalidWeatherID;
mQueuedWeather = invalidWeatherID;
mFastForward = false;
}
}
inline void WeatherManager::forceWeather(const int weatherID)
{
mTransitionFactor = 0.0f;
mCurrentWeather = weatherID;
mNextWeather = invalidWeatherID;
mQueuedWeather = invalidWeatherID;
}
inline bool WeatherManager::inTransition()
{
return mNextWeather != invalidWeatherID;
}
inline void WeatherManager::addWeatherTransition(const int weatherID)
{
// In order to work like ChangeWeather expects, this method begins transitioning to the new weather immediately if
// no transition is in progress, otherwise it queues it to be transitioned.
assert(weatherID >= 0 && static_cast<size_t>(weatherID) < mWeatherSettings.size());
if(!inTransition() && (weatherID != mCurrentWeather))
{
mNextWeather = weatherID;
mTransitionFactor = 1.0f;
}
else if(inTransition() && (weatherID != mNextWeather))
{
mQueuedWeather = weatherID;
}
}
inline void WeatherManager::calculateWeatherResult(const float gameHour,
const float elapsedSeconds,
const bool isPaused)
{
float flash = 0.0f;
if(!inTransition())
{
calculateResult(mCurrentWeather, gameHour);
flash = mWeatherSettings[mCurrentWeather].calculateThunder(1.0f, elapsedSeconds, isPaused);
}
else
{
calculateTransitionResult(1 - mTransitionFactor, gameHour);
float currentFlash = mWeatherSettings[mCurrentWeather].calculateThunder(mTransitionFactor,
elapsedSeconds,
isPaused);
float nextFlash = mWeatherSettings[mNextWeather].calculateThunder(1 - mTransitionFactor,
elapsedSeconds,
isPaused);
flash = currentFlash + nextFlash;
}
osg::Vec4f flashColor(flash, flash, flash, 0.0f);
mResult.mFogColor += flashColor;
mResult.mAmbientColor += flashColor;
mResult.mSunColor += flashColor;
}
inline void WeatherManager::calculateResult(const int weatherID, const float gameHour)
{
const Weather& current = mWeatherSettings[weatherID];
mResult.mCloudTexture = current.mCloudTexture;
mResult.mCloudBlendFactor = 0;
mResult.mWindSpeed = current.mWindSpeed;
mResult.mCloudSpeed = current.mCloudSpeed;
mResult.mGlareView = current.mGlareView;
mResult.mAmbientLoopSoundID = current.mAmbientLoopSoundID;
mResult.mAmbientSoundVolume = 1.f;
mResult.mEffectFade = 1.f;
mResult.mIsStorm = current.mIsStorm;
mResult.mRainSpeed = current.mRainSpeed;
mResult.mRainFrequency = current.mRainFrequency;
mResult.mParticleEffect = current.mParticleEffect;
mResult.mRainEffect = current.mRainEffect;
mResult.mNight = (gameHour < mSunriseTime || gameHour > mTimeSettings.mNightStart - 1);
mResult.mFogDepth = current.mLandFogDepth.getValue(gameHour, mTimeSettings);
mResult.mFogColor = current.mFogColor.getValue(gameHour, mTimeSettings);
mResult.mAmbientColor = current.mAmbientColor.getValue(gameHour, mTimeSettings);
mResult.mSunColor = current.mSunColor.getValue(gameHour, mTimeSettings);
mResult.mSkyColor = current.mSkyColor.getValue(gameHour, mTimeSettings);
mResult.mNightFade = mNightFade.getValue(gameHour, mTimeSettings);
if (gameHour >= mSunsetTime - mSunPreSunsetTime)
{
float factor = (gameHour - (mSunsetTime - mSunPreSunsetTime)) / mSunPreSunsetTime;
factor = std::min(1.f, factor);
mResult.mSunDiscColor = lerp(osg::Vec4f(1,1,1,1), current.mSunDiscSunsetColor, factor);
// The SunDiscSunsetColor in the INI isn't exactly the resulting color on screen, most likely because
// MW applied the color to the ambient term as well. After the ambient and emissive terms are added together, the fixed pipeline
// would then clamp the total lighting to (1,1,1). A noticeable change in color tone can be observed when only one of the color components gets clamped.
// Unfortunately that means we can't use the INI color as is, have to replicate the above nonsense.
mResult.mSunDiscColor = mResult.mSunDiscColor + osg::componentMultiply(mResult.mSunDiscColor, mResult.mAmbientColor);
for (int i=0; i<3; ++i)
mResult.mSunDiscColor[i] = std::min(1.f, mResult.mSunDiscColor[i]);
}
else
mResult.mSunDiscColor = osg::Vec4f(1,1,1,1);
if (gameHour >= mSunsetTime)
{
float fade = std::min(1.f, (gameHour - mSunsetTime) / 2.f);
fade = fade*fade;
mResult.mSunDiscColor.a() = 1.f - fade;
}
else if (gameHour >= mSunriseTime && gameHour <= mSunriseTime + 1)
{
mResult.mSunDiscColor.a() = gameHour - mSunriseTime;
}
else
mResult.mSunDiscColor.a() = 1;
}
inline void WeatherManager::calculateTransitionResult(const float factor, const float gameHour)
{
calculateResult(mCurrentWeather, gameHour);
const MWRender::WeatherResult current = mResult;
calculateResult(mNextWeather, gameHour);
const MWRender::WeatherResult other = mResult;
mResult.mCloudTexture = current.mCloudTexture;
mResult.mNextCloudTexture = other.mCloudTexture;
mResult.mCloudBlendFactor = mWeatherSettings[mNextWeather].cloudBlendFactor(factor);
mResult.mFogColor = lerp(current.mFogColor, other.mFogColor, factor);
mResult.mSunColor = lerp(current.mSunColor, other.mSunColor, factor);
mResult.mSkyColor = lerp(current.mSkyColor, other.mSkyColor, factor);
mResult.mAmbientColor = lerp(current.mAmbientColor, other.mAmbientColor, factor);
mResult.mSunDiscColor = lerp(current.mSunDiscColor, other.mSunDiscColor, factor);
mResult.mFogDepth = lerp(current.mFogDepth, other.mFogDepth, factor);
mResult.mWindSpeed = lerp(current.mWindSpeed, other.mWindSpeed, factor);
mResult.mCloudSpeed = lerp(current.mCloudSpeed, other.mCloudSpeed, factor);
mResult.mGlareView = lerp(current.mGlareView, other.mGlareView, factor);
mResult.mNightFade = lerp(current.mNightFade, other.mNightFade, factor);
mResult.mNight = current.mNight;
if(factor < 0.5)
{
mResult.mIsStorm = current.mIsStorm;
mResult.mParticleEffect = current.mParticleEffect;
mResult.mRainEffect = current.mRainEffect;
mResult.mParticleEffect = current.mParticleEffect;
mResult.mRainSpeed = current.mRainSpeed;
mResult.mRainFrequency = current.mRainFrequency;
mResult.mAmbientSoundVolume = 1-(factor*2);
mResult.mEffectFade = mResult.mAmbientSoundVolume;
mResult.mAmbientLoopSoundID = current.mAmbientLoopSoundID;
}
else
{
mResult.mIsStorm = other.mIsStorm;
mResult.mParticleEffect = other.mParticleEffect;
mResult.mRainEffect = other.mRainEffect;
mResult.mParticleEffect = other.mParticleEffect;
mResult.mRainSpeed = other.mRainSpeed;
mResult.mRainFrequency = other.mRainFrequency;
mResult.mAmbientSoundVolume = 2*(factor-0.5f);
mResult.mEffectFade = mResult.mAmbientSoundVolume;
mResult.mAmbientLoopSoundID = other.mAmbientLoopSoundID;
}
}