This had been broken by fr3dz10's physics rewrites from the earlier part of the year that made it so dedicated players were always regarded by the movement solver as being on the ground.
- enchanted arrow explode upon hit the water plane
- non enchanted arrow disappear (or more accurately, they hit nothingness)
- enchanted arrow shot underwater explode immediately
- non enchanted arrow disappear immediately
Also, solve a bug that occured previously and could theoritically still happens where we use the last tested collision position for instead of the last registered hit:
Use the hit position as saved inside Projectile::hit() instead of the last position saved inside the callback.
If a projectile collides with several objects (bottom of the sea and water surface for instance), the last collision tested won't necessarily be the impact position as we have no control over the order in which the tests are performed.
Fix navmesh update on opening/closing door
See merge request OpenMW/openmw!995
(cherry picked from commit 9123db3a5954dd082f501151cba0a08bfe3ff908)
c7c0d11c Trigger navmesh update when any navigator object has been updated
Detach objects from the active grid when attempting to get their animation
Closes#6105
See merge request OpenMW/openmw!951
(cherry picked from commit 7d8949ec3fcd1919da59308deab06433136f6629)
692615fd Detach objects from the active grid when attempting to get their animation
Instead of registering the desired change of position and rely on
physics simulation to apply it to the world, immediately change the
position in the world without reset the simulation.
To make SetPos works with async physics, it was modified to register a
position offset that would be applied to the real position during the
simulation.
A common pattern to teleport NPC in scripts is a sequence of SetPos/Disable/Enable in the same frame.
Since Disable/Enable creates a new physics actor using last known
RefData::Position, the registered offset never get a chance to be applied.
Modify disable() to call moveObject with the offset applied, so that the newly created physics actor will have up-to-date position
Restore projectile caster from savegame (#5860)
See merge request OpenMW/openmw!616
(cherry picked from commit d595c7adb0fb45eafed6d3d0403ad640a91411ed)
c5426bec In the savegame, projectile caster is identified by its actor id. When
One of the issue since the introduction of async physics is the quirky
handling of scripted moves. Previous attempt to account for them was
based on detecting changes in actor position while the physics thread is
running. To this end, semantics of Actor::updatePosition() (which is
responsible for set the absolute position of an actor in the world) was
toned down to merely store the desired position, with the physics system
actually responsible for moving the actor. For the cases were complete
override of the physics simulation was needed, I introduced
Actor::resetPosition(), which actually have same semantics as
original updatePosition(). This in turn introduced a loads of new bugs
when the weakened semantics broke key assumptions inside the engine
(spawning, summoning, teleport, etc).
Instead of tracking them down, count on the newly introduced support for
object relative movements in the engine (World::moveObjectBy) to
register relative movements and restore original handling of absolute positionning.
Changes are relatively small:
- move resetPosition() content into updatePosition()
- call updatePosition() everywhere it was called before
- remove all added calls to the now non-existing resetPosition()
tldr; ditch last month worth of bug introduction and eradication and redo
it properly
This gives finer control over reseting positions (switch off tcl is no
longer glitchy) and solve most of the erroneous usage of stale World::Ptr
indicated by:
"Error in frame: moveTo: object is not in this cell"
its current position.
Use it in relevant MWScripts opcode (move and moveworld).
Remove the fragile detection of scripted translation from PhysicsTaskScheduler.
No user visible change, just a more robust mechanism.