Since actors can be active in 3x3 grid around the player, we need to
first load all statics in a 5x5 grid around the player.
Split load and unloading in 2 phases. Add an mInactiveCells set into the
scene, which contains all cells inside the aforementioned 5x5 grid.
These cells contains only heightfields and physics objects of static
class.
loadCell always adds a height field, but unloadCell only removed it for
cells with height data. Reloading a cell overwrote the height field
added earlier (leading to its destruction) while the navigator retained
a reference to the now deleted collision shape, leading to a crash.
imprecision issue with projectile collision detection.
Simplify the mechanics: manage hits in one spot.
Give magic projectiles a collision shape similar in size to their visible
model.
Rename the 2 convex result callback to clearly state their purpose.
One of the issue since the introduction of async physics is the quirky
handling of scripted moves. Previous attempt to account for them was
based on detecting changes in actor position while the physics thread is
running. To this end, semantics of Actor::updatePosition() (which is
responsible for set the absolute position of an actor in the world) was
toned down to merely store the desired position, with the physics system
actually responsible for moving the actor. For the cases were complete
override of the physics simulation was needed, I introduced
Actor::resetPosition(), which actually have same semantics as
original updatePosition(). This in turn introduced a loads of new bugs
when the weakened semantics broke key assumptions inside the engine
(spawning, summoning, teleport, etc).
Instead of tracking them down, count on the newly introduced support for
object relative movements in the engine (World::moveObjectBy) to
register relative movements and restore original handling of absolute positionning.
Changes are relatively small:
- move resetPosition() content into updatePosition()
- call updatePosition() everywhere it was called before
- remove all added calls to the now non-existing resetPosition()
tldr; ditch last month worth of bug introduction and eradication and redo
it properly
This gives finer control over reseting positions (switch off tcl is no
longer glitchy) and solve most of the erroneous usage of stale World::Ptr
indicated by:
"Error in frame: moveTo: object is not in this cell"
its current position.
Use it in relevant MWScripts opcode (move and moveworld).
Remove the fragile detection of scripted translation from PhysicsTaskScheduler.
No user visible change, just a more robust mechanism.
When an NPC fire a projectile, it should affect only its targeted actor.
To this end, after a hit is detected the target is checked against the
list of AI targets and reactivated if necessary.
Problem occurs when the hit occurs as a result of a friendly actor going
into the projectile (detected in ClosestNotMeConvexResultCallback):
while the projectile is inside the friend's collision box, it is
deactivated, just to be immediately reactivated. Effectively, the
projectile does nothing until the actor moves out.
Add a check inside the ClosestNotMeConvexResultCallback before declaring
a hit.
Since the necessary data is not safely accessible from the async thread,
maintain a copy inside the Projectile class.
the interpolation calculation would kick in and make the actor goes upward if the
spawn point is higher than summoner or downward if lower. The actor
would then either jump or fall through terrain.
Discard physics simulation results after fast forward
See merge request OpenMW/openmw!423
(cherry picked from commit ff2d7695698341ef059c75707aa092cef48deea4)
03a37433 In case of time fast forward (resting, jail), force reset of positions
Before this change, if an actor position was changed while the physics
simulation was running, the simulation result would be discarded. It is
fine in case of one off event such as teleport, but in the case of
scripts making use of this functionality to make lifts or conveyor (such
as Sotha Sil Expanded mod) it broke actor movement.
To alleviate this issue, at the end of the simulation, the position of the Actor
in the world is compared to the position it had at the beginning of the
simulation. A difference indicate a force move occured. In this case,
the Actor mPosition and mPreviousPosition are translated by the difference of position.
Since the Actor position will be really set while the next simulation runs, we
save it in the mNextPosition field.